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Abstract

The most successful achievable schemes for ad hoc wireless networks are those based on establishing cooperative
multiple-input and multiple-output links. In this article, we analyze one of the important design parameters of such
schemes, namely the number of quantization bits. Due to the digital architecture of these schemes, the received
signal at nodes should become quantized before further processing. The scheme’s aggregate throughput highly
depends on the resolution of the quantization process. We demonstrate that there is an optimum number of
quantization bits which maximizes the network throughput. We show that the optimum number of quantization bits
scales as B 1og, (SNR), for any strictly positive 8 independent of SNR, for the high SNR regime. Furthermore, we derive
the optimum scaling of network throughput in such a regime. It is concluded that a good management of the
number of quantization bits as a design parameter has a significant impact on the network performance.
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Introduction

Many applications in the wireless communication tech-
nology involve ad hoc deployment of a large number
of wireless nodes. Due to the broadcast and superposi-
tion nature of the wireless medium, we face the interfer-
ence phenomenon in such networks. The throughput of
the network is the end-to-end rate that all the source—
destination nodes can communicate with, in the presence
of interference. In order to analyze the performance of
such ad hoc wireless network architectures, one can think
of the wireless network as a graph. In this graph, the ver-
tices are the wireless nodes, and the edges are wireless
links. As a result, by using graph-theoretic tools, the infor-
mation flow properties of the network can be analyzed
[1-3].

However, as graph models cannot capture all properties
of wireless networks, the graph-theory-based approach
has serious limitations. One of such limitations is that a
graph cannot properly model broadcast and superposi-
tion nature of wireless channels. Therefore, other works
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address the problem from a semi-information-theoretic
perspective. Based on this approach, the first successful
attempt at deriving the scaling properties of the net-
work capacity was presented by Gupta and Kumar [4].
Their result shows aggregate throughput scaling of order
©(+/n) for arbitrary networks of # nodes. The article by
Franceschetti et al. [5] extends the above result to ran-
dom networks. A number of other articles, such as [6,7],
also verified the ©({/n) aggregate throughput limitation,
which results in ©(1/4/n) throughput per node. These
results indicate that the throughput per node does not
scale with the number of nodes, which seems unsatisfying.
However, almost all the aforementioned articles are based
on multihop routing of information. The main reason for
the ®(1/4/n) limitation is that each block of informa-
tion should pass through a large number of hops before
reaching its destination.

The network performance, however, is not always so
disappointing if we do not bound ourselves to the multi-
hop transmission technology. Based on this fact, the work
of Aeron and Saligrama [8] and Ozgﬁr et al. [9] pro-
poses schemes employing cooperative multiple-input and
multiple-output (MIMO) techniques as their main strat-
egy. In such schemes each source node cooperates with
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the nearby nodes to form a virtual MIMO transmitter.
In addition, local nodes at the receive side form a virtual
MIMO receiver. Upon transmission of the MIMO signal,
the received signals at the receive nodes should become
quantized. After quantization and further cooperation,
the data are sent to and decoded at the destination node.

The scheme proposed in [9] achieves aggregate
throughput of order #, which is superior comparing with
the multihop-based results. This superior performance
is due to the cooperative nature of the scheme. Con-
sequently, it has sparked a new wave of interest in the
researchers to investigate the role of cooperative MIMO
schemes in ad hoc networks (e.g., see [10-12]).

However, in order to make such schemes practical and
usable in real-life protocols, there is still a large number of
issues to be addressed. For example, there is the question
whether the scaling-based analysis results (as # — 00) in
[8,9] are reliable for finite size networks. In other words,
how large should # be for the results to be valid? Simi-
larly, many design parameters in [9] are still not addressed
in the literature. While optimizing these parameters has a
great impact on proper operation of the network, it is not
clear what the optimum values for such design parameters
are as functions of network characteristics.

In this article?®, we focus on one of the key design param-
eters of such schemes. As mentioned earlier, the nodes
who act as the virtual MIMO receiver should quantize
the received signal before sending these quantized data
to the destination node for decoding. We focus on this
quantization process, as this process is critical for the
cooperative MIMO operation. The main questions we
address in this article are: Does optimization of the num-
ber of quantization bits have a great effect on network
throughput? How many number of bits each receive node
should use for the quantization process? At high signal-
to-noise ratios (SNR), what is the optimum choice for
the number of quantization bits? How does the network
throughput behave in high SNR regime?

In order to address the above issues, we analyze an
inherent trade-off in determining the “proper” number
of quantization bits. By increasing the number of quan-
tization bits, the capacity of the virtual MIMO link is
increased. However, the amount of data that the receive
nodes should send to the destination node is increased
as well. These two phenomena have competing effects on
the network throughput. For analyzing this trade-off, we
formulate the problem and find the optimum number of
quantization bits maximizing the network throughput.

In order to clarify contributions of this article compared
with [9,10], it should be noted that our focus in this arti-
cle is on the optimization of the quantization process,
rather than on proposing a new network communication
scheme. In fact, the issue of optimization of number of
quantization bits is not addressed in [9,10] while as will
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be shown, intelligent management of this issue results in
significant throughput enhancement.

The structure of the article is as follows. In
“Network model” section, we state our network model. In
“Managing the number of quantization bits” section, we
investigate the role of quantization bits and the resulting
inherent trade-off. “Numerical illustrations” section con-
tains helpful numerical illustrations. Finally, the article
ends with conclusion.

At last, we review the notations used throughout the
article. We use Knuth’s asymptotic notation as follows
[13]: f(n) = O(g(n)) if there exists positive constants cq
and np such that for all # > ng we have 0 < f(n) < cog(n),
fn) = Q) if g = OF ), fn) = O@m) if
f(n) = O(g(n)) and f(n) = Q(g(n)). Also, matrices and
vectors are indicated in boldface, () is the Hermitian

operator, the expression fi(x) ~ fa(x) is equivalent to
AW

limy s oo " = constant > 0, and, H(-) is the entropy
function.
Network model

In this section, we describe the network model used in
this article. First, general assumptions about the network
and the wireless channel model are described. Then, the
model used for establishing cooperative MIMO links in
the network is described.

General assumptions

Consider a wireless network consisting of n nodes capa-
ble of both transmitting and receiving signals. The nodes
are uniformly distributed in area A in a random manner.
Each node intends to transmit information to exactly one
other node, and is also the receiver of information from
one other node, through a uniform random mapping. If
the set of transmitting nodes at each time slot is called S,
then the signal received by the ith node at time slot m is
given by

Yilml =" Hylm) X¢[m] + Zi[m], (1)
keS

where Xi[m] is the signal transmitted by node k at the
time slot 1, and Z;[ m] denotes noise at the receiver. The
wireless channel between nodes i and k at time slot m is
modeled as

Hyl m] = ~/Gry /el (2)

where r; is the distance between nodes i and k, « is
the path loss exponent, 6; is the random phase change
between nodes i and k which is uniformly distributed in
the range [0, 27), and G denotes antenna gain. This chan-
nel model has broadly been used in the literature, e.g., see
[9,10]. Network throughput is defined as the rate at which
all the source nodes send their information to destination
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nodes and depends on the spatio-temporal transmission
strategies used in the network as discussed later.

Establishing cooperative MIMO links

The scheme considered in this article is based on cooper-
ative MIMO transmission introduced in [9] and consists
of the following three phases. In the first phase, each node
shares its data between nearby nodes, such that these
nodes can help in transmitting the data. In the second
phase, those nearby nodes form virtual MIMO transmit-
ters and transmit MIMO signals toward their destinations.
In the last phase, upon reception of the signals transmitted
in the second phase, the nearby nodes at the destination
side form a virtual MIMO receiver and cooperate with
each other to decode the original data at the destination
node. As an example of such strategy, we continue our
discussion based on the framework developed in [10]. In
the network, each node is a source of data for exactly one
other node, and also, it is destination of data for exactly
one other node. Now, we describe the transmission proce-
dure through which all source nodes transmit their data to
the corresponding destinations in three phases. Accord-
ing to [10], the three transmission phases can be detailed
as follows:

e Phase 1: Partition the network area into equal
clusters such that each cluster contains M nodes.
Suppose that every source node has ML bits to
transmit to its destination. Let us focus on one source
node s. Node s distributes its ML bits among other
nodes inside its cluster, L bits for each. In order to do
this, node s maps a data block of length L to a
Gaussian codeword of length Cp, and transmits this
codeword to another node inside its cluster. This
action takes Cp time slots. Then, s repeats the same
action for all other nodes in the cluster in a round
robin manner to distribute all the ML bits.
Accordingly, such process takes (M — 1)Cp time
slots. Since all the nodes in this cluster are source for
some other nodes in the network, each node inside
the cluster should repeat the whole procedure
described above, as s did, one-by-one. This results in
MM — 1)Cy time slots needed for this specific
cluster. This intra-cluster activity is done
simultaneously in one-fourth of the clusters by a
4-TDMA spatial reuse scheme. (The k-TDMA
spatial reuse strategy was first proposed in [4] and is a
widely known concept in the literature. For details
refer to [4,9,10].) Thus, the total time needed for all
the source nodes in the network (which are, in fact,
all the nodes in the network) to distribute their data
inside their clusters is

D(phase 1) = 4M(M—1)Cy = 4M(M—1)R£0, (3)
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where the rate of each transmission—i.e., the number
of bits per slot—is Ry = L/Cp. In this phase, the
transmission from node i to node j is with
transmission power Pri. It should be noted that by
increasing transmit power P, Ry cannot be made
arbitrarily large, and it reaches a saturation value due
to inter-cluster interference.

Phase 2: Consider the source node s. Its destination
is located in some other cluster called the receive
cluster. After completing phase 1, ML bits of s is
distributed among M nodes inside its cluster. Thus,
each node in the cluster has L bits of s. In this phase,
every node maps L bits of s to a C1-long Gaussian
codeword. Then, all nodes transmit their codewords
simultaneously similar to a virtual MIMO

transmitter. Each node transmits with power P@,
where rgp is the distance between the centers of the
transmit cluster and the receive cluster. We denote
the transmission rate of each node by R; = C% Each
source node in the network needs a MIMO
transmission shot as explained above, in order to
deliver its data. Since we have a total of n source
nodes in the network, an order of n MIMO shots, and
accordingly, n time slots is required for this phase.

Thus, the total number of time slots for this phase isP

D(phase 2) = 2nC; = 2n£. (4)
Ry

Phase 3: Consider a given receive cluster with M
nodes. Each receive cluster, in phase 2, has acted as a
virtual MIMO receiver. However, since the received
signals at each virtual MIMO receiver (each cluster)
are not collocated (and are distributed among the
nodes in the cluster), we cannot decode the message.
Thus, in phase 3 we should gather these distributed
signals at the destination, which will then decode the
original message.
Consider a specific destination node named d which
we assume to be the destination of source node s. As
described earlier, in the second phase the nodes in
the cluster of s send the information belonging to s in
C; time slots in a MIMO fashion. Thus, after the
second phase, every node in the receive cluster has
received Cj real numbers. These real numbers are the
MIMO observations received at the antenna of each
node in the receive cluster. Since we have to gather
all these analog signals at the destination nodes d for
the decoding process, we first have to quantize the
analog observations. Thus, every node quantizes each
observation with Q bits. Therefore, each node in the
receive cluster has QCj bits which should be passed
to d. Consequently, every node passes QCj bits to d
in a TDMA manner using codewords of length Cy
exactly as in phase 1, providing the total of
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(M — 1)Cp codewords for destination d. Finally, from
these (M — 1)Cp codewords (along with the analog
data already received at the second phase in d), node
d decodes the whole ML bits of s.
This procedure should be repeated for all destination
nodes in receive cluster. Since, there are M
destination nodes in the receive cluster, each one
should get its (M — 1)QC; bits from other nodes,
one-by-one. Considering the 4-TDMA spatial reuse
strategy between clusters (as in the first phase), the
total time slots needed for this phase is given by
LQ
D(phase 3) =4M(M—1)CoC1 Q/L =4M(M—1)——.
RoRy
5)

Consequently, the total time required for this scheme
for large values of M is

L L LQ
D = 4M?> = + 2n— + 4M? . 6
Ro * an * RoRq (©)
Since the total of nML bits is delivered, the effective
throughput will be
ML
T ? )

- L Q L

Accordingly, by optimizing M with respect to the
achievable throughput T, as [10]:

2(R1 +Q
the optimum throughput will be

1/2
MPePt — ( Ro ) \/ﬁ’ (8)

Topt — ROR%
32(R1 + Q)

It is useful to note that the receive power at each of
the nodes is bounded in the third phase as [10]

1/2
) Vn. )

Pa’ < P"° < pp?, (10)
where
/2 /2
0l (2—&)“ . be (2+J§)a RENGE))

The above framework is sufficient for our purposes in
this article. However, an interested reader can find
more detailed explanation of the scheme by referring
to [10]. In the next section, we use this simple scheme
to begin analyzing the quantization effects in the
second and third phases described above.

Managing the number of quantization bits

The quantization process in the cooperative MIMO strat-
egy is a critical operation before any further action for
decoding. That is due to the fact that in order to pass
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the received information-carrying signal to the destina-
tion node (the decoder), these signals should first become
quantized. These quantized signals constitute the infor-
mation based on which the original data are recovered as
will be discussed in this section.

Two stage cooperative MIMO network

Our goal is to study the effect of choosing a proper value
for the number of quantization bits, on the performance
of the network in terms of throughput. Thus, here we ana-
lyze a trade-off between the number of quantization bits,
and the achieved throughput of the virtual MIMO chan-
nel. In fact, by decreasing Q, each node has to represent
its received analog signal with more ambiguity. The dis-
tortion due to quantization, acts as an added noise and
makes the MIMO decoding at the destination node more
difficult. Consequently, the capacity of the virtual MIMO
link is decreased. In other words, by decreasing the num-
ber of quantization bits, Q, R; in Equation (9) is decreased.
In addition, as our goal is to achieve a low traffic load
in the third phase, we have to decrease the number of
quantization bits. In other words, by decreasing Q, the
denominator of (9) is decreased. These are two competing
effects which shape the trade-off behavior inherent in the
problem.

As it is clear from Equation (9), optimizing Q will result
in improvement in the pre-constant value of the through-
put. Thus, the best Q can be found by solving the following
optimization problem:

R1(Q)?
Ri(Q+Q
To this end, we need to understand how R; increases as

Q is increased. R; is proportional to the MIMO capacity
between the clusters in the second phase, i.e.,

arg max (12)
Q

1
R1 = —Cmmos (13)

M

where Cpyo is the capacity of the cooperative MIMO
link. The second phase signal model results in [9]

Y; = H;X; + N, (14)

where X; is the transmitted signal vector by the nodes in
the transmit cluster, and Y; is the received signal vector
at the nodes in the receive cluster. Also, H;; is the chan-
nel matrix of the cooperative MIMO setup, and N; is the
additive noise-plus-distortion vector added at the receive
nodes. The noise-plus-distortion vector consists of two
parts, namely the thermal noise (Z), and the quantization

distortion (D)
N; =Z; + D;. (15)

We consider the thermal noise of receiving nodes to
be independent from each other. The thermal noise at
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different nodes are assumed to have power 2. The quan-
tization distortion of the receive node i depends on Q, and
based on the rate-distortion theory [14] is equal to

D; = (Pf“ + 0279, (16)

where P;* is the power of the received signal at the
node i. The received power for node i is the sum of the
transmitted signals’ power, diminished by the path loss
effect. Given the fact that the power of each transmit node

in the second phase is P%, we will have that [9]

M o
P
Pre=3Y"— (@) .

T
k=1 ki

17)

By considering the quantization distortion as noise, the
channel model represented in (14) will be a MIMO chan-
nel with unequal noise power at the receive antennas.
Obviously, this is not the best strategy since the distortion
vector contains information about the transmitted signal
and is not useless noise. However, with this assumption,
we can note that R; will be

1 1 det(Z}, + & FF)
R = 7C = 7]E 1 ’
LTy MIMO = Ry [ng ( det %,

(18)

(The detailed derivation of (18) is presented in the
Appendix.) where SNR is defined to be

p £ PJo?, (19)

and the expectation is with respect to the random chan-
nel phases. Also, we define the entries of the matrix F as
(Bik £ v exp(jOix), where yj £ (257’?)"‘/ 2. Also, from the
geometry of the problem, we have that

a =< yik < b. (20)

In addition, ¥’y is the noise-plus-distortion covariance

matrix given by
z), = E[NN], (21)

where the expectation is with respect to X and Z. There-
fore, it is diagonal with diagonal entries

M o
ENi=1+ (1 + 1% > (rSD) ) 272,

T
k=1 ki

(22)

It should be noted that due to the normalized values
of distances in equation (22), the distance of the transmit
and receive clusters is not important, and consequently
the value of R; for all the cluster pairs is almost the same®.

Now we are in a position to note how decreasing Q
decreases R;. By decreasing Q, the diagonal elements
of the noise-plus-distortion covariance matrix stated in
(22) (ie, (X))i) will be increased. This results in a
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decreased value for R;. By understanding these two com-
peting effects, we have evaluated the trade-off mentioned
above, which suggests that there is an optimum number of
quantization bits. As will be shown later, proper manage-
ment of this trade-off has a great effect on enhancing the
network throughput.

Extension to hierarchical cooperation schemes

The scheme explained in “Establishing cooperative
MIMO links” section is a simple form of a more general
scheme named Hierarchical Cooperation [9]. Consider
a typical transmit cluster as explained in the previous
sections. In the first phase, each node inside the cluster
should distribute different data between other nodes
inside the cluster. One can note that the process in phase
1 is very similar to the original problem in a smaller
scale (by the original problem we mean: # nodes ran-
domly distributed each having data for another node
in the network). That is because the process in phase 1
and the original problem both consist of uniform traffic
demand between the nodes of an specific area. Thus,
we can divide the phase 1 into three sub-phases similar
to the above-mentioned approach. The same story is
true for the phase 3. Therefore, we can divide the phase
3 into three sub-phases too. This concept is illustrated
in Figure 1. The big rectangles in Figure 1 illustrate the
three phases at the first level (top level) of the hierarchy.
The first and third phases of the first level are divided
again into another three phases which are shown by small
rectangles. These small rectangles constitute the second
level of the hierarchy. Consequent levels of hierarchy are
built in the same manner up to / levels. The hierarchical
cooperation with / stages has been analyzed in [9,10] in
detail. By this approach, the network throughput is [10]4

Ro\ R 1-}
r= (R(l)> h[4 (1 + Ql)](hl)/2 (g) -

(23)

Ry

As itis clear from Equation (23), optimizing Q will result
in improvement in the pre-constant value of the through-
put. Consequently, the optimization problem becomes

R1(Q)

(ria)
1o (1)

R1(Q)

(24)

arg max
& Q

This optimization problem reduces to (12) by putting
h=2.

In [11,12], it has been observed that phases 1 and 3 can
be manipulated in a more effective way in terms of delay.
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Figure 1 lllustration of the hierarchical cooperation concept. The whole operation is divided into three consecutive phases (the big rectangles).
Then, in a hierarchical manner, the first and third phases are again divided into three phases (the small rectangles). This hierarchy is repeated h times.

Phase 1 | Phase 2 | Phase 3
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It has been shown that this modified scheme achieves the
throughput® given by [12]

R h—1
T = 0 (E) R
- H=D)/h w2 \2) -
Ry 4Q
n(1+g)" (%)

For this delay-effective scheme, the optimization prob-
lem becomes

(25)

Ro

(h=1)/h (h—1)/2"
RI(Q 4Q
h(1+ Q ) (Rl(@)

arg max (26)

In order to analyze the above optimization problems
((24) and (26)), we need to have more understanding of the
behavior of R; as a function of Q. The exact expression for
R; is the solution to the quantized MIMO channel capac-
ity problem (Equation 18), which is very difficult to work
with.

Therefore, by some simple observations, we propose a
simple approximation for the behavior of R; as a function
of Q as follows. Consider a typical MIMO transmission
between two clusters. By varying the value of Q, the
observed quantization noise in the diagonal elements of
Y, in Equation (22) varies accordingly. By substituting the
covariance matrix X, in Equation (18), we can quantify
the functionality of R; as a function of Q. Figure 2 shows a
typical numerical example of R; as a function of Q derived
by Equation (18). This figure shows that at small values of
Q, the rate grows almost linearly with Q, until it gets a sat-
uration value. In this saturation point, increasing Q does
not help improving R;. Let R, be the saturation value for
R;. Then we have

R =K [log2 det (1 T ﬁFFH)] . 27)
M M

We can roughly say that this happens when the quanti-

zation distortion is negligible comparing with the thermal

noise. Also, we see that until we reach this saturation
point, it makes sense to approximate the curve with a lin-
ear one. Thus, we approximate R; (Q) by a piecewise linear
function as depicted in Figure 3. The first parameter of
this approximation is Rs; which is the saturation capac-
ity. The second parameter is the number of bits required
for getting closed to this saturation capacity, namely Q;.
However, it should be noted that there are also some lim-
itations for this kind of approximation. First, it should be
noted that at low values of Q, Equation (18) is not valid
and apparently the value of R; at Q = 0 is zero. Second,
it should be noted that Equation (18) is not the capac-
ity, and is just a lower bound, since we have assumed the
quantization distortion to be just noise.

In order to find the optimum value of Q for the hierar-
chical cooperation scheme, we have to solve the problem
(24). It is clear that the optimum value for Q happens
before or at the saturation point (i.e., Qs). By assuming

. (bits)
ey

5 10 15 20 25
Q (bits)

Figure 2 A numerical example to show how R; varies as Q varies.
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(bits) R, A

>
>

Q (bits)
s

Figure 3 The proposed piecewise linear approximation for R;, as
a function of Q.

Q < Qs in Equation (24), we will have the following
quantity to be maximized:

ax 7R /

O no 2\ 1072
[+(1+ %))

which is maximized by putting Q = Q. This results in the
following pre-constant value

(28)

1-1/h
lRl/h Ry /

e

According to the above result, we should use the num-
ber of quantization bits needed to get near optimal MIMO
capacity at saturation. But, further bit allocation will result
in throughput loss, due to the extra load for the third
phase.

In a similar way, we can analyze the optimization prob-
lem for the variant of the hierarchical cooperation scheme,
proposed in [11]. By analyzing (26) we see that any Q < Q
maximizes the throughput pre-constant. Thus, the mod-
ified hierarchical cooperation scheme proposed in [11] is
very insensitive to the choice of the number of quantiza-
tion bits, as long as, we do not choose a number larger
than Q. The corresponding pre-constant will be

Ry

(h=1)/h (h=1)/2°
(o8 )

(29)

(30)

The above discussions show that, in the hierarchical
cooperation scheme and its variant, it is best to allocate
enough quantization bits to have a near-optimal MIMO
link in the second phase.

Analysis in the high SNR regime

One important issue is the behavior of the optimum num-
ber of quantization bits, and the network throughput
pre-constant in the high SNR regime (i.e., p — ©0). In this
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section, we carry out this analysis, and prove that the opti-
mum number of quantization bits scales as ®(log,(p)).
With this optimum scaling, the optimum throughput pre-
constant scaling is of order © (log, (,o)l_l/h).

In order to understand this issue, first, we should ana-
lyze Ry in the high SNR regime. Equation (18) is very
difficult to work with. Thus, we derive upper and lower
bounds for (18) which are easier to work with. To do so,
we put

(P +02)272
o2

(Prec + 02)27(2
i max
1+ < (Bh) = 1+ = 5

(31)

where by using P’ and P{¢. from (10) we will get

min max

Pa? + 02)27Q Pb? + 02)2-Q
4 Loz T Py

2R (5, =14 P
(32)
Also, we have from (20)
a exp(jbix) =(F)ix < bexp(jbi) (33)

a(@ i <(F)ik < b(G)ik

where the entries of the matrix G are defined to be (G);x =
exp(j0;x). Now that we have bounds for the elements of
the matrices X}, and F in (32) and (33), respectively, by
inserting them into (18) the following bounds will result

1 1 pa> . 1
“E|log,det (1+——— % GG")| <R < —E
M [ng ¢ <+M1+(pb2+1)2*Q )]— L=M

log, det 1+ip—b2GGH
082 ¢ M1+ (pa+1)20 '

(34)

In other words, for deriving (34) we have used Equation
(18), where, we need using the bounds for the received
signal powers at different nodes stated in (10) and the
inequalities in (20), both originally derived in [9].

The above bounds on R; demonstrate an interesting
fact. If we do not increase Q as SNR increases, for Ry we
will have

1 1 4?
Q H :
ME |:10g2 det (I-l— METZZ GG )] < pll?gch

1

< —
M

15
Q H

and consequently, the pre-constant for the two-stage sys-
tem (9) is boundedf as

, RoR?
lim ,| ————— <
p—oo\ 32(R1 + Q)

(36)
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However, if we set Q = flog,(p), for values of 0 < 8 < 1,
the upper bound in the high SNR regime will be given by

1 p 2 H
E[log,det (14 ~— 2 126G
082 e(+M1+(pa2+1)2Q )]

b
E |log, det [ I + — = p? GG
onsde 1+ 06" )|

1b
E X:log2 <1+Mﬂzp5k?)i|
L i

(37)

where
1 1
1

In (37) and (38), A;’s are singular values of G which are
independent of p. Also, in the case of 8 > 1, by similar
calculations, we will have

(38)

~ log,(b%) +log, (p) + C. (39)
Finally, for g = 1:
2

Ruyp log2( ) Tlogy(p) +C. (40)

A similar analy51s holds for the lower bound. Thus, by
choosing Q = Blog,(p), for any 8 > 0,

log,(p) + C; < Ry < logy(p) + C5, (41)

where C] and C} are two constant values independent of
SNR. The inequalities in (41) indicate that R; is of the
order log,(p), and accordingly the pre-constant for the
two-stage scheme (9) will increase as

| RoR?
PR+ Q) Vlog, (p).

Also, by a similar approach, we see that for the /-stage
hierarchical cooperation scheme, with the throughput
indicated in (23), the pre-constant scaling is of order

(42)

~ logz(p)l_%. (43)

) e
(h—=1)/2
Ry, [4(1+R)]

In addition, for the modified /-stage scheme, with the
throughput stated in (25), the pre-constant will be inde-
pendent of p in the scaling sense.

Finally, we prove that the scaling choice of Q =
©(log,(p)) is order-optimal. First, we show that no scal-
ing order larger than this results in higher throughput. We
have observed that by the scaling of Q = ®(log,(p)), the
scaling of Ry is as R1 = ®(log,(p)). Choosing a larger scal-
ing than Q = ©(log,(p)) for Q, does not help improving
the scaling order of Ry. That is because R; = ®(log,(p))
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is the best achievable scaling even in the case of Q = oo.
Thus, increasing the scaling order of Q does not help
improving the scaling order of R;. On the other hand, this
action will deteriorate the pre-constant factor by increas-
ing the third phase load. Consequently, no scaling larger
than ©(log,(p)) is the optimum scaling order.

Now, we prove that no scaling smaller than ® (log, (p))
is the optimum choice. Suppose we scale Q as Q =

O(f(p)), in which lim,_, oo 1({’(p)

(o) = = 0. Thus, we have

gp) = P
1+ (pb? +

1)2~/ ) (44)

P

_ f(p)
1+ (pb? + 12" 8V b0
o)

1+ (pb? +

1 _f»
~ —p logy (p) |

b2
Therefore, by similar calculations as in (37), and using
(44), for the lower bound in (34) we will have

—E log,det | I+ — 14 1og2<ﬂ>GGH
2 Mb?

42 Sf(p)
logz (b log2(ﬁ)> fvf(p)

Similar analysis holds for the upper bound in (34), and
thus, we will have Ry = ©(f(p)). Accordingly, the pre-
constant scaling for the hierarchical cooperation scheme
is

_ S
l)p logy ()

(45)

1
RO h Rl 1—1
<R1) Q (h—l)/2 f(lo) h, (4'6)
n[a(1+2)]
which has become worse when compared with (43). Thus,

the optimal scaling for Q is

Qopt = O (logy (p))- (47)
Numerical illustrations
In this section, with the help of numerical illustrations, we
investigate the above-discussed results and facts. The sys-
tem considered in this section is the cooperative MIMO
scheme explained in “Establishing cooperative MIMO
links” section.

Consider Figure 4. This figure shows the pre-constant

Ro? 1/2

PERAD from
Equation (9)) as function of Q in p = 25dB. The
figure contains three curves. The middle curve is the pre-
constant based on the relationship (18) used for R;, which
is the exact capacity of a MIMO channel with different
noise powers at the receivers. The upper curve is based
on the lower bound on R; in (34). The lower curve is

factor of the throughput (ie.,
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Upper Bound
* Lower Bound
Exact

Pre—constant (bits)

Figure 4 The throughput pre-constant (in bits) as a function of
the number of quantization bits Q. The upper and lower curves
indicate the pre-constant when the upper and lower bound relations
for Ry (in Equation 34) is used. The middle curve is based on the exact
capacity in (18).

based on the upper bound in (34). This figure shows some
interesting facts. The first fact is that there is an optimum
choice of Q which maximizes the pre-constant value of the
throughput. This Q is the optimal choice for handling the
trade-off discussed in “Managing the number of quantiza-
tion bits” section. The second fact is that the evaluation
based on the lower and upper bound relations also shows
the existence of an optimal value, but with a slightly dif-
ferent value for the optimum Q. The optimum Q derived
based on these curves are 5.75, 10, and 15.25 bits at this
specific SNR value.

The next issue is about the behavior of the optimum
value of Q at different SNR levels. This issue is investigated
in Figure 5. The three curves in this figure are derived in

18 . . . .

161 7

1ALt = = Based on upper bound relation
“““ Based on lower bound relation

12} — Based on exact capacity

Optimum Q (bits)

20 22 24 26 28 30
SNR (dB)
Figure 5 The optimum number of quantization bits as a function
of SNR. The upper and lower curves indicate the optimum Q, when
the upper and lower bound relations for Ry (in Equation 34) is used.
The middle curve is based on the exact capacity in (18).

0.5 T T T :
- DIEIL A
0.45 i |
(mim =
mimimme
0.4k = = Based on upper bound relation
B 1 Based on lower bound relation
8 == Based on exact capacity
€ 0.35¢ R
S
[%2]
c
8 o3 1
<
o
0.25
0.2f RRIRTIUTE, |
20 22 24 26 28 30
SNR (dB)
Figure 6 The optimum pre-constant value as a function of SNR
level. The upper and lower curves indicate the pre-constant when
the upper and lower bound relations for Ry (in Equation 34) is used.
The middle curve is based on the exact capacity relation in (18).

the same way as in Figure 4, with the difference that the
upper curve is associated with the lower bound for R; and
the lower curve is associated with the upper bound. In this
figure, we note that all the three curves have almost equal
slopes. This provides the answer to the question that why
the bounds stated in (34) are very useful to work with,
when considering the high SNR regime analysis.

Finally, Figure 6 shows the pre-constant of the network
throughput when the optimum number of quantization
bits derived in Figure 5 is used. Again, in this figure we
note the same slope for the three curves. This fact, again,
illustrates the reason for the advantage of using bounds in
the high SNR regime analysis.

It should be noted that the analysis in “Analysis in the
high SNR regime” section is tailored to the high SNR case.
That is because the model we have considered is a dense

8.5 T T T T

Optimum Q (bits)

SNR (dB)

Figure 7 The optimum number of quantization bits as a function
of SNR.
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0.28r

Pre-Constant (bits)

10 12 14 16 18 20
SNR (dB)
Figure 8 The optimum pre-constant value as a function of SNR
level.

wireless network which is interference-limited in nature
and not power-limited. However, extending the analyti-
cal results of this article to non-high SNR situations is
an interesting problem for future work. However, we can
examine the problem in that situation from the numerical
viewpoint which are shown in Figures 7 and 8.

The numerical results presented in this section are very
helpful to understand the inherent trade-off in the opti-
mization problem.

Conclusion

In this article, we have analyzed one of the key practical
design parameters of cooperative MIMO schemes in ad
hoc networks. We have considered the role of the num-
ber of quantization bits used at the nodes acting as the
virtual MIMO receiver. By increasing this number, we
will have a better virtual MIMO link, at the expense of
a higher traffic load for cooperation at the receive nodes.
We have analyzed this trade-off and have shown there
is an optimum number of quantization bits. Also, we
have shown that if we do not increase this number as
SNR increases, the throughput reaches a saturation value.
We have shown that the optimum scaling of the num-
ber of quantization bits with SNR is as log, (SNR). By this
optimal scaling, the pre-constant of the hierarchical coop-
eration method increases by order (logz(SNR))l_l/ hin
which / is the number of hierarchy stages. The discussions
are supported with numerical illustrations.

Endnotes

3 An earlier version of this article was accepted at the 36th
IEEE Conference on Local Computer Networks (LCN
2011) as a poster presentation.

PIn fact, just the scaling is important which is linear
with #. However, to understand why we have put 2nCj,
and not nCjy, refer to [9,10].
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¢The reason is that in the second phase, the transmit
power of the MIMO transmission is proportional to r¢;,
where rgp is the distance between the centers of the
source and destination clusters. On the other hand, the
path loss between any two nodes in these two clusters
can be approximated by the distance between the centers
of the clusters. Thus, these two terms cancel the differ-
ence between different cluster pairs and we can treat them
equally. Therefore, for the sake of analytical traceability,
we have used this approximation and concluded that R; is
almost the same for all the cluster pairs.

dThe calculations are the same as [10], with the difference
that we have not put R; = Ry.

€The calculations are the same as [12], with the difference
that we have not put R; = Ry.

fIt should be noted that there is an intrinsic saturation
for Ry due to interference in the 4-TDMA spatial reuse
scheme as mentioned earlier (i.e., lim,_, oo Ry < 00).

Appendix

In this appendix, we derive Equation (18) of the capacity
of quantized MIMO channel with different quantization
noise at the receivers. Based on [9], Equations (14) and
(15) characterize the quantized MIMO channel model. If
we do not use the information in D for recovering X, and
consider the quantization distortion as an extra gaussian
noise independent of X, we can assume H(Y|X) = H(N).
Then, by following the conventional capacity calculation
of MIMO channels we will have

det(T HX yH?
CM1M0=E[10g2(e(N+ X ))i|7

48
det Xy (48)

where Y x and X are covariance matrices of X and N,
respectively. Therefore, they are diagonal with the entries
(Zx)i = P%, and (Zn)i; = 02+ D;. From (48) we derive
the following

det(Eyn + LFF7) )} @)

Cmimo =E |:log2 ( det Ty

where the entries of the matrix F are (F);x £ y;x exp(j6ix),

and yy = (;ST?)“/ 2, Finally, by normalizing to o2 and

defining p £ % we will have the relation stated in (18).
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