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Abstract

In this study, we propose and analyze a class of distributed algorithms performing the joint optimization of radio
resources in heterogeneous cellular networks made of a juxtaposition of macro and small cells. Within this context, it
is essential to use algorithms able to simultaneously solve the problems of channel selection, user association and
power control. In such networks, the unpredictability of the cell and user patterns also requires distributed
optimization schemes. The proposed method is inspired from statistical physics and based on the Gibbs sampler. It
does not require the concavity/convexity, monotonicity or duality properties common to classical optimization
problems. Besides, it supports discrete optimization which is especially useful to practical systems. We show that it can
be implemented in a fully distributed way and nevertheless achieves system-wide optimality. We use simulation to
compare this solution to today’s default operational methods in terms of both throughput and energy consumption.
Finally, we address concrete issues for the implementation of this solution and analyze the overhead traffic required
within the framework of 3GPP and femtocell standards.

1 Introduction
Today’s cellular mobile radio systems strongly rely on
highly hierarchical network architectures that allow ser-
vice providers to control and share radio resources among
base stations and clients in a centralized manner. With
the foreseen exponentially increasing number of users and
traffic in the 4G and future wireless networks, existing
deployment and practice becomes economically unsus-
tainable. Network self-organization and self-optimization
are among the key targets of future mobile networks
so as to relax the heavy demand of human efforts in
the network planning and optimization tasks and to
reduce the system’s capital and operational expenditure
(CAPEX/OPEX) [1-3]. The next-generation mobile net-
works (NGMN) are expected to provide a full coverage of
broadband wireless service and support fair and efficient
radio resource utilization with a high degree of operation
autonomy and intelligence.
Due to the emerging high demand of broadband ser-

vice and new applications, wireless networking also has
to face the challenge of supporting fast increasing data
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traffic with the requirement of spectrum and energy uti-
lization efficiency [4]. To enhance the network capacity
and support pervasive broadband service, reducing cell
size is one of the most effective approaches. Deployment
of small cell base stations or femtocells has a great poten-
tial to improve the spatial reuse of radio resource and
also enhance transmit power efficiency [5]. It is foreseen
that the next generationmobile cellular networks will con-
sist of heterogeneous macro and small cells with different
capabilities including transmit power and coverage range.
In such networks due to the unpredictability of the base
station and user patterns, network self-organization and
self-optimization becomes necessary. Autonomic man-
agement and configuration of user association, i.e., assign-
ing users to base stations, and radio resource allocation
such as transmit power and channel selection would be
highly desirable to practical systems [6].
The primary objective of the presented study is to design

distributed algorithms performing radio resource alloca-
tion and network self-optimization for today’s macro and
small cell (e.g., 3GPP-LTE [2] and femtocell) mixed net-
works. In radio resource management, (i) power control,
(ii) user association and (iii) channel selection are essen-
tial elements. It is known that system-wide radio resource
optimization is usually very challenging [7]. A joint opti-
mization of user association, channel selection and power
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control is in general non-convex and difficult to solve,
even if centralized algorithms are allowed [8]. Notice that
in classical networks made of macro cells only, optimizing
any of the above three elements independently can effec-
tively improve the system performance. However, it may
not be true in heterogeneous networks made of a juxta-
position of macro and small cells. This would yield extra
complexity and difficulties. Besides, future wireless net-
works will typically be large, have fairly random topolo-
gies, and lack centralized control entities for allocating
resources and explicitly coordinating transmissions with
global coordination. Instead, these networks will depend
on individual nodes to operate autonomously and itera-
tively and to share radio resources efficiently. We have
to see how individual nodes can perform autonomously
and support inter-cell interference management in a dis-
tributed way for finding globally optimal configurations.
To begin with, we give two examples to illustrate the

problem that may happen when conducting these opti-
mizations under macro and small cell networks, in both
the downlink and uplink respectively. Consider the down-
link scenario in Figure 1 where there are two mobile users
u and v under the macro and small cell base stations (BS)
a and b which have different maximum transmit powers
and coverage ranges. Notice that user u can be covered by
the macro cell BS a but it is located near the edge of a′s
coverage. Meanwhile, it is too close to the small cell BS b
and this will have a strong impact on its received signal-
to-interference-plus-noise-ratio (SINR). Here, transmit
power optimization will not be effective without prior
user association and channel selection optimization. One
may consider the option in which users u and v both asso-
ciate with the small cell b. However, this may overload
BS b. From the viewpoint of load balancing, it is better
to have the two users attached to different cells, e.g., user

User: u

Macro cell
BS: a

Small cell
BS: b

User: v

Figure 1 Since user u is far from its BS a, the received signal at
user umay suffer strong interference due to the transmission of
small cell BS b destined to user v.

u is attached to BS a. However, user u will then have a
low SINR as long as the two transmissions use a same
channel. Clearly, one should consider assigning two differ-
ent channels for these two transmitter-receiver pairs and
hence conduct a joint user association and channel selec-
tion optimization with respect to the link characteristics
of the possible combinations and their available channels.
If the system involves more users and cells, power control
should be conducted as well to mitigate interference. This
requires a joint optimization of all three elements.
Figure 2 shows a similar problem in the uplink. Con-

sider that one first conducts user association optimiza-
tion. Since user v is closer to BS b than to BS a, from the
viewpoint of load balancing, the recommended user asso-
ciation should be as follows: user u attaches to BS a while
user v attaches to BS b. As user u is far away from its BS a,
the transmit power has to be high enough. This will how-
ever yield a strong interference to the signal received at
BS b which is transmitted from user v. Note that in this
case, user association optimization, power control or even
their joint optimization are not able to solve the problem.
However, if one also considers channel allocation and tries
to select two different channels for these two transmitter-
receiver pairs, a joint optimization will be able to resolve
the conflict and enhance overall performance.
Let us now describe what aspects of the problem were

considered so far and the novelty of our approach. When
each optimization is conducted separately, the proper
optimization sequence was studied in [9,10] for the 802.11
WLAN case, based on careful experimental work and sce-
nario analysis. Explicit rules were proposed when the cell
patterns have a specific structure (e.g., in the hexagonal
base station pattern case). However, for situations where
the cell and user patterns are unpredictable as in the small

Small cell
BS: bUser: v

Figure 2 The signal received at BS b sent from user v can be
strongly interfered by the transmission of user u since u has to
use a relatively high power in order to send its signal to BS a in
long distance.
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cell case, no simple and universal rule is known and a joint
optimization is necessary to achieve the best performance.
Various separate optimization problems were consid-

ered, mainly under the assumptions of centralized coor-
dination and global information exchange. For example
the transmission powers maximizing system throughput
in the multiple interfering link case leads to a non-convex
optimization problem which was studied in [11,12]. A
power control algorithm that guarantees strict throughput
maximization in the general SINR regime is reported in
[13]. It is built on multiplicative linear fractional program-
ming, which is used for optimization problems expressible
as a difference of two convex problems. However, this
algorithm requires a centralized control and is only effi-
cient for problem instances of small size due to the com-
putation complexity. There is a lack of efficient algorithm
operating in a distributed manner and ensuring global
optimality in the above joint optimization.
Here, we propose and analyze a class of distributed

algorithms performing the joint optimization of radio
resources in a generalized heterogeneous macro and small
cell network. Note that the optimization function does not
have qualitative properties such as convexity or mono-
tonicity. The proposed solution is inspired from statis-
tical physics and based on the Gibbs sampler (see e.g.,
[14,15]). It is a generalization of the study in [3] which
only takes into account power control and user associ-
ation and is thus limited to homogeneous mobile cellu-
lar networks. The article describes the algorithm, shows
that it can be implemented in a fully distributed manner
and nevertheless achieves minimal system-wide potential
delay, reports on its performance, and analyzes the over-
head associated with the information exchange required
in the implementation of this solution in today’s 3GPP-
LTE and femtocell standards. The rest of the article is
organized as follows. Section ‘System model and prob
lem formulation’ describes the system model and prob-
lem setup. Section ‘Gibbs sampler and self optimization’
presents the proposed solution. Section ‘Simulation and
comparison’ compares this solution to today’s default
operation in terms of throughput and energy consump-
tion. Section ‘Evaluation of overhead traffic’ investigates
the overhead traffic generated by the algorithm. Finally,
Section ‘Conclusion’ contains the conclusion.

2 Systemmodel and problem formulation
We consider a reuse-1 cellular radio system with a set B
of base stations serving a population U of users. For each
user u ∈ U , it is assumed that there is a pair of orthogo-
nal channels for the uplink and downlink. We assume that
there is no interference between the uplink and downlink
and we only consider the downlink. However, the method
can be generalized to the uplink as well.

We assume that users can associate with any neighbor-
ing base station b ∈ B in the network which could be a
macro or small cell base station, which is referred to as
open access [5]. Today’s default operation attaches each
user u to the base station with the highest received power.
Note that this is clearly sub-optimal. In general, if one sim-
ply associates users with the closest BS or to that with
the strongest received signal, it is possible that some BSs
have many users while others have only a few. The result-
ing overload might lead to a degradation of the network
capacity.
Let C be the set of channels (e.g., frequency bands)

which are common to all base stations. The base station
serving user u is denoted by bu and is restricted to some
local set Bu of bases stations (typically Bu is the set of
BSs the power of pilot signal of which is received by user
u above some threshold). The channel allocated by bu to
user u is denoted cu ∈ C. Here, for simplicity we con-
sider that a user only takes one channel. The transmission
power used by base station bu to u is denoted by Pu.
The SINR at user u is then:

SINRu = Pul(bu,u, cu)
Nu(cu) + ∑

v∈U ,v�=u
α(bu, bv, cu, cv)Pvl(bv,u, cv)

,

(1)

where Nu(c) denotes the thermal noise of user u on chan-
nel c, l(bu,u, c) is the signal attenuation from BS bu to u on
channel c, and α(b, b′, c, c′) represents the orthogonality
factor between some user associated with BS b on channel
c and some user associated with BS b′ on channel c′.
Note that it makes sense to assume that 0 ≤ α(·) ≤ 1

and that the following symmetry holds: for all b, b′, c, c′,

α(b, b′, c, c′) = α(b′, b, c′, c).

Here are some examples: if adjacent channel interfer-
ence is negligible compared to co-channel interference,
then one should take α(b, b′, c, c′) = 0 for c �= c′. One may
also assume that α(b, b, c, c) = α and α(b, b′, c, c) = β for
b �= b′, where α and β are some constants such that α < β .
The simplest case is that where α = β = 1.
Under the additive white Gaussian noise (AWGN)

model, the achievable data rate at user u in bit/s/Hz is
given by:

ru = K log(1 + SINRu), (2)

where K is a constant depending on the width of the
frequency band.
To achieve network throughput enhancement while

supporting bandwidth sharing fairness among users, we
adopt the notion of minimal potential delay fairness pro-
posed in [16]. This solution for bandwidth sharing is
intermediate betweenmax-min and proportional fairness.
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It aims at minimizing the system-wide potential delay and
is explained below.
Instead of maximizing the sum of throughputs, i.e.,∑
ru, which often leads to very low throughput for some

users, we minimize the sum of the inverse of through-
put, i.e.,

∑
r−1
u , which can be seen as the total delay spent

to send an information unit to all the users. Note that
minimizing

∑
r−1
u penalizes very low throughputs. More

explicitly, a bandwidth allocation that provides minimal
potential delay fairness is one thatminimizes the following
cost function:

C =
∑
u∈U

1
ru

, (3)

which is the network’s aggregate transmission delay. It also
indicates the long term throughput that a user expects to
receive from a fully saturated network.
For mathematical convenience (see below), in this arti-

cle, we minimize the cost function

E =
∑
u∈U

1
e
ru
K − 1

=
∑
u∈U

1
SINRu

(4)

instead of (3). We call E the global energy, following the
terminology of Gibbs sampling. Note that if one operates
in a low SINR regime such that the achievable data rate of
a user is proportional to its SINR, e.g., ru = KSINRu, min-
imizing the potential delay C is equivalent to minimizing
the global energy E .

Remark 1. E is a surrogate of C. We see that (3) and
(4) have quite similar characteristics. The difference is that
(e

ru
K − 1)−1 increases more significantly than r−1

u when ru
is low. As a result, the overall cost will increase more sub-
stantially. So, minimizing E rather than C penalizes low
throughputs more significantly and favors a higher level of
user fairness.

By (1) and (2), the global energy E in (4) can be written
as:

E =
∑
u∈U

Nu(cu) + ∑
v∈U ,v�=u

α(bu, bv, cu, cv)Pvl(bv,u, cv)

Pul(bu,u, cu)
(5)

so that

E =
∑
u∈U

Nu(cu)
Pul(bu,u, cu)

+
∑

{u,v}⊂U

(
α(bu, bv, cu, cv)Pvl(bv,u, cv)

Pul(bu,u, cu)

+ α(bv, bu, cv, cu)Pul(bu, v, cu)
Pvl(bv, v, cv)

)
. (6)

The optimization problem consists in finding a config-
uration (also referred to as a state) of user association,

channel selection and power allocation which minimizes
the above energy function. It is clear that the problem has
a high combinatorial complexity and is in general hard
to solve for large networks. However the additive struc-
ture of the energy can be used to conduct its minimization
using a Gibbs sampler. This leverages the decomposition
of E into a sum of local cost function for each user u (say
local energy Eu) which can bemanipulated in a distributed
way in the resource allocation. We explain this setup and
optimization in the following section.

3 Gibbs sampler and self optimization
We now describe the distributed algorithm to perform the
joint optimization of user association, channel selection
and power control. It is based on a Gibbs sampler operat-
ing on a graph G of the network which can be defined as
follows:

• The set of nodes in G is the set of users denoted by
u ∈ U .

• Each node u is endowed with a state variable su
belonging to a finite set S . The state of a node is a
triple describing its user association, its channel and
its transmit power; this state denoted by
su = {bu, cu,Pu}. Here, we consider that transmit
power is discretized. We denote the state of the graph
by s � (su)u∈U .

• Two user nodes u and v are neighbors in this graph if
either (i) the power P0 of the pilot signal received
from a possible association base station for v at u is
above some threshold, say θ or (ii) the power received
from a possible base station for u is above θ at v. We
denote the set of neighbors of u byNu. Notice that
v ∈ Nu if and only if u ∈ Nv.

Below, for all subsets V ⊂ U , the cardinality of V is
denoted by |V|.
The global energy E = E(s) in (6) derives from a

potential function V (V) [15], that is

E =
∑
V⊆U

V (V), (7)

where the sum bears on the set of all cliques of the graph
defined above and where the potential function V (·) has
here the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (V) = Nu(cu)
Pul(bu,u, cu)

if V = {u},

V (V) = α(bu, bv, cu, cv)Pvl(bv,u, cv)
Pul(bu,u, cu)

+ α(bv, bu, cv, cu)Pul(bu, v, cu)
Pvl(bv, v, cv)

if V = {u, v},
V (V) = 0 if |V| ≥ 3.
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A global energy which derives from such a potential
function satisfying the condition V (V) = 0 for |V| ≥ 3
is hence amenable to a distributed optimization using the
Gibbs sampler, which is based on the evaluation of the
local energy at each node:

Eu =
∑

V⊆U s.t. u∈V
V (V) . (8)

Following the above definition of V (·), this can be re-
written as:

Eu(s) =
Nu(cu) + ∑

v�=u,v∈Nu

α(bu, bv, cu, cv)Pvl(bv,u, cv)

Pul(bu,u, cu)︸ ︷︷ ︸
=1/(SINRu)

+
∑

v�=u,v∈Nu

α(bv, bu, cv, cu)Pul(bu, v, cu)
Pvl(bv, v, cv)

. (9)

The local energy can be written in the following form:

Eu(s) = Au(s) + Bu(s), (10)

where Au(s) and Bu(s) represent the first and second
terms of (9), respectively. Notice that the first term Au(s)
is equal to 1/SINRu. It is the “selfish” part of the energy
function, which is small when SINRu is large. On the other
hand, Bu(s) is the “altruistic” part of the energy, which
is small when the power of the interference incurred by
all the other users because of u is small compared to the
power received from their own base stations.

Remark 2. One can consider that Eu consists of an indi-
vidual cost of u plus another term which corresponds to its
impact on the others (v �= u).

Remark 3. The above formulation is meant to handle
joint power, channel, and user association optimization.
However, it can easily be adapted to some special cases, e.g.,
to the case where the transmit power is a constant.

In the following, we describe more precisely the Gibbs
sampler and its properties.
First, we explain what it does. Each BS separately trig-

gers a state transition for one of its users picked at ran-
dom, say u, using a local random timer. This transition
is selected based on the local energy Eu. More precisely,
given the state (sv)v�=u, v∈Nu of the neighbors of u, the new
state su is selected in the set Su of potential states for user

u (this set is finite as power has been quantized to a finite
set) with the probability

πu(su) = e−
Eu(su ,(sv)v∈Nu )

T∑
s∈Su

e−
Eu(s,(sv)v∈Nu )

T

, su ∈ Su , (11)

where T > 0 is a parameter called the temperature.
We now list the properties of this sampler.

• These local random transitions drive the network to a
steady state which is the Gibbs distribution associated
with the global energy and temperature T , that is to a
state with the following distribution (in steady state):

πT (s) = c · e−E(s)/T ,

with c a normalizing constant. The proof is based on
a reversibility argument similar to that of [15].

• This distribution puts more mass on low energy
(small cost) configurations and that when T → 0, the
distribution πT (·) converges to a Dirac mass at the
state of minimal cost if it is unique (otherwise to a
uniform distribution on the minima).

• This procedure is distributed in that the transition of
user u only requires knowledge of the state of its
neighbors. We discuss the structure of message
exchanges in more detail below.

The exact procedure which users follow to conduct state
transitions is summarized in Algorithm 1. Each user sets a
timer, tu, which decreases linearly with time. We consider
discrete time in step of δ second(s) and simply set δ = 1.
This timer has a duration randomly sampled according
to a geometric distribution. When tu expires, a transition
of u occurs by which the state of this user is updated as
indicated above.

Greedy variant One may consider to perform the state
transition by deterministically choosing the one that max-
imizes (11) namely the best response instead of selecting
a state according to the Gibbsian probability distribution.
It is known that a strategy of best response will drive the
system to a local minimum but not necessarily to an opti-
mal solution. Some discussions on the price of anarchy of
a best response algorithm can be found in [17] and refer-
ences therein. The basic idea of the probabilistic approach
described above is to keep a possibility to escape from
being trapped in a local minimum.

Temperature and speed of convergence It is clear that
the tuning of the temperature T will strongly impact the
system’s limiting distribution. It has to be chosen by taking
the tradeoff between the convergence speed and the strict
optimality of the limit distribution into account.
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3.1 Algorithm 1 State transition for the Gibbs sampler.
every δ do
for each u do

iftu ≤ 0 then
for all the s in Su do

Eu(s, (sv, v �= u)) ← Au(s, (sv, v �= u))

+Bu(s, (sv, v �= u))

du(s, (sv, v �= u)) ←
exp (−Eu(s, (sv, v �= u))/T) ;

end
sample su ∈ S according to the probability law
πu(s, (sv, v �= u)) �
du(su)/

∑
s∈Su du(s, (sv, v �= u))

sample tu ≥ 0 with distribution geom(1)
else

tu ← tu − δ ;
end

end
end

It is known that under conditions which ensure the
compactness of the Markov forward operator and the
irreducibility of the corresponding chain [18], the Gibbs
sampler will converge geometrically fast (for T fixed) to
the Gibbs distribution. In Section ‘Simulation and com
parison’, we will present simulation results illustrating this
convergence.

Annealing variant For a fixed environment (i.e., user
population, signal attenuation), if one decreases T as T =
1/ ln(1 + t), where t is time, then the algorithm will drive
the network to a state of minimal energy, starting from
any state. A concrete proof of this result is similar to that
of [15, pp. 311–313]. This proof is based on the notion
of weak ergodicity of Markov chains and reversibility
argument and is omitted.

3.2 Message exchanges
Two base stations, say b and b′, are called implicit neigh-
bors if there exist two neighboring users u and u′ such
that u can associate to b and u′ to b′, i.e., if b ∈ Bu,
b′ ∈ Bu′ , and either α(b, b′, c, c′)P0l(b′,u, c′) > θ or
α(b, b′, c, c′)P0l(b,u′, c) > θ for some c, c′. As we shall see,
messages have to be exchanged between implicit neighbor
base stations only (in addition to those between users and
their current association base station).
The necessity for message exchange comes from the

need of sampling su in the algorithm. For this either user
u or BS bu (below we assume that the sampling takes
place on bu) has to have enough information to determine
πu(s, (sv, v �= u)) or equivalently Eu(s, (sv, v �= u)) for all
s ∈ Su. For this, some measurements and information
exchange between neighboring base stations and users
are required.

The necessity for message exchange comes from the
need of sampling su in the algorithm. For this either
user u or its base station b̂u before the sampling (below
we assume that the sampling takes place on b̂u) has to
have enough information to determine πu(s, (sv, v �= u))

or equivalently Eu(s, (sv, v �= u)) for all s ∈ Su. For this,
some measurements and information exchange between
neighboring base stations and users are required.
The explicit definition of Eu in (9), shows that for the

evaluation of Au(s), a user u will have to estimate the
following data and report them to its base station b̂u:

1. the receiver noise: Nu(c) on each channel c,
2. the total received interferences:∑

v�=u α(b, bv, c, cv)Pvl(bv,u, c), for each c and for
each b ∈ Bu, and

3. the path-loss or link gain: l(b,u, c), for each c and for
each b in the set Bu.

In order for u or b̂u to evaluate Bu(s), for all s ∈ Su, each
user v ∈ Nu will have to estimate the following informa-
tion and to report to its own base station bv (which will in
turn communicate it to all its implicit neighbors including
bu on the backhaul network):

1. the power of its received signal: Pvl(bv, v, cv), and
2. the path-loss or link gain: α(bv, b, cv, c)l(b, v, c), for

each c and for each of b ∈ Bu.

Note that themeasurement of signal power, interference
and path-loss l(b,u, c) for each considered channel from
either its own base station or neighboring base stations
can be retrieved by the user terminal from for example
the measurement of available RSCP (received signal code
power) and/or RSSI (received signal strength indication).
By the above information exchange, for each u, base

station b̂u is able to compute Eu for all s ∈ Su and
hence to sample the new state su of user u according to
the above algorithm. Notice that inter-cell communica-
tion takes place between implicit neighbor base stations
only. There is no need to transmit this information via the
wireless medium. We assume that this is supported by the
backhaul network. The amount of overhead traffic gener-
ated by the algorithm can be evaluated. The results on the
matter are presented in Section ‘Evaluation of overhead
traffic’.

4 Simulation and comparison
A performance investigation of the proposed solution is
conducted below. We implement Algorithm 1 and com-
pare its performance with today’s 3GPP default operations
[19] by discrete event simulations.
In the current standard and 3G implementations, base

stations are usually configured with a nominal fixed trans-
mission power such that the pilot signal can be received by
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terminals over the covered area. The downlink transmit
power is often the maximum allowable power as well for a
better user reception and coverage. Note that the pilot sig-
nal is broadcasted continuously to allow user equipments
(UE) to perform channel measurements and appropriate
tuning. In user association, the current practice consists
in attaching a user to the BS received with the strongest
signal strength (rather than the nearest base station). Note
that this could lead to attaching the users to a far macro
cell BS which has a higher transmit power than that of
a nearer small cell BS. This is in general sub-optimal. In
channel allocation, the current practice often follows a
heuristic scheme where channels of a BS are assigned to
its users simply in a round-robin fashion, i.e., sequentially,
and in such a way that the numbers of users on each
channels are well balanced and almost equal.
In the simulations, we consider that mobile users are

uniformly distributed in a geographic area of 1000m times
650m and we adopt the 3GPP-3GPP2 spatial channel
model [20]. The distance dependent path-loss is given by:

l(dB)(d) = −30.18 − 26 log10(d) − X(dB)
σ , (12)

where d is the transmitter-receiver distance and Xσ refers
to log-normal shadowing with zero mean and standard
deviation 4 dB. With operating temperature 290K and
bandwidth 1MHz, the thermal noise Nu is equal to
4.0039 × 10−15 W, for all u.
Here we consider that there are two macro cell base

stations with fixed locations as shown in Figure 3 and a
number of small cell base stations which are randomly
located in the geographical area. The maximum transmit
power of macro and small cell base stations are 40 and
1W, respectively. We assume that Pδ = 0.1W. In the sim-
ulation, we consider a simple system where α = 1 and
each user only takes one channel.
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Figure 3 The geographic location of macro and small cell base
stations (example).

4.1 Numerical examples
To begin with, we illustrate the effectiveness of the algo-
rithm by some examples with randomly generated small
cell BS and users, as shown in Figures 4 and 5. To
have readable graphical representation and comparison of
the user association, channel allocation and transmission
power before and after optimization, in these examples,
we consider that the path-loss is simply distance depen-
dent without log-normal shadowing. So, a user who is
farther from a BS has a larger path-loss due to the larger
distance. A line connecting a BS and a user indicates the
user association and its thickness represents the strength
of the transmit power. In these examples, we consider that
there are two orthogonal channels in each BS, which are
represented by different colors and line styles.
Our simulations show that the proposed solution signif-

icantly outperforms the by-default configuration in both
system throughput (in b/s/Hz) and power consumption
efficiency (in b/s/Hz/W). Note that the latter has been
improved by several orders of magnitude (also because
our representation of the default operation has no power
control mechanism). Figure 6 shows the corresponding
convergence of the algorithm in the above three exam-
ples. We see that the algorithm usually converges in a few
hundreds of iterations and is hence practical.

4.2 Average performance
Secondly, we compare the performance of the proposed
optimization with the default operation, with a fixed num-
ber of 32 BS (including the two macro BS) but with
different numbers of users (denoted by M), i.e., different
user densities, and different numbers of orthogonal chan-
nels (denoted by K). Users and small cells are randomly
generated in the geographical area. For each (M,K), 500
different topologies are sampled and the performance
metrics are then averaged out.
Table 1 shows the the enhancement of the system

throughput and of the power efficiency obtained by the
joint optimization. Observe that for a givenM/K ratio, the
spectrum utilization efficiency that results from the opti-
mization increases with K . This observation is important
for e.g., in 3GPP HSDPA (High Speed Downlink Packet
Access) and LTE, where a high number of users and a high
number of resources are typical.

5 Evaluation of overhead traffic
The aim of this Section is to evaluate the overhead traf-
fic generated by the algorithms in a specific scenario
which is based on the assumption that nodes form real-
izations of Poisson point processes in the Euclidean plane.
These assumptions allow us to use elementary stochastic
geometry to get estimates of this overhead traffic.
We concentrate on the channel selection and power

control optimization, when assuming that users are
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Figure 4 Network before optimization (default operation). (a) Example 1: users are concentrated and fewer than BS. (b) Example 2: users are
distributed and fewer than BS. (c) Example 3: more users than BS. Performance measure: i) system throughput, and ii) power efficiency. There are
two orthogonal channels represented by solid-magenta and dashed-black lines.

associated with their closest or best base station. The
overhead traffic has two main components: (i) the uplink
radio traffic and (ii) the backhaul traffic.

5.1 Setting
The uplink radio overhead traffic is comprised of the set
of messages that are sent by each mobile to its serving
base station and that inform the latter of the path-loss that
it experiences from each of its neighboring base stations.
These data are required to run the algorithm, see e.g., (9).
If one denotes by τ the frequency of the beaconing sig-
nals from the base stations and if one assumes that the
users report their path-loss variables at each beacon, each
mobile has to report N × τ path-loss per second when the
number of its neighboring base stations is N .

On the other hand, the backhaul traffic is between base
stations (it is typically transported by a wireline infrastruc-
ture).We will say here that two base stations are neighbors
if one of them has customers which see the other as a
neighboring base station.
Consider a pair of neighboring base stations. Let M1

denote the number customers of the first base station (say
BS 1) which see the second (say BS 2) as a neighboring
base station. Let M2 be the symmetrical variable. Then
the global backhaul traffic between the two stations is
given by:

M1∑
i=1

τN1,i +
M2∑
j=1

τN2,j (13)
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Figure 5 Network after proposed joint optimization. Both the system throughput (b/s/Hz) and power utilization efficiency (b/s/Hz/W) are
significantly improved.

where N1,i denotes the number of neighboring base sta-
tions of BS 1 for user i and N2,j denotes the number of
neighboring base stations of BS 2 for user j. Note that their
definitions are symmetric.

5.2 Stochastic geometry model
We first describe the model for the overhead traffic for a
purely macro cellular network and then for an heteroge-
neous network with both macro and small cells.

5.2.1 Macro cell model
The base stations are assumed to form a Poisson point
process of intensity λm in the Euclidean plane. The users
are assumed to form an independent Poisson point pro-
cess of intensity λu in the Euclidean plane. The association
of the users to the closest BS makes the association region

of a base station to be the Voronoi cell of this base sta-
tion with respect to the collection of base stations. This
association together with the downlinks are depicted in
Figure 7.
The mean number of users of a typical cell, denoted

by M, is equal to λu/λm. In our model, we will assume
that all users in a cell have for neighboring base stations

Table 1 User average throughput: b/s/Hz, power
efficiency: b/s/Hz/W

Default After Performance
operation optimization gain (times)

M = 32, K = 1 0.245, 0.0143 1.216, 1.937 4.96, 135

M = 64, K = 2 0.312, 0.0186 1.583, 2.685 5.07, 144

M = 96, K = 3 0.356, 0.0210 1.829, 3.149 5.14, 150

M = 160, K = 5 0.368, 0.0228 1.973, 3.488 5.36, 153
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Figure 6 Convergence of the algorithm: (a) Example 1,
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the Delaunay neighbors of the base station which is the
nucleus of the cell. This is depicted in Figure 8.
The mean number of Delaunay neighbors of a typi-

cal node is 6 and its coefficient of variation CV (N) =√
Var(N)/E(N) is CV (N) = 0.222 (see e.g., [21]).
Hence, a rough estimate of the mean uplink radio over-

head traffic is:

R ≈ 6τ
λu
λm

. (14)

0

W(0)

Figure 7 The dashed lines represent the boundaries of the cells.
The solid lines link from the base stations to the users which they
serve.

Figure 8 The solid lines represent the Delaunay graph and serve
as model for the backhaul network.

This is only an estimate because there is a correlation
between the number of users in a cell and the number of
neighbors of the nucleus of this cell.We now give an upper
bound on R in complement of this estimate.
The second moment of the number of users in a cell is

(see [21]):

E(M2) = λu
λm

+ 1.280
λ2u
λ2m

. (15)

The secondmoment of the number of neighbors of a cell
is given by:

E(N2) = Var(N) + E(N)2 = 37.7742. (16)

Figure 9 The discs represent the small cells. The solid lines again
represent the links from the base stations to the users they serve.
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One can then use the Cauchy-Schwarz inequality to get
the following upper-bound:

R ≤ τ

√(
λu
λm

+ 1.280
λ2u
λ2m

)
E(N2) . (17)

Consider now a typical backhaul link, namely a typical
Delaunay edge. A rough estimate of the mean backhaul
overhead traffic on this link is given by:

B = 2R ≈ 12τ
λu
λm

. (18)

The Cauchy-Schwarz inequality can again be used to get
an upper-bound.

5.2.2 Macro and small cell model
In this section, we assume that each small cell has a radius
of coverage and that all users covered by the small cell are
attached to it. We also assume that small cell rarely over-
lap. The users not covered by a small cell are attached to
the closest macro base station. This is depicted in Figure 9.
We assume that the small cell base stations form an

independent point process of intensity λs and that the
radius of coverage is ρ. The mean number of users in a
small cell is thus given by:

Ms = λuπρ2 (19)

while the mean number of users attached to a macro cell
is given by:

Mm = λu
λm

− λuλsπρ2. (20)

This formula is only valid under that the Boolean model
with intensity λs and radius ρ has only rare intersections
of balls.
We declare neighbors of a macro cell its macro cell

neighbors, defined as above, and all small cells whose base
station is located in the macro cell in question or in one of
its neighboring macro cells.
We declare neighbors of a small cell the base station of

the macro cell it is located in and the macro neighbors of
the latter as well as the small cells located in these macro
cells.
Since the mean number of small cells per macro cell is

λs
λm

, the mean number of small cells neighbors of a macro
cell is:

Ns
m = 7

λs
λm

, (21)

while the mean number of macro cells neighbor of a
macro cell is still 6.

The mean number of macro cells neighbors of a small
cell is 7 and the mean number of small cells neighbor of a
small cell is:

Nm
s = 7

λs
λm

. (22)

Thus, the mean uplink radio overhead traffic on amacro
cell is given by:

Rm ≈ 6τMm + Ns
mMs

≈ 6τ
(

λu
λm

− λuλsπρ2
)

+ 7τ
λs
λm

(
λuπρ2) (23)

whereas that on a small cell is given by:

Rs ≈ 7τMm + Nm
s Ms

≈ 7τ
(

λu
λm

− λuλsπρ2
)

+ 7τ
λs
λm

(
λuπρ2) . (24)

The mean backhaul traffic on a link between two macro
base stations is 2Rm, whereas that between a macro base
station and a small base station is equal to Rm + Rs.
These mean values can be complemented by bounds

using second moments.

6 Conclusion
In this article, we analyzed the problem of radio resource
allocation in heterogeneous cellular networks composed
of macro and small cells with unpredictable cell and user
patterns. To solve the problem, we proposed a joint opti-
mization of channel selection, user association and power
control. The proposed solution, which is based on the
Gibbs sampler, is implementable in a distributed manner
and nevertheless achieves minimal system-wide poten-
tial delay, regardless of the initial state. We investigated
its performance and estimated the expected overhead.
Simulation result and comparison to today’s default oper-
ations have shown its high effectiveness in terms of energy
consumption. Because of its operational simplicity, this
distributed optimization approach is expected to play an
important role in the future of heterogeneous wireless
networks.
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