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Abstract

In this article, we investigate the performance of dual-hop amplify-and-forward multiple-input multiple-output
relaying system with orthogonal space-time block code transmissions over doubly-correlated Nakagami-m fading
channel, where the source, relay, and destination terminals are all equipped with multiple antennas. For two different
CSI-assisted relaying schemes, which could be encompassed by a unified model, we provide the compact
closed-form expressions for cumulative distribution function, probability density function, moment generating
function, and generalized moment (GM) of the instantaneous end-to-end SNR. Besides, the exact analytical
expressions for the outage probability (OP) and symbol error rate (SER) and approximate expression for ergodic
capacity are also derived. Furthermore, we present the asymptotic expressions for OP and SER in the high SNR regime,
from which we gain an insight into the system performance and derive the achievable diversity order and array gain.
The analytical expressions are validated by Monte-Carlo simulations.

Keywords: Amplify-and-forward (AF) relaying, Multiple-input multiple-output (MIMO), Orthogonal space-time block
code (OSTBC)

Introduction
Recently, relaying transmission has attracted great atten-
tion due to their considerable advantages over direct
transmission, such as extending the coverage, increas-
ing the reliability, and saving the power consumption
[1-3], and has already been discussed as part of the LTE-
Advanced study [4]. One of themost common relay proto-
cols is amplify-and-forward (AF) (or non-regenerative) for
its low complexity and cost-effectiveness. For dual-hop AF
relaying with single-input single-output (SISO), its perfor-
mance has been well studied over both Rayleigh [2,3] and
Nakagami [5] channels.
Multiple-input multiple-output (MIMO) technology

has also received a significant interest in the past decade
for its significant increasement in data throughput and
link range without additional bandwidth or increased
transmit power. Beamforming and space-time block code
(STBC) techniques are two emerging technologies that
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can be employed with multiple antennas to provide
diversity.
In [6-8], the performance of two-hop relay network

over correlated Rayleigh fading channels with beamform-
ing [maximum ratio transmission (MRT) at the source
and maximal ratio combining (MRC) at the destination]
has been analyzed. In [9,10], the end-to-end performance
of dual-hop relaying systems with beamforming over
Nakagami-m fading channels has been investigated.
In [11-15], orthogonal space-time block code (OSTBC)

has been employed in dual-hop relaying system. In
[11,12], the end-to-end performance of dual-hop wire-
less communication systems employing transmit diver-
sity with OSTBC over independent but not necessarily
identically distributed (i.n.i.d.) Rayleigh and Nakagami-
m fading channels has been well investigated respec-
tively. Yan and Zhang [13] and Ferdinand et al. [14]
extend the single-antenna relay in [11] to multiple-
antenna relay over independent Rayleigh and asymmetric
correlated Rayleigh-Rician fading channels, respectively.
Yan and Zhang [13] have investigated the performance
of a wireless relay network, where each of its nodes is
equipped with N antennas and the same OSTBC scheme
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is adopted at its source and relay nodes for transmission.
In [14], the performance of MIMO AF relay network with
OSTBC over Rayleigh-Rician asymmetric channel with
antenna correlation has been analyzed. Duong et al. [15]
extended i.n.i.d. Nakagami-m fading channels to arbitrar-
ily correlated and not necessarily identically distributed
(c.n.i.d.)Nakagami-m fading channels by transforming the
sum of c.n.i.d. Gamma random variables (RVs) to a sum
of independent Gamma RVs, where the relay is equipped
with a single antenna.
Antenna correlation occurs in many practical scenarios

due to the limited antenna separation or the lack of local
scatters [16]. Louie et al. [6-8,15] only considered the one-
sided correlated fading channels, where there was antenna
correlation at either the transmitter or receiver. For amore
general case of correlated fading at both the transmit-
ter and receiver, which is referred to as doubly-correlated
MIMO channels [17], it is important to quantify this cor-
relation effect. In this article, we analyze the performance
of two channel state information (CSI) assisted AFMIMO
relaying systems over doubly-correlated Nakagami-m fad-
ing channels by building up the multiple-dimensional
Gamma distributed correlated vector with order param-
eter m based on the sum of squared Gaussians [18],
where all the source, relay, and destination terminals
are equipped with multiple antennas and the channel
fading at both transmission and reception ends is cor-
related with arbitrary correlation matrices. The source
and relay terminals employ the OSTBC transmissions,
which are not necessarily the same. It is noteworthy
that it’s easy to derive the performance of the dual-hop
AF MIMO relaying system with OSTBC transmissions
over doubly-correlated Rayleigh fading channels based
on our analysis results, since the Nakagami-m distri-
bution equals the Rayleigh distribution for m = 1. We
assume that the instantaneous CSI is available at the relay
terminal.
The rest of the article is organized as follows.

The system and channel models studied are presented
in Section “System and channel models”. In Section
“Metrics of end-to-end SNR”, the compact closed-form
expressions for the cumulative distribution function
(CDF), probability density function (PDF), moment gen-
erating function (MGF), and generalized moment (GM)
of the instantaneous end-to-end SNR are derived. In
Section “Exact system performance analysis”, the exact
analytical expressions are also derived for the outage
probability (OP) and symbol error rate (SER). In Section
“Asymptotic analysis”, the approximate expression for
ergodic capacity is given firstly, and then the asymptotic
expressions for OP and SER in the high SNR regime
are presented. Numerical results that confirm our analy-
sis are presented in Section “Numerical results”, which is
followed by the conclusion in Section “Conclusions”.

System and channel models
Consider a dual-hop MIMO relaying network as shown in
Figure 1. The source equipped with NS antennas commu-
nicates with the destination equipped with ND antennas
via anNR-antenna relay. Note that the results in the article
can be easily extended to a more general case, where the
relay uses different number of transmit and receive anten-
nas. Under the assumption that the direct link between
the source and destination is in deep fading, the direct link
is ignored.

Systemmodel
We assume that the source and relay with multiple anten-
nas employ OSTBC transmissions. An OSTBC with NTx
transmission antennas is defined by an NTx ×K transmis-
sion matrix X, where K denotes the block length of an
OSTBC and X is constructed by a set of transmitted sym-
bols xl, l = 1, . . . , L. Since there is a total of L symbols
transmitted over a period of K symbols, the code rate of
OSTBCs is Rc = L/K .
During the first hop, the NR ×K1 signal matrix received

at the relay could be written as

YR = H1X1 + N1, (1)

where H1 ∈ C
NR×NS denotes the spatially correlated

Nakagami-m distributed channel matrix from the source
to relay, X1 ∈ CNS×K1 is the OSTBC codeword matrix
with code rate Rc,1 = L/K1, and N1 ∈ C

NR×K1 is the noise
matrix whose elements are independent and identically
distributed (i.i.d.) complex Gaussian RVs with zero mean
and variance N0 / 2. OSTBC decouples the space-time
channel into parallel scalar channels each with [19]

xR,l = ‖H1‖2F xl + ñR,l, l = 1, . . . , L, (2)

where the subscript F denotes the Frobenius norm, and
ñR,l is the filtered noise with zero mean and variance
‖H1‖2F N0.
In the second hop, the output signal at the relay xR,l

is amplified by the gain of the relay, G, encoded by an
OSTBC matrix X2 ∈ C

NR×K2 with code rate Rc,2 = L/K2

Figure 1 Systemmodel of dual-hop AF relaying network.
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and then sent to the destination. TheND×K2 signal matrix
received at the destination could be written as

YD = H2X2 + N2, (3)

where H2 ∈ C
ND×NR denotes the spatially correlated

Nakagami-m distributed channel matrix between the
relay and destination, and N2 ∈ CND×K2 is the noise
matrix whose elements are i.i.d. complex Gaussian RVs
with zero mean and variance N0/2. The combined signal
xD,l at the destination could be given by

xD,l = G ‖H2‖2F xR,l + ñD,l , l = 1, . . . , L, (4)

where ñD,l is the filtered noise with zero mean and vari-
ance ‖H2‖2F N0.
Substituting (2) into (4) yields

xD,l = G ‖H1‖2F ‖H2‖2F xl + G ‖H2‖2F ñR,l + ñD,l . (5)

Hence, the end-to-end SNR could be written as

γ =
ES
N0

‖H1‖4F ‖H2‖2F
‖H1‖2F ‖H2‖2F + 1

G2

, (6)

where ES = E
[|xl|2]. It is clear from (6) that the choice of

the relaying gain defines the equivalent end-to-end SNR
of the dual-hop relaying system.
Usually, there are two choices for the gain G to normal-

ize the received signal [2]

G1 =
√

ER
‖H1‖4F ES + ‖H1‖2F N0

,

G2 =
√

ER
‖H1‖4F ES

, (7)

where ER = E
[∣∣xR,l∣∣2]. The two choices are referred

as the channel noise assisted and channel assisted gains
respectively [5], and could be encompassed by the unified
model

G =
√

ER
‖H1‖4F ES + β ‖H1‖2F N0

, (8)

where β is equal to 0 or 1 corresponding to the chan-
nel assisted gain G2 and channel noise assisted gain G1,
respectively. By substituting (8) into (6), we have

γ = γ1γ2
γ1 + γ2 + β

, (9)

where γ1 = ρ1 ‖H1‖2F , ρ1 = ES/N0, γ2 = ρ2 ‖H2‖2F , and
ρ2 = ER/N0.

Channel model
The correlated channel matrix Hi, i = 1, 2, can be factor-
ized in the form [20]

Hi = R
1
2
Rx,iHiid.,i

(
R

1
2
Tx,i

)T
, (10)

where RTx,i and RRx,i are the transmission and recep-
tion correlation matrices of i-th hop respectively, Hi.i.d.,i
is a matrix of i.i.d. RVs, and the superscript T denotes
the matrix transpose operation. The entry of RTx,i

(RRx,i
)
,

ρ
(j,k)
Tx,i

(
ρ
(j,k)
Rx,i

)
, is the correlation coefficient between j-th

and k-th transmission (reception) antennas of i-th hop.
Based on the Kronecker product of the transmission and
reception correlation matrices, we have

vec (Hi) = R
1
2
i vec

(Hi.i.d.,i
)
, (11)

where vec(·) denotes the matrix vectorization operation,
Ri = RT

Tx,i ⊗ RRx,i, and ⊗ denotes the Kronecker product.
By building up the multiple-dimensional Gamma dis-

tributed correlated vector with order parameter m based
on the sum of squared Gaussians, theMGF of ‖Hi‖2F could
be given by [18]

M‖Hi‖2F (s) =
∣∣∣∣Ii + s

mi
Dγ̄ ,iRi

∣∣∣∣−mi
, (12)

where mi is the Nakagami-m fading parameter of i-th
hop, Ii is the identity matrix of size NTx,i × NRx,i, Dγ̄ ,i =
diag

{
γ̄i,1, γ̄i,2, . . . , γ̄i,NTx,i×NRx,i

}
, and γ̄i,j, j = 1, . . . ,NTx,i ×

NRx,i, is the average SNR for the j-th branch in vec (Hi). By
using an eigenvalue factorization, thematrixDγ̄ ,iRi can be
diagonalized as

Dγ̄ ,iRi = Ui�iU−1
i , (13)

where

�i = diag{λi,1, . . . , λi,j, . . . , λi,j︸ ︷︷ ︸
vi,j

, . . . , λi,Ji},

and λi,j, j = 1, . . . , Ji, is the distinct eigenvalue of Dγ̄ ,iRi
with multiplicity vi,j such that

∑Ji
j=1 vi,j = NTx,i × NRx,i.

Substituting (13) into (12) yields

M‖Hi‖2F (s) =
∣∣∣∣Ii + s

mi
�i

∣∣∣∣−mi
=

Ji∏
j=1

(
1 + s

mi
λi,j

)−mivi,j
.

(14)

In particular, for the case of balanced branches, i.e.
γ̄i,1 = γ̄i,2 = · · · = γ̄i,NTx,i×NRx,i , (12) can be expressed in
terms of the eigenvalues associated with Ri as follows:

M‖Hi‖2F (s) =
J ′i∏
j=1

(
1 + sγ̄i,1

mi
φi,j

)−miui,j
, (15)

where φi,j, j = 1, . . . , J ′i , denotes the distinct eigenvalue of
Ri with multiplicity ui,j such that

∑J ′i
j=1 ui,j = NTx,i×NRx,i,

and is the product of the eigenvalues of RTx,i and RRx,i.
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By expanding in poles and residuals, (14) can be decom-
posed into the following partial fractions ([21], eq. (2.102))

M‖Hi‖2F (s) =
Ji∑
j=1

mivi,j∑
k=1

cij,k
(
1 + s

mi
λi,j

)−k
, (16)

where

cij,k = 1(
mivi,j − k

)
!

(mi
λi,j

)mivi,j−k dmivi,j−k

dsmivi,j−k

×
(
M‖Hi‖2F (s)

(
1 + s

mi
λi,j

)mivi,j)∣∣∣∣
s=− mi

λi,j

.

From the relationship between MGF and PDF, based on
the linearity of the inverse of the Laplace transform and
the identity for inverse Laplace transformation, given in
([22], eq. (5.2.17)), we could therefore write for the PDF of
‖Hi‖2F = z, where z > 0, as

f (z) =
Ji∑
j=1

mivi,j∑
k=1

cij,k
(

λi,j
mi

)−k zk−1

�(k) exp
(

−miz
λi,j

)
, (17)

where �(·) is the gamma function defined as �(x) =∫ ∞
0 tx−1e−tdt [21].
By integrating the PDF with respect to z with the help of

([21], eq. (3.351.1)), the CDF of z could be given by

F(z) = 1 −
Ji∑
j=1

mivi,j∑
k=1

k−1∑
l=0

cij,k
l! exp

(
−miz

λi,j

)(miz
λi,j

)l
, (18)

where the above deduction uses the property of∑Ji
j=1

∑mivi,j
k=1 cij,k = 1, which can be derived by substituting

s = 0 into (12) and (16) and comparing the results.

Metrics of end-to-end SNR
In this section, the compact closed-form expressions for
CDF of the end-to-end SNR γ are presented firstly. Then
the exact analytical expressions for the PDF, MGF, and
GM of γ are derived relying on CDF.

CDF of γ
The CDF of end-to-end SNR γ could be written as

Fγ (γ )=1 − 2
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

×
l∑

h=0

(q − 1
g

)( l
h

) c1j,kc2p,q
� (l + 1) �(q)

×
( m1
ρ1λ1,j

) θ+l
2

(
ρ2λ2,p
m2

) θ−l
2 −q

×exp
(
− m1γ

ρ1λ1,j
− m2γ

ρ2λ2,p

)

× γ
−g+h+l−1

2 +q(γ + β)
g−h+l+1

2 Kθ−l
(
2γ ′) ,

(19)

where γ ′ =
√

m1m2γ (γ+β)
ρ1λ1,jρ2λ2,p

, θ = g+h+1, and Kv(·) denotes
the vth-ordermodified Bessel function of the second kind.

Proof. The proof is provided in Appendix 1.

PDF of γ
The close-form expression for the PDF of γ can be given
by

fγ (γ ) = 2
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

×
l∑

h=0

(q − 1
g

)( l
h

) c1j,kc2p,q
� (l + 1) � (q)

( m1
ρ1λ1,j

) θ+l
2

×
(

ρ2λ2,p
m2

) θ−l
2 −q

× exp
(

− m1γ

ρ1λ1,j
− m2γ

ρ2λ2,p

)

× γ
−g+h+l−3

2 +q(γ + β)
g−h+l−1

2

× (
γ ′ (2γ + β)Kθ−l+1

(
2γ ′) + ϕKθ−l

(
2γ ′)) ,

(20)

where ϕ=
(

m1
ρ1λ1,j

+ m2
ρ2λ2,p

)
γ (γ +β)−(θ+q) γ − (h+q) β .

Proof. Taking the derivative of (19) with respect to γ

and using the expression for the derivative of the modi-
fied Bessel function, given in ([21], eq. (8.486.13)), yields
(20).

MGF of γ
Moment generating function is useful in evaluating the
system performance over fading channels. The MGF of γ

can be presented as

Mγ (s)= 1 − s
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

l∑
h=0

×
g+l+2∑
μ=0

(q − 1
g

)( l
h

)(g + l + 2
μ

)

×
c1j,kc2p,q� (θ + 1)

�(q)βμ+h+1(−1)q−g+μ−1

(
ρ1λ1,j
m1

)(
ρ2λ2,p
m2

)θ−q+1

× dq−g+μ−1

ds̃q−g+μ−1
(
2F0

(
θ + 1, l + 1; ;−ω

(
s̃ + s̃′

))
× 2F0

(
θ + 1, l + 1; ;−ω

(
s̃ − s̃′

)))∣∣
s̃=s′ ,

(21)

where s̃′ =
√
s̃2 − 2

βω
, ω = ρ1λ1,jρ2λ2,p

2βm1m2
, s′ = s + m1

ρ1λ1,j
+

m2
ρ2λ2,p

, and 2F0 (a, b; ; z) denotes the generalized hypergeo-
metric function.

Proof. The proof is provided in Appendix 2.
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Although (21) appears complicated, it is in closed
form since higher order derivatives of arbitrary order
are known for the generalized hypergeometric function
pFq

((
ap

)
;
(
bq

)
; z

)
[23]. Having the MGF in closed form

as in (21) and using the MGF-based approach for the
performance evaluation of digital modulations over fad-
ing channels [24], the average bit and SERs for some
types of modulation can be derived from the MGF of
the instantaneous fading SNR directly (e.g., differentially
coherent detection of phase-shift-keying (PSK) or non-
coherent detection of orthogonal frequency-shift-keying
(FSK)).
For β = 0, (21) reduces to

Mγ (s) = 1 − 2s
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

l∑
h=0

(q − 1
g

)( l
h

)

×
c1j,kc2p,q

� (l + 1) �(q)

( m1
ρ1λ1,j

) θ+l
2

(
ρ2λ2,p
m2

) θ−l
2 −q

×
√

π(2
)θ−l

(s′ + 
)θ+q+1
� (θ + q + 1) �

(
2l + q − g − h

)
�

(
l + q + 3

2
)

× 2F1
(

θ + q + 1, θ − l + 1
2
; l + q + 3

2
;
s′ − 


s′ + 


)
,

(22)

where 
 = 2
√ m1m2

ρ1λ1,jρ2λ2,p
.

Proof. By setting β = 0, (43) can be reduced to a manip-
ulable form. By performing some algebraic manipulations
with the help of expression for the definite integral of
Bessel function, given in ([21], eq. (6.621.3)), the MGF of
γ with β = 0 can be derived as shown in (22).

GM of γ
Wenow derive the GMs of γ that can efficiently be applied
to uncover other statistical measures of the system perfor-
mance. For instance, the average SNR, amount of fading,
and ergodic capacity can be evaluated with the first-order
and second-order moments.
The GM of γ can be expressed as

E
(
γ n) = n

J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

l∑
h=0

×
g+l+2∑
μ=0

(q − 1
g

)( l
h

)(g + l + 2
μ

)

×
c1j,kc2p,q� (θ + 1)

�(q)βμ+h+1(−1)q−g+μ+n−2

(
ρ1λ1,j
m1

)

×
(

ρ2λ2,p
m2

)θ−q+1
× dq−g+μ+n−2

ds̃q−g+μ+n−2

× (2F0 (θ + 1, l + 1; ;−ωs̃+)

×2F0 (θ + 1, l + 1; ;−ωs̃−))|s̃= m1
ρ1λ1,j +

m2
ρ2λ2,p

, (23)

where s̃+ = s̃ +
√
s̃2 − 4m1m2

ρ1λ1,jρ2λ2,p
, and s̃− = s̃ −√

s̃2 − 4m1m2
ρ1λ1,jρ2λ2,p

.

Proof. The GM of γ can be obtained from

E
(
γ n) = n

∫ ∞

0
γ n−1 (

1 − Fγ (γ )
)
dγ . (24)

By substituting (19) into (24) and performing the similar
algebraic manipulations as in Appendix 2, the closed-form
expression for GM of γ can be derived as shown in (23).

For β = 0, (23) deduces to

E
(
γ n) = 2n

J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

×
l∑

h=0

(q − 1
g

)( l
h

) c1j,kc2p,q
� (l + 1) � (q)

( m1
ρ1λ1,j

) θ+l
2

×
(

ρ2λ2,p
m2

) θ−l
2 −q

×
√

π(2
)θ−l(
m1

ρ1λ1,j
+ m2

ρ2λ2,p
+ 


)θ+n+q

× � (θ + n + q) � (2l + n + q − θ)

�
(
l + n + q + 1

2
) × 2F1

×
(

θ + n + q, θ − l + 1
2
; l + n + q + 1

2
;
( m1

ρ1λ1,j

+ m2
ρ2λ2,p

− 


)/ ( m1
ρ1λ1,j

+ m2
ρ2λ2,p

+ 


))
.

(25)

Proof. Substituting (19) with β = 0 into (24) and per-
forming some algebraic manipulations with the help of
expression for the definite integral of Bessel function,
given in ([21], eq. (6.621.3)), the GM of γ with β = 0 can
be derived as shown in (25).

Exact system performance analysis
In this section, the exact analytical expressions are derived
for the OP and SER based on the expressions presented in
last section.

Outage probability
The OP is an important quality of service measure, which
is defined as the probability that the instantaneous end-
to-end SNR falls below a predetermined threshold γth and
could be given by

Pout = P (γ < γth) = Fγ (γth) , (26)
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where Fγ (γth) is the CDF of γ evaluated at γ = γth. Con-
sequently, the OP could be evaluated by substituting (19)
into (26).

Symbol error rate
With the aid of Mγ (s) presented in Section “MGF of γ ”,
the average SER of some types of modulation can be easily
obtained via the unified MGF-based approach [24]. How-
ever, for some cases (e.g., coherent detection of M-PSK,
M-FSK, and M-QAM), the intractability arises in seek-
ing a closed-form solution to the finite-range integration
of the MGF expressions, which involve the generalized
hypergeometric function.
In this section, we adopt an alternative approach to give

the closed-form expression for SER directly in terms of the
CDF of γ as [25]

Ps = a
2

√
b
π

∫ ∞

0

F(γ )√
γ

exp (−bγ ) dγ , (27)

where the parameters a and b are up to a specific modula-
tion scheme to be used, e.g., for BPSK, a = b = 1.
For mathematical tractability, we set β = 0. Substituting

(19) into (27), and performing some algebraic manipu-
lations with the help of the expression for the definite
integral of Bessel function, given in ([21], eq. (6.621.3)),
yields

Ps = a
2

− a
√
b

J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

l∑
h=0

(q − 1
g

)( l
h

)

×
c1j,kc2p,q

� (l + 1) � (q)

( m1
ρ1λ1,j

) θ+l
2

(
ρ2λ2,p
m2

) θ−l
2 −q

× (2
)θ−l�
(
θ + q + 1

2
)
�

(
2l + q + 1

2 − θ
)

(
b̃ + 


)θ+q+ 1
2
� (l + q + 1)

× 2F1
(

θ + q + 1
2
, θ − l + 1

2
; l + q + 1;

b̃ − 


b̃ + 


)
,

(28)

where b̃ = b + m1
ρ1λ1,j

+ m2
ρ2λ2,p

.

Asymptotic analysis
In this section, the approximate expression for ergodic
capacity is given firstly. The asymptotic expressions forOP
and SER in high SNR regime are then derived in order to
gain insight into the system performance, and the achiev-
able diversity order and array gain of the relaying system
are also presented.

Ergodic capacity
The ergodic capacity is determined by the expected value
of the instantaneous mutual information between the

source and destination, which could be expressed in a
second-order approximation as [26]

Cerg ≈ log2 (e)
2

(
ln (1 + E(γ )) − E

(
γ 2) − E2(γ )

2(1 + E(γ ))2

)
.

(29)

By substituting n = 1 and n = 2 into (25), we have

E (γ ) = 2
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

l∑
h=0

(q − 1
g

)( l
h

)

×
c1j,kc2p,q

� (l + 1) � (q)

( m1
ρ1λ1,j

) θ+l
2

(
ρ2λ2,p
m2

) θ−l
2 −q

×
√

π(2
)θ−l(
m1

ρ1λ1,j
+ m2

ρ2λ2,p
+ 


)θ+q+1

× � (θ + q + 1) � (2l + q − θ + 1)
�

(
l + q + 3

2
)

× 2F1
(

θ+q+1, θ−l+ 1
2
; l+q+ 3

2
;
( m1

ρ1λ1,j

+ m2
ρ2λ2,p

− 


)/( m1
ρ1λ1,j

+ m2
ρ2λ2,p

+


))
.

(30)

E
(
γ 2) = 4

J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

l∑
h=0

(q − 1
g

)( l
h

)

×
c1j,kc2p,q

� (l + 1) � (q)

( m1
ρ1λ1,j

) θ+l
2

(
ρ2λ2,p
m2

) θ−l
2 −q

×
√

π(2
)θ−l(
m1

ρ1λ1,j
+ m2

ρ2λ2,p
+ 


)θ+q+2

× � (θ + q + 2) � (2l + q − θ + 2)
�

(
l + q + 5

2
)

× 2F1
(

θ + q + 2, θ − l + 1
2
; l + q + 5

2
;
( m1

ρ1λ1,j

+ m2
ρ2λ2,p

− 


)/ ( m1
ρ1λ1,j

+ m2
ρ2λ2,p

+ 


))
.

(31)

Obviously, we can evaluate the ergodic capacity of the
MIMO relaying systems by substituting (30) and (31)
into (29).
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Outage probability
By using Taylor series expansion of the exponential func-
tion at z equal to zero, from (18), we have

F(z) =1 −
Ji∑
j=1

mivi,j∑
k=1

k−1∑
l=0

∞∑
t=0

(−1)tcij,k
t! l!

(miz
λi,j

)l+t

=DizNTx,iNRx,imi + o
(
zNTx,iNRx,imi+1

)
, (32)

where

Di =
Ji∑
j=1

mivi,j∑
k=1

k−1∑
l=0

(NTx,iNRx,imi
l

) cij,k
(
−mi

λi,j

)NTx,iNRx,imi

(
NTx,iNRx,imi

)
! (−1)l−1 .

Hence, the asymptotic expression for OP at high SNR
can be written as [27]

P∞
out=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1

(
γth
ρ1

)m̃1

+o
((

γth
ρ1

)m̃1+1
)
, m̃1<m̃2

D2

(
γth
ρ1

)m̃2

+o
((

γth
ρ1

)m̃2+1
)
, m̃1>m̃2

(D1 + D2)

(
γth
ρ1

)m̃1

+o
((

γth
ρ1

)m̃1+1
)
, m̃1=m̃2

(33)

where

D1 =
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

( m̃1
l

) c1j,k
(
−m1

λ1,j

)m̃1

(m̃1) ! (−1)l−1 ,

D2 =
J2∑
j=1

m2v2,j∑
k=1

k−1∑
l=0

( m̃2
l

) c2j,k
(
− m2

κλ2,j

)m̃2

(m̃2) ! (−1)l−1 ,

and m̃1 = NSNRm1, m̃2 = NRNDm2, κ = ρ2/ρ1.
It should be noted that the value of β has no impact on

the asymptotic expression of OP in high SNR regime.

Symbol error rate
Based on the relationship between CDF and OP, substitut-
ing (33) into (27) and after some algebraic manipulations
with the help of definite integral of exponential function,
given in ([21], eq. (3.381.10)), the asymptotic SER can be
derived as [10,28]

P∞
s = (Gaρ1)

−Gd + o
(
ρ

−Gd
1

)
, (34)

where the diversity order Gd is

Gd = min {m̃1, m̃2} , (35)

and the array gain Ga is

Ga =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b
( aD1

2
√

π
�

(
m̃1 + 1

2

))− 1
m̃1

, m̃1 < m̃2

b
( aD2

2
√

π
�

(
m̃2 + 1

2

))− 1
m̃2

, m̃1 > m̃2

b
(a (D1 + D2)

2
√

π
�

(
m̃1 + 1

2

))− 1
m̃1

, m̃1 = m̃2

(36)

From (35), we observe that the diversity order is equal
to the minimum of the product of the number of source
and relay antennas and the first hop Nakagami-m fad-
ing parameter and the product of the number of relay
and destination antennas and the second hop Nakagami-
m fading parameter, which means the diversity order is
entirely determined by the weaker hop. It also shows that
the diversity order is only determined by the antenna
configuration and Nakagami-m fading parameter and is
independent of the correlation.

Numerical results
In this section, the theoretical analysis developed in the
previous sections is validated via numerical examples,
and we also compare the performance of the CSI-assisted
relaying system with that of the fixed gain relaying system
[29]. We consider doubly-correlated Nakagami-m fading
channels. Without loss of generality, the exponential cor-
relation model is adopted, where the correlation model
at both transmitting and receiving ends of both hops
are assumed to be identical. For exponential correlation
model, the components of the correlation matrix can be
given by [17,30-32]

ρij = ρ|i−j|, 0 ≤ ρ ≤ 1, (37)

where ρ is the correlation coefficient of the neighboring
antennas. Obviously, (37) may be not an accurate model
for some real-world scenarios but this is a simple single-
parameter model which allows us to study the effect of
correlation on the MIMO relaying system in an explicit
way and to get some insight. And this model is physi-
cally reasonable in the sense that the correlation between
a pair of signals decreases as the separation between them
increases.
Figure 2 plots the PDF of the received end-to-end SNR

γ for different terminal antenna configurations with dif-
ferent correlation coefficient ρ. It is observed that the
analysis results of (20) match perfectly with the simulation
results. The higher the correlation, the lower the end-to-
end SNR. This phenomenon is more significant for system
with larger number of antennas. It also shows that the end-
to-end SNR γ with β = 1 can be tightly upper bounded
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Figure 2 PDF of the end-to-end SNR γ for different terminal antenna configurations (NS,NR,ND). (m1 = m2 = 2, ρ1 = ρ2 = 1,
γ̄1,j = γ̄2,j = 1, Rc,1 = Rc,2 = 1).

by γ with β = 0, which is consistent with (9). For brevity,
we consider only the end-to-end SNR γ with β = 0 in the
following.
Figures 3 and 4 depict the system outage probabilities

variation with different antenna configurations and differ-
ent correlation coefficients ρ with a threshold value γth =

10 dB. Figures 5 and 6 show the BER of BPSK modulation
with different correlation coefficients ρ. As expected, the
comparison shows an excellent agreement between ana-
lytical and simulation results, which validates the accuracy
of our analytical results. The correlation deteriorates the
OP and BER and the larger number of antennas improves
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Figure 3 OP of the AF MIMO relaying system for a threshold γth = 10dB with terminal antenna configuration (NS,NR,ND) = (2, 2, 2).
(m1 = m2 = 2, κ = 1, γ̄1,j = γ̄2,j = 1, Rc,1 = Rc,2 = 1).
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Figure 4 OP of the AF MIMO relaying system for a threshold γth = 10 dB with terminal antenna configuration (NS,NR,ND) = (4, 4, 4).
(m1 = m2 = 2, κ = 1, γ̄1,j = γ̄2,j = 1, Rc,1 = Rc,2 = 1).

the OP and BER. From Figures 3, 4, 5 and 6, it can be
concluded that the effect of correlation could be negligi-
ble when the correlation between two adjacent antennas
are less than 0.5 but it becomes significant for ρ > 0.5,
which is in agreement with previous results on the effect
of spatial correlation [31,32].

The asymptotic results are also drawn in the Figures 3, 4,
5 and 6. The asymptotic curves in each figure are parallel,
i.e., they have the same slope, but are shifted to the right
as ρ increases from 0 to 0.9, which implies that the cor-
relation has no impact on the achievable diversity order.
This is consistent with the works in [7,15]. The asymptotic
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Figure 5 Bit error rate of BPSK for AF MIMO relaying systems with terminal antenna configuration (NS,NR,ND) = (2, 2, 2). (m1 = m2 = 2,
κ = 1, γ̄1,j = γ̄2,j = 1, Rc,1 = Rc,2 = 1).



Yang et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:294 Page 10 of 13
http://jwcn.eurasipjournals.com/content/2012/1/294

0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

ρ
1
 (dB)

B
it 

E
rr

or
 R

at
e

ρ=0
ρ=0.5
ρ=0.9
Simulation
Asymptotic

1dB

32dB

Figure 6 Bit error rate of BPSK for AF MIMO relaying systems with terminal antenna configuration (NS,NR,ND) = (4, 4, 4). (m1 = m2 = 2,
κ = 1, γ̄1,j = γ̄2,j = 1, Rc,1 = Rc,2 = 1).

curves in Figures 3 and 5 are linear with a slope of 8,
whereas the asymptotic curves in Figures 4 and 6 are very
steep with a slope of 32. These observations agree with the
result in Section “Symbol error rate”, namely, the diversity
order is min {m̃1, m̃2}.

Figure 7 plots the BER of CSI-assisted and fixed gain
relaying systems with different correlation coefficients.
It’s shown that the performance of fixed gain relaying
system deteriorates seriously, especially for high corre-
lation coefficient, which means that fixed gain relaying
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Figure 7 Comparison of BER of CSI-assisted and fixed gain relaying systems for different terminal antenna configurations (NS,NR,ND).
(m1 = m2 = 2, κ = 1, γ̄1,j = γ̄2,j = 1, Rc,1 = Rc,2 = 1).
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system is much more influenced by the correlation than
CSI-assisted relaying system.
Figure 8 compares the BER of CSI-assisted and fixed

gain relaying systems when correlation exists only at
one terminal with ρ = 0.9. Terms “source”, “relay”, and
“destination” in the legend mean that correlation exists
only at the source, relay, and destination, respectively.

For CSI-assisted relaying system, the performance of
correlation at source and destination is almost the same,
which is better than that of correlation at relay. This can
be explained by the fact that the correlation at relay has
negative influence on both hops, whereas correlation at
source or destination has negative influence only on sin-
gle hop. For fixed gain relaying system, the performance
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Figure 9 Comparison of ergodic capacity of CSI-assisted and fixed gain relaying systems. (m1 = m2 = 2, κ = 1, γ̄1,j = γ̄2,j = 1,
Rc,1 = Rc,2 = 1).
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of correlation at relay is worst. The performance of
correlation at source is inferior to that of correlation at
destination, and the gap between them is relatively large.
The reason is that fixed gain relaying does not take the
CSI of the first hop into account and the error in first hop
has a dominant influence.
Comparison of ergodic capacity of CSI-assisted and

fixed gain relaying systems is shown in Figure 9. Both
approximate solution (29) and simulation results are plot-
ted. It’s observed that the CSI-assisted relaying system has
a higher capacity, and this phenomenon is not obvious
for independent channel fading (ρ = 0). The capacity is
higher for high SNR, and becomes lower at higher correla-
tion values. It is also shown that the closed-form approx-
imation matches the simulation results very well, which
verifies the accuracy of the approximation solution (29).

Conclusions
In this article, the performance of dual-hop AF MIMO
relaying system with OSTBC transmissions over
doubly-correlated Nakagami-m fading channel has been
investigated. The compact closed-form expressions for
CDF, PDF, MGF, and GM of the end-to-end SNR are
derived. Besides, the exact analytical expressions for OP
and SER and approximate expression for ergodic capac-
ity are also derived. In order to gain more insight into
system performance, we present the asymptotic expres-
sion for OP and SER in the high SNR regime, and derive
the achievable diversity order and array gain of the AF
MIMO relaying system. The analytical expressions have
been analytically proved and verified through extensive
simulations. All the cases investigated reveal an excellent
agreement between the results from analysis and simu-
lation. It is observed that system performance increases
with the decrease of antenna correlation and the increase
of antenna number. Furthermore, we compare the perfor-
mance of CSI-assisted and fixed gain relaying systems in
terms of BER and ergodic capacity. CSI-assisted relaying
outperforms fixed gain relaying at the cost of complexity.

Appendices
Appendix 1
From [6], the CDF of end-to-end SNR γ expressed by (9)
could be derived as

Fγ (γ ) = 1 −
∫ ∞

0
P(γ1 � x̃| x + γ )fγ2 (x + γ ) dx (38)

where x̃ = (x + γ + β) γ /x. From (17) and (18), we have

fγ2 (x + γ ) =
J2∑

p=1

m2v2,p∑
q=1

c2p,q
�(q)

( m2
ρ2λ2,p

)q
(x + γ )q−1

× exp
(

− m2
ρ2λ2,p

(x + γ )

)
,

(39)

P (γ1 � x̃| x + γ ) =
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

c1j,k
l!

( m1x̃
ρ1λ1,j

)l

× exp
(

− m1x̃
ρ1λ1,j

)
. (40)

Substituting (39) and (40) into (38), and performing some
algebraic manipulations, with the help of definite integral
of exponential function, given by ([21], eq. (3.471.9)), and
the binomial theorem, given by ([21], eq. (1.111)), the
closed-form expression for the CDF can be derived as
shown in (19).

Appendix 2
MGF Mγ (s) associates with the fading PDF fγ (γ ) and is
defined by [24]

Mγ (s) =
∫ ∞

0
e−sγ fγ (γ )dγ

= 1 − s
∫ ∞

0
e−sγ (

1 − Fγ (γ )
)
dγ (41)

Substituting (19) into (41) yields

Mγ (s) = 1 − 2s
J1∑
j=1

m1v1,j∑
k=1

k−1∑
l=0

J2∑
p=1

m2v2,p∑
q=1

q−1∑
g=0

l∑
h=0

(q − 1
g

)( l
h

)

×
c1j,kc2p,q

� (l + 1) �(q)

( m1
ρ1λ1,j

) θ+l
2

(
ρ2λ2,p
m2

) θ−l
2 −q

×
g+l+2∑
μ=0

(g + l + 2
μ

)
βg+l−μ+2�,

(42)

where

� = γ q−g+μ−1
∫ ∞

0
exp

(
−

(
s + m1

ρ1λ1,j
+ m2

ρ2λ2,p

)
γ

)

× γ
θ+l
2 (γ +β)−

θ+l+2
2 Kθ−l

(
2

√
m1m2γ (γ + β)

ρ1λ1,jρ2λ2,p

)
dγ

= � (θ + 1) � (l + 1)
2βθ+l+2(−1)q−g+μ−1

( m1m2
ρ1λ1,jρ2λ2,p

)− θ+l+2
2

× dq−g+μ−1

ds̃q−g+μ−1
(
2F0

(
θ + 1, l + 1; ;−ω

(
s̃ + s̃′

))
×2F0

(
θ + 1, l + 1; ;−ω

(
s̃ − s̃′

)))∣∣
s̃=s′ . (43)

It is deduced by performing some algebraic manipulations
using the identities for Laplace transformation, given
in ([22], eqs. (4.17.20) and (4.1.6)), and the relationship
between Whittaker functions and generalized hypergeo-
metric functions, given in [33]. Substituting (43) into (42)
gives (21).
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