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Abstract

A novel framework for the online learning of expected cost-to-go functions characterizing wireless networks
performance is proposed. The framework is based on the observation that wireless protocols induce structured and
correlated behavior of the finite state machine (FSM) modeling the operations of the network. As a result, a significant
dimension reduction can be achieved by projecting the cost-to-go function on a graph wavelet basis set capturing
typical sub-structures in the graph associated with the FSM. Sparse approximation with random projection is then
used to identify a concise set of coefficients representing the cost-to-go function in the wavelet domain. This
Compressed Sensing (CS) approach enables a considerable reduction in the number of observations needed to
achieve an accurate estimate of the cost-to-go function. The proposed method is characterized via stability analysis. In
particular, we prove that the standard CS approach of the Least Angle Selection and Shrinkage Operator (LASSO) will
not provide stability. We also determine a connection between the structure of the FSM induced by the wireless
protocols and the restricted isometry property of the effective projection matrix. Simulation results of our
approximation method show that 15 wavelet functions can accurately represent a cost-to-go function defined on a
state space of 2000 states. Moreover, the number of state-cost observations needed to estimate the cost-to-go
function is orders of magnitude smaller than that required by traditional online learning techniques.

Introduction
Given the recent explosion in the number and types of
wireless devices, new design and optimization paradigms
are needed to effectively manage the complex and
heterogeneous nature of modern wireless networks. We
propose a novel approach for the online learning of cost-
to-go functions in networks modeled via large finite state
machines (FSM). Typical cost functions measure per-
formance metrics such as throughput, packet delivery
probability and delay. Cost-to-go functions measure the
expected long-term cost incurred by the network from
any state of the FSM. Estimation of cost-to-go functions
is instrumental for the optimization of network con-
trol strategies. Our estimation approach is based on the
observation that wireless networking protocols induce
a structured behavior of the FSM, enabling dimension
reduction of its state space via wavelet-projection and
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compressed sensing-like techniques. The sparse approx-
imation approach proposed herein considerably reduces
the length of the trajectory of the FSM required to achieve
an accurate estimate of the cost-to-go function compared
to traditional learning techniques.
Markov models have been widely used for the analysis

and optimization of wireless networks [1-9]. In one of the
earliest works on protocol modeling [1], a Markov chain
is proposed to analyze the saturation throughput of IEEE
802.11 medium access control. The FSMmodels the back-
off countdown counter controlling channel sensing and
access of a wireless terminal and the retransmission index
of the packet under transmission. In general, the Markov
chains defined in these models track the logical state of
the wireless protocols (e.g., the retransmission index of the
packet being transmitted, the number of packets in the
buffer and the backoff counter) as well as environmental
variables (e.g., the channel state).
The online optimization of control strategies based

on these models requires the estimation of cost-to-go
functions from a sample-path of state-cost observations
[10-12]. However, the immense size of the state space of
FSMs associated with practical wireless networks limits
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the applicability of traditional online learning techniques
to toy networks and extremely simple case studies. In fact,
the estimation of cost-to-go functions in traditional online
learning (e.g., Q-learning and Reinforcement learning
[10-12]) requires sufficient observation of a sample-path
such that it hits all the states of the FSM a large number
of times. Approximations of cost-to-go functions [13,14]
are generally based on oversimplified models and thus
cannot be accurately used in general practical networks.
For instance, the fluid approximation proposed in [14]
is based on the assumption that the cost-to-go function
is smooth in the state space of the FSM, meaning that
only small variations of its value computed in neighboring
states are allowed. This assumption is suitable for sim-
ple cases (e.g., buffer models and cost functions modeling
buffer congestion), but does not hold for more complex
FSM models and general cost functions.
This work provides the following contributions: 1) we

present a framework based on CS for the approximation
of cost-to-go functions; 2) we analyze the structure of the
FSMs modeling wireless networks based on their decom-
position into fundamental components; 3) we connect the
structure of the FSM to the Restricted Isometry properties
of the effective projection matrix; 4) we analyze the sta-
bility of CS in this context via perturbation analysis; 5) we
present a methodology for the use of Diffusion Wavelets
(DW) in online learning; 6) we present numerical results
illustrating the performance of the proposed approach.
The framework proposed herein is not tailored to a spe-

cific canonical network example, but is rather based on the
inherent structure of the FSMsmodeling the operations of

general wireless networks. The fundamental observation
behind our framework is that the directed graph associ-
ated with the temporal evolution of the state of the FSM
is inherently regular and local. As a consequence, typical
trajectories on the FSM can be described by a number of
graph sub-structures considerably smaller than the num-
ber of possible edges between states. Figure 1 depicts a
schematic of the proposed online learning algorithm. A
trajectory of the FSM associated with the operations of
the physical network is used to estimate the transition
probability matrix and the cost function and formulate the
estimation problem. The cost-to-go function is projected
onto a graph wavelet basis set capturing relevant and typi-
cal substructures in the graph. Sparse approximation (and
in particular the least-squares CS (LS CS) algorithm [15])
is then employed to identify a concise set of substructures
to represent the cost function of interest.
We characterize the performance of sparse approxima-

tion applied to the estimation problem addressed herein
in terms of the minimum number of states that need
to be observed to achieve an accurate estimate of the
cost-to-go function. Our analysis is based on the decom-
position of the FSM in fundamental structures we refer to
as sub-chains. The transition matrix associated with the
individual sub-chains is analyzed to measure the incoher-
encea of the overall transition matrix, which is exploited
to determine the conditions under which the restricted
isometry property (RIP) [16] holds for our effective ran-
dom projection matrix.
Note that whereas most prior work on sparse approx-

imation focuses on static scenarios, the framework

Figure 1 Schematic of the algorithm. Graphical representation of the proposed approach. The physical network is a collection of terminals (gray
circles) connected by wireless links: data (solid lines) and interference (dashed lines) links. The state of the terminals is defined by a collection of
variables whose value evolves over time. The temporal evolution of the state of the terminals and of the links is modeled by the logical graph of the
network. A sample-path of the network on the logical graph generates a sequence of observations, that are used to estimate the transition matrix
P̂(t) and the cost vector ĉ(t). The cost function is projected onto a diffusion wavelet basis. A concise representation in the wavelet domain of the
long-term cost function c is found as the solution of a sparse approximation problem.
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considered in this article addresses the problem of learn-
ing in dynamical systems. The inclusion of states visited
a small number of times in the sample-path of the FSM
results in instability of the estimation algorithm. To reduce
this effect, we use the LS CS algorithm proposed in [15].
LS CS correlates the output of the sparse approximation
algorithm by constraining variations in the support of
the solution.
Relevant to the approach proposed herein, Mahadevan

et al. in [17] proposed the use of DW [18] as a projection
basis for the sparse approximation of cost-to-go functions.
In [17], offline estimation of the cost-to-go function is
considered, however, no performance analysis is under-
taken. In contrast, we examine online learning andwe pro-
vide a detailed analysis to assess the performance of sparse
approximation applied to Markov models of wireless net-
works. Compressed sensing-based techniques have been
previously applied to estimation problems in networks
[19-24]. These works address graphs related to the physi-
cal connectivity of the network, where nodes are terminals
and links are specific wired or wireless links ormodeled by
undirected graphs. We address the fundamentally differ-
ent problem of estimating functions defined on the state
space of the FSM, i.e., the logical graph of the wireless
network, modeling the temporal evolution of the network
from a small number of state observations.
Numerical results for a case of interest show that a small

number of graph wavelets (∼15) are sufficient to accu-
rately approximate a cost-to-go function defined on a state
space of approximately 2000 states. Moreover, the pro-
posed algorithm can estimate the cost-to-go function by
observing a trajectory of the state of the FSM visiting a
small subset of states in the state space.
The rest of this article is organized as follows.

Section ‘System model and problem formulation’
describes the model of the network and defines the
estimation problem. The sparse learning algorithm is
presented in Section ‘Sparse estimation of cost func-
tions’. Section ‘Structure of the graph’ proposes the
decomposition of the overall graph into sub-chains and
analyzes the properties of the transition probability
matrix. Section ‘Perturbation analysis and performance
bounds’ discusses the stability of sparse approximation
applied in our context and characterizes the performance
of the learning algorithm in terms of how the number of
state observations grows with the network size. Numer-
ical results are presented in Section ‘Numerical results’.
Section ‘Conclusions’ concludes the article. The proof of
the stated theorems are in Appendices 1 and 2.

Systemmodel and problem formulation
The network is modeled as a FSM whose state evolves
within the state space S with N = |S|. Define S(t)∈S as

the state of the FSM at time t = 0, 1, 2, . . . . We assume
that the sequence S = {S(0), S(1), S(2), . . .} is a Markov
process with transition probabilities

p(s, s′) = P(S(t+1) = s′|S(t) = s), (1)

where P(·) denotes the probability of an event. The per-
formance of the network is measured by a function c(s, s′)
that assigns a positive and bounded cost to the transition
from state s to state s′. The average cost from state s is

c(s) = Es′∈S [ c(s, s′)]=
∑
s′∈S

p(s, s′)c(s, s′)b. (2)

The function

c(S(t)) = c(S(t))+E
[ ∞∑

τ=1
γ τ c(S(t + τ))

]
, (3)

where E[ ·] denotes expectation and γ∈(0, 1) is the dis-
count factor, is the expected discounted long-term cost.
This function is also known as the cost-to-go function and
is central to DP and optimal control [10].
For any fixed S(t) = s∈S the function c(·) is inde-

pendent of the time index t and can be rewritten as

c(s) = c(s)+
∑
s′∈S

∞∑
τ=1

γ τpτ (s, s′)c(s′), (4)

where

pτ (s, s′) = P(S(t+τ) = s′|S(t) = s) (5)

is the τ -step transition from state s to s′.c Consider the
graph associated with the FSM, where vertices are states
in S and edges are state-transitions with non-zero proba-
bility. The temporal distance τ in the evolution of the FSM
translates into some number of hops in the graphical rep-
resentation. Starting from a vertex s, c(s) is computed by
sequentially summing the discounted and weighed cost of
the reachable vertices for an increasing number of hops in
the graph. The representation as a graph of the temporal
evolution of the network is the key for the sparse learning
algorithm proposed herein.
In online learning, the function c is estimated from a

sample-path of state-cost observations. The sample-path
OT of observations up to time T includes the sequence
of states {S(0), S(1), . . . , S(T)} and state transition costs
{c(S(0), S(1)), . . . , c(S(T−1), S(T))}. Denote by c the vec-
tor collecting the expected long-term cost c(s) for all s∈S ,
i.e., c =[ c(1), c(2), . . . , c(N)].d The objective is to build an
estimator of c based on the observationsOT minimizing a
distancemetric such as ‖ĉT −c‖22, where ĉT is the estimate
at time T .
The main challenge to achieve an accurate estimation of

c in wireless networks is the enormous size of the state



Levorato et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:278 Page 4 of 15
http://jwcn.eurasipjournals.com/content/2012/1/278

space S underlying the associated FSM. In fact, in tradi-
tional online learning an accurate estimation of c requires
a sample-path of observations where each state in S is
visited a considerable number of times. In fact, all the
allowed state transitions need to be observed a sufficient
number of times to estimate their probability.

Sparse estimation of cost functions
We now present an algorithm for the online learning of
cost-to-go functions in wireless networks from the obser-
vation of a state-cost trajectory of the associated FSM. The
baseline observation is that networking protocols induce
a structured behavior of the network, which is reflected in
a structured graph associated with the FSM. Thus, every
state-cost observation conveys information about multi-
ple states due to the correlated behavior of the network.
As a result, we can propose an algorithm to estimate c
exploiting this structure from fewer observations than in
traditional learning. The algorithm is composed of three
elements:

• observation: the transition probabilities and cost
function c(·) are estimated by observing a state-cost
sample-path;

• projection: c is projected onto a graph wavelet basis
set capturing typical structures in the graph;

• sparse estimation of c: a sparse estimation
algorithm is used to identify a concise set of basis
functions providing the best fit with the estimated
transition probabilities and cost function.

We define theN×N matrix P to be the probability tran-
sition matrix where P[ s, s′]= p(s, s′) as in Equation (1).
The long-term cost c can be rewritten as

c = c +
∞∑

τ=1
γ τPτ c = c + γP c. (6)

Thus, c can be computed as the fixed point solution
c = �(c) of the operator �(c) = c+γP c . The transi-
tion matrix P and cost vector c are not known a priori
and need to be estimated from observation. At time T , the
sample-path OT is used to compute the estimates P̂(T)

and ĉ(T) of P and c. We use the estimator

where 1(·) is the indicator function. More refined estima-
tors can be employed to reduce the sampling rate [25].
The estimates P̂(T) and ĉ(T) may be very noisy and

incomplete estimates of P and c even for T�N . In
fact, an accurate estimation of the transition probabili-
ties from a state s in S and the cost function c(s) may
require a considerable number of visits to s. For asymp-
totically large T , the average number of times the FSM
is in state s is Tπ(s), where π(s) = limt→∞ P(S(t) =
s|S(0) = s0) is the steady-state probability of s. Note
that the average steady-state probability of the states
in S is 1/N , and thus the average number of visits
to a state is T/N . However, in a finite-length sample-
path, the trajectory of the state of the FSM may remain
confined in a region of S even for lengths T larger
than N and the number of states visited may be much
smaller than T . Thus, due to the large size of the
state space of FSMs modeling wireless networks, the
number of observations needed to achieve an accurate
estimation of the cost-to-go function is generally enor-
mous, and it may be larger than the coherence time of
the network, meaning that the statistics of the stochas-
tic process modeling the operation of the network may
change before the learning process achieves a meaningful
estimate of c.
To cope with this issue we exploit the fact that

FSMs modeling the operations of wireless networks and
their associated graphs present a very regular connectiv-
ity structure and the transition probabilities are deter-
mined by a limited set of parameters, e.g., packet arrival
probability in the buffer of the nodes and packet fail-
ure (see Section ‘Structure of the graph’). By regular,
we mean that the connectivity structure from many
nodes of the graph to their 1-hop neighbors is simi-
lar. Thus, the representation of the graph provided by
the transition matrix is intrinsically redundant and tra-
jectories of the network on the graph can thus pre-
sumably be described by a small number of func-
tions capturing typical substructures of the graph. We
observe that these substructures involve neighborhoods
of states at different numbers of hops, corresponding
to different temporal distances between observations
in the sample-path.

[
P̂(T)

]
ij

=

⎧⎪⎨
⎪⎩

∑T−1
t=1 1(S(t) = i, S(t + 1) = j)∑T−1

t=1 1(S(t) = i)
if ∃S(t) = i, t = 0, . . . ,T − 1

0 otherwise,
(7)

[
ĉ(T)

]
i =

⎧⎪⎨
⎪⎩

∑T−1
t=1 1(S(t) = i)c(S(t), S(t+1))∑T−1

t=1 1(S(t) = i)
if ∃S(t) = i, t = 0, . . . ,T − 1

0 otherwise
(8)
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A fundamental element of the proposed framework is
the projection of the cost-to-go function c on a set of
basis functions capturing the typical substructures of the
graph at various time scales. In fact, every new observa-
tion updates the estimate of all the substructures including
the observed transition. We employ the recently proposed
DWs [18] as a basis set for the projection. DWs are a
multiresolution geometric construction for the multiscale
analysis of operators on graphs. DW functions are com-
puted by sequentially applying a diffusion operator (for
instance, the transition matrix P) at the current scale
k, compressing the range via a local orthonormalization
procedure, representing the operator in the compressed
range and computing the P2k on this range. Functions
defined on the support space are analyzed in multires-
olution fashion, where dyadic powers of the diffusion
operator correspond to dilations, and projections corre-
spond to downsampling. Even if P is not known a priori,
we assume that the location of the non-zero elements of P,
that is, the connectivity structure of P, is known e. Define
I(P) = sgn(P+PT ). The basis set W is then computed on
Psymm where the ith row of Psymm is

[Psymm]i =[ I(P)]i /
∑
j
[ I(P)]ij . (9)

The symmetrization step is required as DWs presume
symmetric diffusion operators. The design of wavelet
functions tailored to the compression of directed graphs
will further improve the performance of the algorithm
proposed herein.
Define W as a diffusion wavelet basis set computed on

Psymm, where the DW functions are the columns of W.
We have then c̃ ≈ Wx, where x is the representation vec-
tor collecting the coefficients of the wavelet functions in
W. Given P and c, the representation vector x∗ providing
the most accurate approximation of c onWminimizes the
Bellman residual ‖�(Wx) − Wx‖22. We have then

x∗ = argmin
x

‖c − (I − γP)Wx‖22. (10)

The main idea behind the estimation paradigm pro-
posed herein is that the DW set of functions is a
sparsifying basis for the cost-to-go function c. Due to
the structured behavior defined by networking protocols,
a small number of functions can represent the evolu-
tion and, thus, the collected cost, from large groups of
states. The Least Angle Selection and Shrinkage Operator
(LASSO) algorithm [26] minimizes the residual norm of
the residual plus a regularization term. For the considered
problem, the LASSO is formulated as

x∗(T) = argmin
x

‖R(T)ĉ(T)−R(T)B̂(T)Wx‖22+λ‖x‖1,
(11)

where B̂(T) = R(T)(I − γ P̂(T)) and R(T) is a random
projection matrix. The �-1 regularization term λ‖x‖1 is
a sparsity-promoting term, meaning that the least signifi-
cant coefficients in x are pushed toward zero.
In the Compressed Sensing (CS) literature, the matrix

B̂(T) and W in the above equation are generally referred
to as the sensing and representationmatrices, respectively.
Note that the elements in the rows of P̂(T) and ĉ(T) cor-
responding to states not visited in the trajectory OT are
set to zero and can be eliminated in the projection.

Structure of the graph
Wireless networking protocols induce a very structured
temporal evolution of the network, and, thus, a very struc-
tured graph associated with the FSM. This structure is
the key to show some general properties of the transition
matrix P that determines the performance of the sparse
reconstruction in terms of the minimum number of states
that needs to be included in Equation (11) to achieve
an accurate reconstruction. Our analysis is based on the
decomposition of the overall graph into smaller graphs,
which we refer to as sub-chains. The good incoherence
properties of the transition matrices associated with the
sub-chains are reflected in good incoherence of the over-
all transition matrix and, thus, result in good performance
of the sparse reconstruction.
The decomposition into sub-chains of the complex

graph associated with the FSM modeling the temporal
evolution of wireless networks results from the obser-
vation that the state of the network is the collection of
many individual descriptors tracking counters and vari-
ables associated with the functioning of protocols and the
environment. The temporal evolution of each individual
descriptor follows simple rules that can be easily analyzed
to retrieve properties of the overall graph. We then define
S(t) = {S1(t), . . . , SD(t)}, where Sd(t) is the state of the
dth sub-chain at time t. We denote by Sd the state space
of the dth sub-chain, with |Sd| = Nd.
The sub-chains track the evolution of the individual

components of the state space. Although in the overall
FSM the transition probabilities are a function of the over-
all state of the network, the connectivity structure of the
sub-chains is preserved in the overall FSM. In fact, the state
transition from s = {s1, . . . , sD}∈S to s′ = {s′1, . . . , s′D}∈S
in the overall FSM is allowedf only if the state transition
from sd to s′d is allowed in the corresponding sub-chain,
for all d = 1, . . . ,D. Thus, the properties of the connectiv-
ity structure of the sub-chains are inherited by the overall
graph.
In stochastic models for wireless networks two classes

of sub-chains can be identified:

• Counter-like sub-chains (see, Figure 2a,b: the FSM
is associated with a counter. The value of the counter
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a

Figure 2 Sub-chains. (a) Counter-like sub-chain, forward counter. (b) Counter-like sub-chain, backward counter. (c) Random walk sub-chain.

increments/decrements until it is reset to a given
value. Examples of counter-like sub-chains are: the
number of retransmissions of a packet in ARQ
protocols, the backoff timers in DCF and the
transmission windows and timers in TCP. This class
can be further divided into forward counters
(Figure 2a and backward counters (Figure 2b,
depending on whether the counter is incremented or
decremented until being reset to a predefined value;

• Random walk sub-chains (see, Figure 2c): the value
of the descriptor variable is subject to random, but
constrained, increments and decrements. Examples
of random walk sub-chains are channel state
descriptors and variables tracking the number of
packets in a buffer.

For instance, in the pioneering work [1], the Markov
chain used to analyze the network is the composition of
a random walk and a counter-like sub-chain. It can be
observed that counter-like and random walk sub-chains
present a very local and regular connectivity structure. By
local, we mean that every state connects to a small neigh-
borhood of states. Regularity implies that states connect

to 1-hop neighbors in a similar fashion. For instance, in
counter-like sub-chains, states connect to the state cor-
responding to a reset counter and the state associated
with an incremented or decremented value (possibly plus
a self-loop). As a result, the overall graph is regular and
local. This property is instrumental towards having an
efficient compression in the wavelet domain, meaning
that only a limited number of notable substructures is
needed to model the temporal evolution of the state of the
network.
Define an indexing in S and Sd assigning an inte-

ger in {1, 2, . . . ,N} to each state s∈S and an integer in
{1, 2, . . . ,Nd} to each state sd∈Sd. Define also S←

d (id)⊆Sd
and S→

d (id)⊆Sd as all the states of which id is a 1-hop
neighbor and the 1-hop neighbors of id∈Sd, respectively.
Note that the sets S←

d (id) and S→
d (id) do not coincide

due to the directionality of the graph modeling the behav-
ior of the network. In fact, Markov processes modeling
the operations of wireless networks are not invertible. In
the counter-like and random walk structures, the con-
nections from most of the states are the repetition of
the same (local) connectivity structure. Thus, except in a
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few particular states whose effect decreases as the dimen-
sion of the Markov chain increases, given two states
id, jd∈{1, . . . , nd}, with id �=jd, the number of states in
S←
d (id)∩S←

d (jd) is generally small and so is the inner
product

∑Nd
kd=1 pd(kd, id)pd(kd, jd). Since the connectivity

structure of the overall graph results from the composi-
tion of the connectivity structures of the sub-chains, the
inner product of the columns of P is intuitively small. In
order to perform a quantitative analysis of the inner prod-
ucts of P, we focus on the natural random walk defined on
the sub-chainsg, that is we assign equal probability to all
the allowed transitions from a given state. We have, then,

pd(id, jd) = 1/|S→
d (id)|, ∀id∈Sd , ∀jd∈S→

d (id), (12)

where pd(id, jd) is the transition probability from state id
and jd in the state space of the dth sub-chain. Then, the
inner product between the ith and the jth columns of P is

N∑
k=1

p(k, j)p(k, j) =
D∏

d=1

Nd∑
kd=1

pd(kd, id)pd(kd, jd), (13)

where id, jd, and kd are the state of the dth sub-chain in
the states associated with states i, j, and k, respectively.
We then need to compute the inner products of the

columns of the transition matrices associated with the
classes of sub-chains. The average inner products of the
backward counter, forward counter and randomwalk sub-
chains are, respectively,

Eid ,jd

⎡
⎣ Nd∑
kd=1

pd(kd, id)pd(kd, jd)

⎤
⎦

= 1
N2
d

+ 2
4(Nd−1)

backward counter, (14)

Eid ,jd

⎡
⎣ Nd∑
kd=1

pd(kd, id)pd(kd, jd)

⎤
⎦

= 5 + 3Nd
6Nd(Nd − 1)

forward counter, (15)

Eid ,jd

⎡
⎣ Nd∑
kd=1

pd(kd, id)pd(kd, jd)

⎤
⎦

≈ 1
Nd−1

2�(2� + 1)
(1 + �)2

random walk, (16)

where in a random walk sub-chain the transition prob-
ability from state id to state jd is larger than zero only
if |jd−id|≤� and we assume Nd�2�+1. We observe that
all these mean inner products are of order O( 1

Nd
). As

an example of how these quantities are computed, con-
sider the forward counter-like sub-chain. The associated
transition matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2 0 0 0 . . . 0 0

1
3

1
3

1
3 0 0 . . . 0 0

1
4

1
4

1
4

1
4 0 . . . 0 0

1
4

1
4 0 1

4
1
4 . . . 0 0

...
...

...
...

...
...

...
1
4

1
4 0 0 0 . . . 1

4
1
41

3
1
3 0 0 0 . . . 0 1

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

We remark that the value of the transition probabil-
ity pd(id, jd) is the inverse of the number of outgoing
links, i.e., allowed transitions, from id. The average inner

product Eid ,jd
[ ∑Nd

kd=1 pd(kd, id)pd(kd, jd)
]
is calculated by

sequentially considering all the columns indexed by id =
1, . . . ,Nd−1 and computing the product with the columns
indexed by jd>id.
The average inner products of the sub-chains decrease

on average with the number of states of the associated
FSM. Although in the general case the probability of tran-
sition from a state to its neighbors may be much different
from that provided by the natural random walk associ-
ated with the graph structure, the locality and regularity of
the structure of the sub-chains cause the average overlap
of the sets S←

d (jd) to vanish as Nd increases. Thus, suf-
ficiently large sub-chains are associated with incoherent
transition matrices.
The average inner product of a column with itself is also

relevant to the performance of the sparse reconstruction
(these means appear in the mean of the Gram matrix in
the effective random projection). It is easy to compute that
the average of this quantity for the counter-like backward
sub-chain, counter-like forward sub-chain and random
walk sub-chain is

Eid
[ Nd∑
id=1

(pd(kd, id))2
]

= 1
4

+ 5
4Nd

αd = 1
4

(18)

Eid
[ Nd∑
id=1

(pd(kd, id))2
]

= 2
3

+ 1
36Nd

+ 1
8
Nd αd = 2

3
,

(19)

Eid
[ Nd∑
id=1

(pd(kd, id))2
]

= 1
2� + 1

+ C
Nd

αd = 1
2� + 1

,

(20)

where C is a positive constant smaller than 1. We observe
that each of these means can be expressed as O( 1

Nd
) + αd,

where αd = 1/4, 2/3, 1/(2�+1) are for the backward
counter, forward counter and random walk, respectively.
The fact that αd<1 for all the sub-chains is critical for the
performance analysis of the CS approach.
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Perturbation analysis and performance bounds
In this section, we characterize the performance of the
sparse approximation of the cost-to-go function proposed
herein. We first discuss the stability of the solution of (11)
and then determine how much compression is possible
to ensure good reconstruction of the value function v.
The number of observations required for good recon-
struction directly translates to the learning rate of our
proposed algorithm. An exact analysis of the transition
matrix is challenging; however, by exploiting the average
behavior of several key structures, we can determine the
relationship between the minimum number of observa-
tions for this compressed sensing problem and the size of
the logical graph.

Perturbation analysis
We discuss in this section how estimation noise in the
sensing matrix B̂(T) = (I − γ P̂(T)) affects the stability
of the reconstruction provided by (11) as new states are
visited by the sample-path. We show that the inclusion
in (11) of a row in ĉ(T) and P̂(T) associated with a state
hit by the FSM a small number of times may result in a
dramatic change of x∗(T) with respect to x∗(T − 1). As
we are looking for the fixed point solution of the opera-
tor�, instability and large variations of the sparse solution
are highly undesirable. In order to improve the stability
of the algorithm, in the numerical results presented in
Section ‘Numerical results’ we use the LS CS algorithm
proposed in [15].
Define

Â(T) = B̂(T)W = (I − γ P̂)(T)W. (21)

In [27], Xu et al. have shown that the regularized regres-
sion problem of LASSO:

min
x

‖ĉ(T) − Â(T)x‖22 + λ‖x‖1 (22)

is equivalent to the robust regression (RR) problem, stated
as

min
x

{
max

�Â(T)∈U
‖ ĉ − (Â(T) + �Â(T))x ‖2

}
, (23)

where 	Â(T) =[ â1(T), â2(T), . . . , âm(T)], U is the set of
perturbation matrices U = {	Â(T) : ‖âi(T)‖2≤λ, i =
1, . . . ,m} and m is the number of columns of 	Â(T). We
drop the dependence on T of the estimated matrices and
vectors. Thus, the vector x is optimized for a worst case
perturbation whose range is determined by the param-
eter λ, that is, the algorithm is robust to perturbations.
Interestingly, the larger the value of λ, the sparser the out-
put vector x, but also the larger the set of perturbations
considered. In [27], it was also shown that LASSO is not
stable, meaning that small variations of the sensing matrix
Âmay lead to significantly different output vectors.

The following addresses the instability issues in the solu-
tion to the RR problem. In particular, the theorem shows
that the inclusion of a new sample may result in sub-
optimal solutions to the RR problem. Moreover, due to
the equivalence between LASSO and the RR problem, the
same instability result applies to LASSO as well.
Theorem 1. Let x∗ be the solution of the problem

min
x

{
max
�A∈U

‖ ĉ − (Â + �Â)x ‖2
}
, (24)

where U = {	Â : ‖âi‖2≤λ, i = 1, . . . ,m} and assume
ĉ = Âx∗. Define y∗ as the solution of

min
y

{
max

�Â′∈U ′
‖ ĉ′ − (Â′ + �Â′

)y ‖2
}
, (25)

with U ′ = {	Â′ : ‖âi‖2≤λ + λ′, i = 1, . . . ,m} and

ĉ′ =
[
ĉ
ĉ′

]
, Â′ =

[
Â
â′

]
. (26)

Denote the support of y∗ and x∗ as Iy∗ and Ix∗ , respectively.
If ∃k∈Ix∗ such that

λ≥max
[
max
j/∈Ix∗

|â′
j|,
k(Â

′, Ix∗)

]
, (27)

where 
k(Â′, Ix∗) = (Â′
k)

TM(MTM)−1MÂ′
k, and M =

[ Â′
Ix∗ \{k}, c] then Iy∗ �=Ix∗ . Thus, the support of the solution

of LASSO changes if a new state meeting the hypothesis is
added to the Bellman residual.
The proof of the theorem is in Appendix 1.

Minimum number of observations
In Section ‘Numerical results’, we will employ the LS CS
residual algorithm [15] to minimize the Bellman residual
subject to a sparsity constraint:

‖�(v) − v‖22 = ‖c − (I − γP)Wx‖22
h
. (28)

We will observe the temporal evolution of the Markov
Chain over multiple time-steps, as such, we will not
observe the cost at every state. Thus, coupled with addi-
tional random mixing to exploit the benefits of com-
pressed sensing, we will optimize the following modified
Bellman residual:

‖R(T)c − R(T)(I − γP)Wx‖22, (29)

whereR is a randommatrix to be defined in the sequel and
R(T) is the submatrix formed by retaining the columns of
R indexed by states hit in the observation interval T . If the
matrix R(T)(I − γP)W satisfies the so-called restricted
isometry property, defined below, then the squared error
between x and x̂ achieved by the Dantzig selector [28]
can be bounded; in particular, there are guarantees on
correctly estimating the locations of the non-zero compo-
nents of x and thus the squared error is proportional to the
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number of non-zero components and the noise variance.
Comparable analysis can be made for LASSO [29,30]. We
focus on properties of R(T)(I−γP) recognizing that pro-
jecting onto an orthonormal W would be an isometric
operation. We note that a negative result regarding RIP
would call the use of our approach into question. How-
ever, a positive RIP result suggests that our method work.
Analysis of LS CS also relies on RIP parameters.
Our proof exploits arguments from [31] with appro-

priate tailoring to our framework. We begin with the
definition of the properties we wish to show.
Definition 1. (Restricted Isometry Property): The obser-
vation matrix B is said to satisfy the restricted isometry
property of order S ∈ N with parameter δS ∈ (0, 1), i.e.
RIP(S, δS) if

(1 − δS)‖x‖22 ≤ ‖Bx‖22 ≤ (1 + δS)‖x‖22, (30)

holds for all x∈ R
N having no more than S non-zero

entries. Note that B is a K×N matrix. RIP implies that B
is approximately an isometry for S-sparse signals.
We have the following result,

Theorem 2. The matrix RH(I − γP) does not satisfy
RIP(S, δS) with the following probability bound,

P
(
RHB does not satisfy RIP(δS, S)

) ≤ exp
(

− c1K
S2

)

if K2 ≥ 192 log nS2
δ2S−64c1

and c1 ≥ δ2S
64 . The matrix P is the

transition probability matrix for a Markov chain formed
by concatenating forward and backward counter-like and
random walk sub-chains and γ<1. The proof of Theorem 2
can be found in Appendix 2.
We observe that this result states that if the number

of observations K is of order O
(
S2

√
n log n

)
then RIP

is satisfied with high probability as the network grows
large. We contrast this with the more typical results seen
in say channel estimation problems where the order is
O

(
S2 log n

)
. We remark that our result on the RIP is not

limited to LASSO, but leads to the more general con-
clusion that sparse estimation algorithms can be used to
approximate cost-to-go functions of wireless networks.
Furthermore, the proof of Theorem 2 shows that an arbi-
trary concatenation of sub-chains does not affect the RIP
property in the limit of large wireless networks.

Numerical results
In this section, we present numerical results for an exam-
ple of a wireless network to demonstrate the potential of
the compressed sensing approach. We consider a wire-
less network where terminals store packets in a finite
buffer of size Q and employ Automatic Retransmission
reQuest (ARQ) to improve the delivery rate of pack-
ets. Time is divided in slots of fixed duration. For the
sake of simplicity we assume that the transmission of a
packet occurs in the duration of a time slot and that
channel coefficients in the various slots are i.i.d.. Ter-
minals with a non-empty buffer access the channel in
a time slot with fixed probability equal to α. The fail-
ure probability of a packet transmitted by a terminal is
a function of the set of terminals concurrently transmit-
ting in the same slot. Packet arrival in the buffer of the
terminals is modeled according to a Poisson process of
intensity σ .
The FSM tracking the state of each individual terminal

(see Figure 3) is composed of two sub-chains: a random
walk-like sub-chain tracking the number of packets in the
buffer (state space {0, 1, . . . ,Q}) and a forward counter-
like sub-chain tracking the retransmission index of the

Figure 3 Example of composition of sub-chains. FSM of a terminal in the considered network: a forward-counter sub-chain (packet
retransmission) and an random walk sub-chain (number of packets in the buffer). On the right-hand side, the fundamental connectivity structure of
most of the states in the state spaceS .
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Figure 4 Value function and its approximation. Value function (green) and its approximation (blue).

packet being transmitted (state space {0, 1, . . . , F}, where
F is the maximum number of transmissions of a packet).
An additional binary variable is added to the FSM to track
transmission/idleness of the terminal. The FSM track-
ing the state of the overall network is the composition
of the FSMs of the individual terminals. The transition
probabilities of the Markov process determining the tra-
jectory of the state of the network in the state space
of the FSM are a function of the packet arrival rate, of
the failure probability function and of the transmission
probability α.
The cost function c measures the normalized cost in

terms of throughput loss with respect to the saturation
throughput achieved by the terminals in the absence of
interference. In particular, the cost function is defined as

the sum for all the terminals of oneminus the failure prob-
ability of the transmitted packets. Idleness is assigned a
cost equal to 1.
ForQ = 5 and F = 4 and 2 terminals the size of the state

space is 1681. The transition matrix P is used to compute
Psymm defined in Equation (9) and the associated set of
DW functions W [18]. DW basis sets are overcomplete.
In order to keep complexity low, the columns of W are
subsampled. In particular, we select 400 wavelet functions
at different time scales.
Figure 4 and 5 depict the exact and reconstructed

value function using LASSO mapped on the state-action
space and the sorted magnitude of the coefficients x∗,
respectively. In these figures, the exact vector c and
transition matrix P are used in order to show the

Figure 5Magnitude of the coefficients of x∗.Magnitude of the coefficients of x∗ .
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properties of the sparse reconstruction based on DW.
An accurate approximation of c is achieved with approx-
imately 15 active coefficients in x. This result shows
that the temporal evolution of complex wireless net-
works can be effectively represented by a small number
of wavelet function capturing typical substructures in
the graph.
Figure 6 plots the reconstruction error (norm-2 of dif-

ference between the real and reconstructed value func-
tions weighted by the steady-state distribution) as a
function of T achieved by LASSO for different values of
the sampling rates. The estimated transition probability
matrix P̂ and ĉ are used for the estimation of c. States are
sampled by randomly eliminating rows (among the states
visited by the sample path) of the cost vector ĉ and transi-
tion matrix P̂. In the legend, the maximum number states
included in the Bellman residual is reported. As expected,
if only a few states are included in the estimation, LASSO
achieves very poor performance irrespectively of the accu-
racy in the estimates of the cost vector and transition
matrix. However, if all the states are included in the Bell-
man residual, then poorly estimated states introduce rows
affected by large noise both in P̂ and ĉ. As shown in
Section Perturbation analysis, noisy rows of P may desta-
bilize the support of x and lead to poor reconstruction.
However, the performance of LASSO is very sensitive to
the sampling rate and it is unclear how to compute its
optimal value.
Figure 7 depicts the reconstruction error achieved

by the LS CS-based framework and that of standard
Q-learning [10] as a function of the length of the observed

sample-path. All states visited by the process are included
in the Bellman residual. In order to improve stabil-
ity, to generate this plot we used the LS CS algorithm.
LS CS correlates x∗(T) to x∗(T − 1) by constrain-
ing changes in the support of the representation vec-
tor. Interested readers are referred to [15] for a detailed
description and performance characterization of the
algorithm.
The proposed algorithm achieves a considerable accu-

racy in the estimation of c after a very short number of
state-cost observations, whereas standard learning con-
verges slowly to c. Moreover, the solution is extremely
stable and the LS CS-based algorithm appears to be very
robust to estimation noise.

Conclusions
A novel framework for the online estimation of cost-
to-go functions in wireless networks was proposed. We
showed that the inherent regular and local structure of
the graph associated with the FSM modeling the oper-
ations of wireless networks enables the sparse repre-
sentation of cost-to-go functions. Our analysis, based
on the decomposition of the overall graph in funda-
mental smaller structures, connects the structure of the
FSM to the RIP of the transition probability matrix.
Numerical results show that sparse approximation and
projection onto DW basis sets enable a considerable
reduction in the number of observations needed to
estimate cost-to-go functions in wireless networks, and
have the potential to make online learning practical in
this context.

Figure 6 Reconstruction error as a function of the time slot achieved by LASSO with different sampling rates. Reconstruction error as a
function of the time slot achieved by LASSO with different sampling rates. The number in the legend corresponds to K , that is, the number of states
used in the reconstruction.
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Figure 7 Reconstruction error as a function of time. Comparison between the reconstruction error as a function of the time slot achieved by the
proposed algorithm and Q-learning. All states visited by the sample path are used in the estimation.

Endnotes
aThe incoherence of the transition matrix is connected to
the magnitude of the inner products of its columns.

bNote that c(s, s′) can be generalized to be a random
variable. In this case the expectation is over all the possible
values of c(s, s′).

cControl can be included in the model by defining
statistics and cost functions conditioned on a control
action.

dThe indexing in the vector is based on a univocal map
between S and {1, 2, 3, . . . ,N}.

eNote that this assumption does not reduce the applica-
bility of the proposed algorithm. In fact, the connectivity
structure of the transition matrix is determined by stan-
dard protocols that are shared and known by all the
nodes.

fBy allowed, we means that the state transition has
probability equal to zero for any set of parameters.

gWe note that numerical evaluations of incoherence for
many typicalMarkov chains has revealed that incoherence
holds on average.

hIn this analysis we assume that W is an orthonor-
mal set of basis functions. We are aware that DW are
overcomplete and, thus, W is not an orthonormal basis
set. The design of orthonormal wavelet basis tailored
to FSMs modeling wireless networks is an important
research direction.

Appendix 1
Proof of Theorem 1
Fix the index k in the support Ix∗ of x∗, define

â′
i =

[
âi
â′
i

]
, i = 1, . . . ,m, (31)

and the vector

u′ =
[
u
u′

]
∈ span

{
â′
i, i ∈ Ix∗ \ k, ĉ′} , (32)

with ‖u‖2 = 1 and

ĉ′ =
[
ĉ
b′

]
. (33)

If

λ′≥max
j/∈Ix∗

|a′
j| (34)

and

max
u

∣∣∣uT â′
k

∣∣∣ ≤ λ + λ′ (35)

then ∣∣∣uT â′
j

∣∣∣ = |u âj + u′ â′
j| (36)

≤
∣∣∣∣ u âj√

uTu

∣∣∣∣ √
uTu + |u′â′

j| (37)

≤
√
uTu λ + |u′â′

j|≤λ + |u′â′
j|≤c + λ′ (38)
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Therefore, if the conditions (34) and (35) hold, then due to
Theorem 5 in [27], we have y∗

k = 0 and Ix∗ �= Iy∗ .
Define

u = Md√
dTMTMd

(39)

where

M = [
c′, â′

i, i∈Ix∗
]
. (40)

Then, we find u that maximizes the left-hand side of (35)
as the solution of

max
d

∣∣∣dTMT â′
k

∣∣∣2
dTMTMd

. (41)

Let M = QSZ be the singular value decomposition of M,
then (41) is equal to

max
d

|dTZSTQT â′
k|2

dTZSTSTZdT
= max

d

|d̃TST ã|2
d̃TSTSd̃

. (42)

where d̃ = Zd and ã = Qâ′
k . Note that

ã =
(
I − S(STS)−1ST

)
ã + S(STS)−1ST ã (43)

=
(
I − S(STS)−1ST

)
ã + Sg (44)

where g = S(STS)−1ST ã. Then, from

max
d

|d̃TST ã|2
d̃TSTSd̃

= max
d

|d̃TSTSg|2
d̃TSTSd̃

, (45)

and using the Schwarz inequality we obtain

|d̃TST ã|2
d̃TSTSd̃

≤ (d̃TSTsd̃)(gTSTsg)

d̃TSTSd̃
= gTSTsg, (46)

where the equality holds if d̃ = g. Therefore,

max
d

|dTST â|2
dTSTSd

=
(
ãTS(STS)−1ST ã

)
(47)

=
(
âTM(MTM)−1MT â

)
(48)

Appendix 2
Proof of Theorem 2
In this appendix, we prove the result on the minimum
number of observed states needed for perfect reconstruc-
tion of c. We first state the following lemma:
Lemma 1. (Geršgorin) The eigenvalues of anm×mmatrix
G all lie in the union of the n discs di = di(ci, ri), i =
1, 2, . . . n, centered at ci = Gii and with radius

ri =
n∑

j=1,i�=j

∣∣Gij
∣∣ (49)

We will apply Gersgorin’s lemma to the following Gram
matrix,

G = (I − γP)T RT (T)R(T) (I − γP) . (50)

For the sake of exposition we assume that R(T) is an K×n
matrix whose components are drawn i.i.d. from a binary
distribution i.e. Rik = ±

√
1
K with probability 1

2 ; thus we
have that the R(T)ik are zero mean and E

[
RT
HR(T)

] = I.
Other properly constrained distributions for R(T) can be
handled. The other matrices specified in (50) are square
and of dimension n × n.
We shall show that every element of the Gram matrix,

G is bounded as follows, wheremij = E
[
Gij

]
,

|Gii − mii| ≤εd,
∣∣Gij − mij

∣∣ ≤εo
S

i �= j (51)

The dimension of the state-space, |S| .= N is approxi-
mately

∏
d nd, thus from the analysis of the inner prod-

ucts/norms of columns of the transition matrix (see
Equations (14)–(16)) we find that E

[
pTi pj

]
≈ O

( 1
N

)
, i �= j

and E
[‖pi‖2] ≈ O

( 1
N

) + αD, where pi is the i′th col-
umn of P. We note that for all three sub-chain structures
examined α < 1 and thus limD→∞ αD = 0. In fact, if we
concatenate several sub-chains we have that E[ ‖pi‖2]≈
O(1/N) + ∏D

d=1 αd, where |αd|<1. Thus, E[ ‖pi‖2] dimin-
ishes, and eventually vanishes, as the number of concate-
nated sub-chains increases. Additionally, E

[
Pij

] = 1
n .

Thus we can show that,

E [Gik]
(a)= E

[
bTi R

TRbk
]

= E
[
bTi bk

]
(52)

and mik ≈ O
(
1
n

)
i �= k lim

D→∞mik = 0 (53)

mii ≈ 1 + O
(
1
n

)
+

D∏
d=1

αD lim
D→∞mii = 1 (54)

where bi is the ith column of B and B .=I− γP. The equal-
ity (a) follows from the independence of the probability
transition matrix P and the random projection matrix R.
Equations (52) and (54) follow from Equations (13) and
(14)–(16), (18)–(20). The next needed inequality is,
Lemma 2. (McDiarmid) Consider independent random
variables Y1, . . . ,Ym ∈ Y and a function υ : Ym → R.
If for all i ∈ {1, . . . ,m} and for all y1, . . . , ym, y′

i ∈ Y , the
function υ satisfies∣∣υ(y1, . . . , yi, . . . , ym) − υ(y1, . . . , y′

i, . . . , ym)
∣∣ ≤ ci

(55)

then P
(|υ (

Y
)−E

[
υ

(
Y

)] | ≥ t
) ≤ 2 exp

(
−2t2∑m
i=1 c2i

)

(56)

For our functions of interest,m = n2. We letR′ = R+	

where 	j,l = 0 except for j = j0, l = l0, i.e. 	j0l0 =
R′
j0l0 − Rj0l0 = ±2

√
1
K with probability 1

2 , due to our



Levorato et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:278 Page 14 of 15
http://jwcn.eurasipjournals.com/content/2012/1/278

assumptions on R. For clarity, we have dropped the sub-
script T on R(T). Thus we have for the diagonal elements
of the Gram matrix, Gii = υii (R) for some R,

υii (R) −υii
(
R′) = bTi

(
RTR−R′TR′)bi

= 2Bl0,i
(
Rj0,l0−R′

j0,l0

) n∑
m �=l0

Rj0,mBm,i

+B2
l0,i

(
R2
j0,l0−R′2

j0,l0

)
︸ ︷︷ ︸

=0

≤ 4
K
Bl0,i

n∑
m �=l0

Bm,i

We have that Bl0,i ≈ δK (l0 − i) − γ
n , where δK (·) is

the Kronecker delta function, and
∑n

m �=l0 Bm,i ≤ O(1).
We set cl0,j0 = 4

K
(
δK (l0 − i) − γ

n
)
, and observe from the

statement of McDiarmid’s inequalities that we need to
evaluate

n∑
j0=1

n∑
l0=1

c2l0,j0 = 16
K2

(
n − 2γ + γ 2

n

)
≤ 32n

K2
.= gd

The same bound holds for the off-diagonal elements of
the Gram matrix. Using these values of cl0,j0 we invoke
McDiarmid’s inequality to show the following, wherein
(a) and (b) follow from union bound arguments and (c)
follows from setting εo = εd = δS

2

P ({|Gii − mi| ≥ εd}) ≤ 2 exp
(

−2ε2d
gd

)
(57)

→ P
(∪n

i=1 {|Gii − mi| ≥ εd}
) (a)≤ 2n exp

(
−2ε2d

gd

)
(58)

P
(
∪n
i=1 ∪n

j=1,i�=j

{∣∣Gij − mij
∣∣ ≥ εo

S

}) (b)≤ 2n2 exp
(

− 2ε2o
S2gd

)
(59)

Then,

P
(
R(T)B does not satisfy RIP(δS , S)

) ≤ 3n2 exp
(

− K2δ2S
64nS2

)

(60)

Equation (60) can be manipulated to yield the follow-
ing relationship between the number of samples K and
the size of the logical network, n: the RIP holds with high
probability ifK2 ≥ 192 log nS2

δ2S−64c1
, where c1 is constant selected

to ensure that the denominator of the previous expression
is positive and the Theorem is shown.
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