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Abstract

In multihop cellular networks, mobile users can communicate with the base stations via relay stations (RSs), and
handoff between different RSs. This type of handoffs is referred to as inter-relay handoffs. In networks with highly
mobile users, the inter-relay handoffs can occur very frequently. Making intelligent inter-relay handoff decisions is
important in order to improve the network performance. In this article, we study the inter-relay handoff decision
problem in a two-hop cellular network with highly mobile vehicles using a semi-Markov decision process. The
objective is to maximize the total reward, which is defined by taking into consideration the transmission rate of the
user’s link, the overheads for performing inter-relay handoffs, and the moving speed of the user. Numerical results are
shown to demonstrate the effectiveness of the handoff decisions.

1 Introduction

The increasing demand on ubiquitous wireless broadband
access drives the development of the next generation wire-
less communications. To come with the tide of trend, mul-
tihop relaying has gained much attention in recent years as
an appealing strategy for capacity improvement, coverage
extension, and quality of service enhancement in cellu-
lar communication systems. Many efforts have focused on
the relaying technologies in cellular networks [1]. More
recently, the IEEE 802.16 standard committees have been
working on the extension of the basic IEEE 802.16 stan-
dard, known as IEEE 802.16j [2], to incorporate functions
of relay stations (RSs) into WiMAX networks. Using RSs
to relay traffic between the base stations (BSs) and the
mobile users is a promising approach to improving the
capacity and coverage in cellular networks. The applica-
tion of the relaying concept to cellular networks, however,
raises many technical issues, one of which is the inter-relay
handoffs [3]. Due to the mobility of the users, the propa-
gation channel conditions between the mobile users and
their RSs change with time. When the quality of the chan-
nel between a mobile user and its RS is not sufficiently
good, the user should handoff to a different RS with better
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channel quality. This process is called inter-relay hand-
off. It is shown in [4,5] that the Markov decision process
(MDP) model can be used to solve the handoff problem in
integrated cellular and wireless local area networks. In [4],
the vertical handoff problem was formulated as an MDP
model to decide whether or not to admit a handoff session,
and to which network the session should be admitted.
The MDP model was proposed to reduce unnecessary
handoffs, while increasing the resource utilization and
decreasing the connection dropping significantly [5]. The
handoff decisions for mobile users depend on the channel
states, which are affected by the user mobility. Never-
theless, the effect of user mobility at high moving speed
is not considered in most of the literature. As the mov-
ing speed changes, the state transition probabilities in the
MDP model will be changed accordingly, which affects
the handoft decisions. Frequent inter-relay handoffs can
increase the signaling overhead and result in serious ping-
pong effect, and degrade the system performance. It is
shown that the handoff overhead can also significantly
reduce benefits in terms of throughput, delay, and jitter if
data frames are small. Thus, the handoff overhead is an
important factor that should be considered when making
handoff decisions.

In this article, we investigate the inter-relay handoff
problem for a network with highly mobile users, such as
the networks with high speed trains. The objective of the
optimum handoff decisions for a user is to maximize its
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overall reward, which is defined as a function that incor-
porates both the link transmission rate and the handoff
overhead, and the link rate is further determined by the
SNR of the two-hop channels. Since the channel states are
time-related random variables in wireless fading environ-
ments, a first-order finite-state Markov channel (FSMC)
is used to model the wireless channels, based on which
the state transition matrix of the SNR of the transmission
channel is derived as a function of the moving speeds of
the user. The inter-relay handoff problem is then formu-
lated as a semi-Markov decision process (SMDP) with the
objective to maximize the reward function. The remain-
der of the article is organized as follows. In Section 2,
we describe the system model. The problem of the inter-
relay handoff is formulated as an SMDP problem and
then solved in Section 3. Simulation results are shown in
Section 4 to demonstrate the performance of the proposed
handoff decision policy. Finally, Section 5 concludes the
article.

2 System model

We consider the downlink transmissions in a cellular net-
work, where the traffic source in each cell is the BS, which
communicates with highly mobile users, such as high
speed trains, via a number of RSs. The RSs are placed in
suitable locations, where the BS-to-RS links are reliable,
so that the RSs can correctly decode the signals received
from the BS. We assume that there is no direct connection
between the BS and the trains (for example due to shad-
owing). Namely, we only consider the two-hop links in this
article, while our approach can also be generalized to the
more general scenario, where either direct transmissions
or relayed transmissions can be chosen for communi-
cations. This can be achieved by taking account of the
channel state of the direct transmissions in the state tran-
sition probabilities of the SMDP-based handoff decision
problem. Each train is equipped with a wireless controller,
which can collect the corresponding channel information
to make inter-relay handoff decisions by itself.

Due to the high moving speeds of the trains, inter-relay
handoffs may occur frequently. The RSs before and after
an inter-relay handoff may be associated to the same BS
or different BSs. The former is referred to as intra-cell
inter-relay handoff, and the latter is referred to as inter-
cell inter-relay handoff. In Figure 1, train 1 is performing
an intra-cell inter-relay handoff when switching from RS
lato RS 1bin cell 1, and train 2 is performing an inter-cell
inter-relay handoff when moving from RS 1c in cell 1 to
RS 2a in cell 2. When an inter-relay handoff occurs within
the same cell, the BS can have a relatively simple control
over the handoff process, since it has direct communica-
tions to both the RSs before and after the handoff. On
the other hand, performing an inter-cell inter-relay hand-
off usually causes more signaling overheads, because it
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requires inter-BS signalings and BS-RS signalings in both
cells.

Without loss of generality, we assume that all the nodes
are equipped with single antennas and work in half-
duplex mode. That is, they cannot receive and transmit
at the same time. Channel time is divided into equal
length time slots, one of which is for one packet transmis-
sion. We consider the decode-and-forward (DF) relaying
scheme, since it has advantages in digital processing and
avoids noise amplification, compared to the amplify-and-
forward relaying scheme. During the odd time slots, the
source node transmits to the RS. The RS then decodes
each received signal and forwards to the user in the next
time slot (i.e., an even time slot).

Let s, ry,, d denote the source node, the nth RS, and
the destination node (train), respectively, where n € N/,
N = {1,2,...,N}, and N is the total number of avail-
able relay nodes within this network. We use g;; to denote
the link gain between node i and node j, where the node
pair ij can be sr, or r,d. It is assumed that the link gains
remain constant for at least one time slot. The average
transmission rate is a good indicator of the channel effi-
ciency in practical wireless systems without considering
complex coding, detecting, and decoding procedures [6].
Our objective is to maximize the overall reward for each
individual train, which takes into consideration the effect
of moving speed on the channel SNR and the overhead
for performing handoffs. Given the physical designs of
the transceivers, such as modulation and coding schemes
(MCSs), the transmission rate between two directly com-
municating nodes is a monotonically increasing function
of the received SNR. In other words, once the received
SNR is obtained, the MCS can be mapped, and then the
transmission rate can be determined based on the cor-
responding MCS. When using adaptive modulation, the
transmission rate between node i and node j can be rep-
resented as 0(y;), which is the function of the received
SNR y;;. Accordingly, the transmission rate for DF with the
relay node 7 is given in [7] as

W
T = — min (O Wsr,)s 0 V) » (1)

where W is the bandwidth, ys., and y,, 4 are the received
SNRs at the 7y, RS and the destination node, respectively.
The factor 1/2 comes from the fact that every source or
relay node transmits for half of the time slots.

The FSMC models have been widely accepted in the
literature as an effective approach to characterizing the
correlation structure of the fading process [8]. In the
FSMC, the channel state is characterized via the received
SNR. The range of the average SNR of a received packet
is partitioned (quantized) into K levels, each of which is
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Figure 1 System diagram.
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associated with a state of a Markov chain, which has a
finite state space denoted as S = {S51,Sy,...,Sk}. The
changes of the channel states follow a Markov process. Let
' = {T'y,I"'1,..., Tk} be the received SNR thresholds in
the increasing order, where 'y = 0 and I'x = oo. The
channel is in state k, if the received SNR y of a packet is
located in the range [T'x_1, k). We assume that a one-
step transition in the model corresponds to the channel
state transition after one time slot. Let p;; denotes the
probability that y moves from state i to state j, i.e., p;; =
Pr(y(t +1) = jly@) = i), where i,j € S. The K x K
channel state transition probability matrix is defined as:
P =[p;jlkxx.Based on the SNR thresholds, the transition
probability matrix can be obtained [8].

3 SMDP-based handoff decisions

In this section, we first derive the channel model of a single
hop transmission from the RS to the train, then derive the
SMDP model for the two-hop transmissions for making
handoff decisions, and finally discuss the implementation
of the inter-relay handoffs based on the derived model.

3.1 Channel model for RS-to-train transmissions

The moving speed of the train may change from time to
time, while the channel state transition probability is usu-
ally obtained at a fixed moving speed, assuming that the
state transition probability is the same at different speeds.
The inter-channel interference (ICI) cannot be ignored
when characterizing the SNRs if users are moving at high

speeds, since high moving speeds lead to large ICI, which
degrades the SNR of the received signal. The SNR of the
RS-to-train link?® can be expressed by

l;rdégrd

= —F, 2
ICI + o2 @

Yrd
where E,q is the transmit power of the RS, g;q represents
the link gain between the RS and the train, o2 is the noise
power, and ICI is the average power of ICI at a given mov-
ing speed. Considering that the exact expression of ICI
term is complicated and can hardly provide much insight,
we utilize the tight upper bound on the ICI power, which
is derived in [9] as

1
ICI ~ E(ande)z, 3)

where f; is the maximum Doppler frequency, and Ty is
the duration of one symbol. Recall the expression of the
maximum Doppler frequency,

Ja=—, (4)

where v is the moving speed of the train, f; is the carrier
frequency, and c is the speed of the light. Combining the
above equations, we have

l;rdéfrd
LAy 4 o2

Yrd = (5)
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For the mathematical tractability, we assume that the
noise power is much less than the ICI power, i.e., 02 <
ICI. With this, (5) becomes

3Eqgrdc?
(v Ts)?

Different moving speeds for a train affect the SNR,
and thus change the state transition probability to some
extent. The state transition will change if the train changes
its moving speed. The aim of this section is to find the rela-
tionship between the state transition probabilities when
the train changes its moving speed. Considering that the
moving speed of the train is changing from vy to vy,
we derive the channel state (SNR) transition probability.
Define )/r‘z1 and yrld as the received SNRs at the train when
the moving speeds are vy and vy, respectively, we can eas-
ily obtain the expressions of the two SNRs from (6), and
then get

(6)

Yrd =

1 2

Yd _ "0 7)
[

Yrd 161

Define py, k, as the transition probability of the SNR
from state k; to state k,. We consider that each state can
only stay in the same state or transit to one of the two
neighboring states. From [8], the state transition probabil-
ities can be approximated as

NTry1)Ts

~ 8
Phk+1 - (8)
NTT.
Progo1 X ———, 9)
Tk

where N(I'x41) and N(I'x) are the level crossing rates at
the thresholds I'yy; and Tk, respectively, and 7wy is the
steady-state probability of state k. It is shown in [10] that
the crossing rate at level I" for the SNR process, in the pos-
itive direction only (or in the negative direction only), is
given by

21T I
NYD) = [T e .
Yrd

Practically, the channel condition of a moving train is
subject to both path loss and random channel fading. Con-
sider Rayleigh fading, the received SNR of the train at
the moving speed v; is distributed exponentially with the
probability density function given by

(10)

1 1 ULI
p (y)=—ge ™,y >0.
Yrd
Accordingly, the probability that the SNR is in state k

can be obtained as

(11)

Fk+1 _rfk _1‘1(74'1
ply)dy =e " —e . (12)

Tk
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According to (7)-(12), the relationship between the
state transition probabilities of the train at speeds vy and
v1 can be derived as

1 _ .0 +
Piis+1 = Pri+19 (13)

1 0 -
Pik—1 = Prik—19 > (14)
where p}(,k 41 and p11<,k—1' respectively, are the SNR state
transition probabilities of the train from state k to states
k+1 and k — 1 at the moving speed v, and pg,kﬂ and
pg «_1 respectively, are the SNR state transition probabil-
ities of the train from state k to states k + 1 and k — 1 at
the moving speed vy, T, and ¢~ can be derived as

k1

(Sp-T) [ -5 -Dg) o
e "rd MYrd e rd — e "rd %Vl

+ 15
@ TR o (15)
e " —e " |y

(5[ -5 -
Yei My Y — Yed 1
e\ v e 'd —e V1
- (16)

¢ = _ Tk Y ’
0 iy 0
e d — e d [ yg

and m = v%/v%. Detailed derivations for ¢+ and ¢~ are
given in Appendix.

3.2 Formulation as an SMDP
In this section, we consider the two-hop transmissions
from the BS to the train. The aforementioned inter-relay
handoff problem can be formulated as an SMDP [11],
which is a generalization of an MDP by allowing a deci-
sion maker to choose actions whenever the system state
changes and allowing the time spent in a particular state
to follow an arbitrary probability distribution. A stan-
dard form of an SMDP model consists of the following
five elements: (1) decision epochs; (2) states; (3) actions;
(4) rewards; and (5) state transition probabilities. The
decision epochs are the time instants for the wireless
controller on the train to make handoff decisions. Other
elements of the SMDP are introduced below.

Let C be the channel state space. For the two-hop
transmissions with multiple RS choices, a composite state
c(t) € Cattime slot £ is given as

c(t) = {Yse () Yed @), Vsr (), yra (D)}, (17)

where s (¢) and y,q(£), respectively, are the SNRs of the
BS-to-RS link and the RS-to-train link at time slot ¢, and
r and 7/, respectively, are the current RS and the RS that
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the train may handoff to. The state transition probability
function from the current state c(¢) to the next state c(¢+1)
is denoted pc(s),c(++1), which is given by

Pe(t),ct+1) = Prlc + 1)]e(®)]
= Pryse(t + Dysc(O)] xPr[ypa(t + Dyra(9)]
X Prlysy (t+1)|ysr (O] XPr yra(t+1)|yra(t)]
= Pya(@),ys:t+1) X Pyea @), vea(t41) X Py 1), ygp t+1)

X p)/r/d (t)’yr’d (t+1)»

where p, 1),y (t+1) and py @), ,qt+1) denote state transi-
tion probabilities of the BS-to-RS and RS-to-train links,
respectively.

Let A be the action space. A decision rule prescribes a
procedure for the action selection in each state at a spec-
ified decision epoch. Markov decision rules are functions
8(¢) : C — A that specify the action choice a(t) € A when
the system occupies state ¢(t) € C at decision epoch ¢. A
policy T = (8(1),8(2),...,8(t)) is a sequence of decision
rules that will be used at all decision epochs. Let {7 (c(0))
denote the expected total rewards from the first decision
epoch until the time of interest, given that the policy 7 is
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used with an initial composite state ¢(0). Given that the
time periods between successive decision epochs are geo-
metrically distributed with mean 1/(1 — 1), we have the
expected value of the total reward

£7(c(0)) = EX, (Z MEIR((), at)) ), (18)

t=1

when the policy 7 is used with an initial state ¢(0), where
R(c(t),a(t)) is the reward function, and 0 < A < 1 can
be interpreted as a discount factor. The aforementioned
model is an infinite discount Markov decision model.

Our optimization problem is to maximize the expected
total discounted reward. We define a policy t* to be opti-
mal if 7" > ¢7, for all 7. According to [11], the optimal
policy for an infinite discount Markov decision model is
stationary. If a policy is not stationary, then the policy is
not optimal. A policy T = (8(1),8(2),...,8(¢)) is said to
be stationary if §(¢) = § for all £. A stationary policy has
the form 7 = (4,4, ...). Our objective is then to determine
an optimal stationary policy § = §*, which maximizes the
expected total discounted reward given by (18).

In our SMDP model, at each decision epoch, the wire-
less controller on the train first has to decide whether the
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Figure 2 Reward versus moving speed: vp=100 m/s. It depicts the impact of moving speed on the reward for the original moving speed
vo = 100 m/s. We assume that the RSs are fixed, which are good enough to ensure the transmission rate. That is, the channel of BS-to-RS stays in a
good state or transits to a good state with a high probability. Therefore, the state of the BS-to-RS channel is good for 16QAM, since the RSs are
deployed in the advantageous geographic locations, the modulation schemes of the RS-to-train channel can be BPSK, QAM, or 16QAM based on
different channel states. The corresponding transmission rates of BPSK, QAM, and 16QAM are 1, 2, and 4, respectively. We set the default discount
factor as A = 0.9. The duration of one symbol is 0.1 ms. The simulation results are attained when the train is moving at speed v;, which is varied from
20 to 200 m/s in the simulation. The Monte Carlo simulations are conducted over a large number of trials, and the state-transition probability
matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values are normalized to yr%,
which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff, may occur for a given user
at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little overhead, which is set to zero,
and the overhead for performing the inter-cell inter-relay handoff is set to 0.1 as the default value. The exact values of these parameters may be
different in different systems, depending on specific implementations.
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connection of the train should use the current chosen RS
or connect to a different RS. We assume that the wire-
less controller on the train is in the coverage of no more
than two RSs because of the deployment cost. The current
composite action a(t) € A is denoted by

a(t) = {aintra(?), Ginter (1)}, (19)
where ajnra(t) is the handoff decision between differ-
ent RSs in the same cell, ajnter (£) is the handoff decision
between different RSs, which are located in two differ-
ent cells. When the incoming handoff occurs between
different RSs in the same cell, ajntra(2) = 1; when the
train decides to keep the connection with the same RS,
Gintra () = 0. When the incoming handoff occurs between
two RSs in different cells, djnter(!) = 1; when the train
stays in the coverage of the current BS, ajnter(£) = 0.

In the formulation of an SMDDP, the system reward is the
optimization objective. Due to the high moving speeds of
trains, inter-relay handoffs may occur frequently, which
accordingly may lead to large handoft overheads. The
objective of the proposed handoff scheme is to maxi-
mize the overall reward for a given user by taking into

Page 6 of 15

consideration both the transmission rate and the over-
head for performing the inter-relay handoffs. The reward
function is defined as

R(c(t),a(t)) = T — aintra(®) Ointra — Ginter () Ointer»
(20)

where Ojntra and Ojpter are the handoff overheads for the
intra-cell and inter-cell inter-relay handoffs, respectively.
Intuitively, having a higher transmission rate increases the
reward, while higher overhead for performing the handoff
reduces the reward. The exact values of the overheads for
performing intra-cell and inter-cell inter-relay handoffs
may depend on the specific system, protocol implementa-
tions, and the standards [12-14]. The relationship between
the handoff overheads and some system parameters, such
as link throughput, handoft delay, data packet arrival rate,
etc., can be found in [12,15,16].
The optimality equation for an SMDP is given by [11]

£(0) =max {1 R(Ga) + ) pee @) (21)
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Figure 3 Reward versus moving speed: vop=50 m/s. It depicts the impact of moving speed on the reward for the original moving speed
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deployed in the advantageous geographic locations, the modulation schemes of the RS-to-train channel can be BPSK, QAM, or 16QAM based on
different channel states. The corresponding transmission rates of BPSK, QAM, and 16QAM are 1, 2, and 4, respectively. We set the default discount
factor as A = 0.9. The duration of one symbol is 0.1 ms. The simulation results are attained when the train is moving at speed v;, which is varied from
20 to 200 m/s in the simulation. The Monte Carlo simulations are conducted over a large number of trials, and the state-transition probability
matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values are normalized to yr%,
which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff, may occur for a given user
at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little overhead, which is set to zero,
and the overhead for performing the inter-cell inter-relay handoff is set to 0.1 as the default value. The exact values of these parameters may be
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where ¢(c) denotes the maximum expected total reward,
given the initial composite state ¢, and the next composite
state ¢/, i.e.,

£(e) = maxg¥ (o). (22)

The solutions to the optimization problem correspond
to the maximum expected total reward ¢(c) and the
SMDP optimal policy §*. Note that the SMDP optimal
policy 6* indicates the decision regarding which action to
choose. Various algorithms are available to solve the opti-
mization problem [11]. We use the value iteration algo-
rithm in this article to determine a stationary e-optimal
policy and the corresponding expected total reward. The
value iteration algorithm is described as follows, where
¢%(c) represents the maximum expected total reward at
iteration k.

(1) Set k = 0 and ¢°(c) = 0 for each composite state
c. Specify € > 0.
(2) For each state ¢, compute ¢ k+1(¢) by

(0 = max 1 R(e,a) + Y wpec @ () (23)

ceC

in iteration k.
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B3 If |¢¥L(e) — X (o) | < €@ — 1)/2A, go to step 4.
Otherwise, increase k by one, and return to step 2.
(4) For each ¢ € C, compute the stationary €-optimal
policy as

— a <k+1,7
5(¢) = argmax | R(¢,a) + >t
deC
(24)

The value iteration algorithm is proved to be efficient
and stable [11]. The algorithm operates by calculating suc-
cessive approximations to the optimal value function ¢ (c)
in (22). The computation complexity of the algorithm is
O(IAlICP).

3.3 Implementation issues
In this section, we briefly describe the implementation of
our proposed handoff decisions.

To determine the optimal policy §*, we need to obtain
the parameters in the SMDP model. We assume that the
initial composite state transition probability in the net-
work can be obtained, such as from field tests for a train
at a certain moving speed. The values of the handoff

“k-overhead & speed <g
overhead i
2-2_ *ﬁ*speed ............................. \_]
<} conventional
o X | . ' _
L | 1 | Il 1 Il 1
8.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9 1

; ; 0. :
Overhead for inter-cell inter-relay handoffs

Figure 4 Reward versus inter-cell inter-relay handoff overhead: v9=100 m/s. It depicts the impact of the inter-cell inter-relay handoff overhead
on the reward for the original moving speed vy = 100 m/s. We assume that the RSs are fixed, which are good enough to ensure the transmission
rate. That is, the channel of BS-to-RS stays in a good state or transits to a good state with a high probability. Therefore, the state of the BS-to-RS
channel is good for 16QAM, since the RSs are deployed in the advantageous geographic locations, the modulation schemes of the RS-to-train
channel can be BPSK, QAM, or 16QAM based on different channel states. The corresponding transmission rates of BPSK, QAM, and 16QAM are 1, 2,
and 4, respectively. We set the default discount factor as A = 0.9. The duration of one symbol is 0.1 ms. The simulation results are attained when the
train is moving at speed v; = 20 m/s. The Monte Carlo simulations are conducted over a large number of trials, and the state-transition probability
matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values are normalized to yr%,
which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff, may occur for a given user
at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little overhead, which is set to zero,
and the overhead for performing the inter-cell inter-relay handoff is varying from 0.1 to 1.
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overhead for the intra-cell and inter-cell inter-relay hand-
offs can be specified according to the communication
standard. Since the time periods between successive time
epochs are geometrically distributed with mean 1/(1 — 1),
the discount factor A can be determined by the time of
interest in our SMDP model.

Given the values of all the parameters, the value iter-
ation algorithm described in Section 3.2 can be used to
derive the optimal policy §*. Once the optimal policy is
obtained, the optimal action can be determined given the
current state. At each decision epoch, the mobile train
looks up the obtained policy to find the optimal action that
corresponds to its current SNR state and moving speed,
and then executes the optimal decision. In this way, the
optimal handoff decision can be made by considering the
handoff overhead and the moving speed.

4 Simulation results

In this section, we present numerical results to demon-
strate the performance of the proposed solution for mak-
ing the inter-relay handoff decisions in a relay-assisted
cellular network. We use the M-ary quadrature ampli-
tude modulation (MQAM) and binary phase shift keying
(BPSK) with modulation levels {2,4,...} as the available
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modulation schemes. We assume that the state of the
BS-to-RS channel is good for 16QAM, since the RSs
are deployed in the advantageous geographic locations,
the modulation schemes of the RS-to-train channel can
be BPSK, QAM, or 16QAM based on different channel
states. The corresponding transmission rates of BPSK,
QAM, and 16QAM are 1, 2, and 4, respectively. We set
the default discount factor as A = 0.9. The duration of
one symbol is 0.1 ms. There are three states for the RS-
to-train channel. The simulation results are attained when
the train is moving at speed vi, which is varied in the
simulation.

We first investigate the effectiveness of the proposed
method. For the channel states, we allow transitions from
a given state to its two adjacent states only [8]. We assume
that the RSs are fixed, which are good enough to ensure
the transmission rate. That is, the channel of BS-to-RS
stays in a good state or transits to a good state with a high
probability. An example of the state-transition probability
matrix for the BS-to-RS channel is given below,

0 001 099
Py=Py=]0 001 09],
0 001 099

‘| k-overhead & speed
-B>overhead
| #e-speed

| <}-conventional

1 1

Figure 5 Reward versus inter-cell inter-relay handoff overhead: vo=50 m/s. It depicts the impact of the inter-cell inter-relay handoff overhead
on the reward for the original moving speed vy = 50 m/s. We assume that the RSs are fixed, which are good enough to ensure the transmission
rate. That is, the channel of BS-to-RS stays in a good state or transits to a good state with a high probability. Therefore, the state of the BS-to-RS
channel is good for 16QAM, since the RSs are deployed in the advantageous geographic locations, the modulation schemes of the RS-to-train
channel can be BPSK, QAM, or 16QAM based on different channel states. The corresponding transmission rates of BPSK, QAM, and 16QAM are 1, 2,
and 4, respectively. We set the default discount factor as A = 0.9. The duration of one symbol is 0.1 ms. The simulation results are attained when the
train is moving at speed v; = 20 m/s. The Monte Carlo simulations are conducted over a large number of trials, and the state-transition probability
matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values are normalized to y,%,
which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff, may occur for a given user
at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little overhead, which is set to zero,
and the overhead for performing the inter-cell inter-relay handoff is varying from 0.1 to 1.
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Figure 6 Average rate versus moving speed: vo = 100 m/s. It depicts the impact of moving speed on the average rate for the original moving
speed vo = 100 m/s. We assume that the RSs are fixed, which are good enough to ensure the transmission rate. That is, the channel of BS-to-RS
stays in a good state or transits to a good state with a high probability. Therefore, the state of the BS-to-RS channel is good for 16QAM, since the RSs
are deployed in the advantageous geographic locations, the modulation schemes of the RS-to-train channel can be BPSK, QAM, or 16QAM based
on different channel states. The corresponding transmission rates of BPSK, QAM, and 16QAM are 1, 2, and 4, respectively. We set the default discount
factor as A = 0.9. The duration of one symbol is 0.1 ms. The simulation results are attained when the train is moving at speed v;, which is varied from
20 to 200 m/s in the simulation. The Monte Carlo simulations are conducted over a large number of trials, and the state-transition probability
matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values are normalized to yr%,
which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff, may occur for a given user
at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little overhead, which is set to zero,
and the overhead for performing the inter-cell inter-relay handoff is set to 0.1 as the default value. The exact values of these parameters may be
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where Py =[py,. ),y t+1]3x3 and Py =[py_ 1)y, ¢+ 1)]3x3-
Depending on the selected SNR thresholds, the state-
transition probability matrices of RS-to-train chan-
nels, denoted as Py =[py @) a@+1]3x3 and Pyg =
[Pyyy0at+D]3x3, are changed accordingly. Given the
states of the current RS and potential next RS, the over-
all state transition probability matrices can be easily
obtained through Kronecker tensor product, ie, P =
Py @ Py Q® Prq @ Prg. Note that only one type of the
inter-relay handoff, either intra-cell or inter-cell handoff,
may occur for a given user at any decision epoch. For
illustration purposes, we consider that the intra-cell inter-
relay handoff introduces little overhead, which is set to
zero, and the overhead for performing the inter-cell inter-
relay handoff is set to 0.1 as the default value. The exact
values of these parameters may be different in different
systems, depending on specific implementations. We con-
duct the Monte Carlo simulations over a large number
of trials, and the state-transition probability matrices of
RS-to-train channels are chosen randomly for each trial
based on different SNR thresholds. All the SNR values are
normalized to yr%, which has a normalized value of 1.

In order to better demonstrate the performance of the
proposed inter-relay handoff method, we also simulated
three other methods for making the inter-relay hand-
off decisions for comparisons. As the proposed method
takes account of both moving speed and handoff over-
head in the SMDP model, it is referred to as overhead &
speed below. In contrast, we also consider two other meth-
ods, one considers the moving speed but not the handoff
overhead, which is referred to as speed; and the other
one considers the handoff overhead but not the moving
speed in the SMDP formulation, which is referred to as
overhead. In addition, we also simulated a “conventional”
method, in which case the RS with the best instantaneous
channel state is chosen for the train at each time instant.
Figures 2, 3, 4 and 5 show the reward performance versus
the moving speed and handoff overhead, and Figures 6,
7, 8 and 9 show the average transmission rate of the link
versus the moving speed and handoff overhead.

Figures 2 and 3 show the reward performance for differ-
ent values of v;, where vo = 100 m/s in Figure 2 and vy =
50m/s in Figure 3. It is observed that the reward perfor-
mance of the proposed overhead & speed method is better
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Figure 7 Average rate versus moving speed: vo=50 m/s. It depicts the impact of moving speed on the average rate for the original moving
speed vo = 50 m/s. We assume that the RSs are fixed, which are good enough to ensure the transmission rate. That is, the channel of BS-to-RS stays
in a good state or transits to a good state with a high probability. Therefore, the state of the BS-to-RS channel is good for 16QAM, since the RSs are
deployed in the advantageous geographic locations, the modulation schemes of the RS-to-train channel can be BPSK, QAM, or 16QAM based on
different channel states. The corresponding transmission rates of BPSK, QAM, and 16QAM are 1, 2, and 4, respectively. We set the default discount
factor as A = 0.9. The duration of one symbol is 0.1 ms. The simulation results are attained when the train is moving at speed vy, which is varied from
20 to 200 m/s in the simulation. The Monte Carlo simulations are conducted over a large number of trials, and the state-transition probability
matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values are normalized to yr%,
which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff, may occur for a given user
at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little overhead, which is set to zero,
and the overhead for performing the inter-cell inter-relay handoff is set to 0.1 as the default value. The exact values of these parameters may be
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than all the other methods, which indicates the effective-
ness of the proposed scheme in improving the reward
and the importance of considering both the moving speed
and the handoff overhead in making the inter-relay hand-
off decisions. It is seen that the reward performance of
the overhead method varies significantly with the moving
speed. When the actual moving speed v; is close to the
original speed, for example, around 100 m/s in Figure 2
and 50 m/s in Figure 3, the difference between the pro-
posed method and the overhead method is the minimum.
In this case, the effect of the moving speed changes on the
reward performance is much less than that of the hand-
off overhead. As the difference between the actual moving
speed (v1) and the original moving speed (vp) increases,
i.e., v either much smaller or much larger than vy, the gap
between the overhead method and the proposed method
increases, because of the increasing effect of the moving
speed on the SNR, which eventually affects the transmis-
sion rate and the reward function. By taking into consid-
eration the moving speed changes in deriving the channel
state transition matrix and making the handoff decisions,
the reward performance of both the proposed and the
speed methods keeps almost constant when the train is

moving at different speeds. Although the reward perfor-
mance of the conventional method also keeps unchanged
with the moving speed, its reward function is lower than
both the proposed one and the speed one, because it does
not consider the effects of the moving speed and handoff
overhead on the reward. The effect of the moving speed
on the reward function in the conventional method can
be complicated. On one hand, using this handoftf method
allows the MS to always connect to the best RS that pro-
vides it with the highest transmission rate, which increases
the reward; on the other hand, this increases the num-
ber of handoffs and reduce the reward. Overall, as we can
observe from the figures that the reward is not very much
sensitive to the moving speed.

Figures 4 and 5 show the reward performance ver-
sus the inter-cell inter-relay handoff overhead for vo =
100 m/s and 50 m/s, respectively. These figures also show
that the proposed handoff method achieves the highest
reward over a wide range of the handoff overhead values.
The reward performance of all the four handoff methods
degrades with the handoff overhead. That is, high over-
head can discourage the user for switching to the RS with
better channel quality. As the overhead is relatively low,
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Figure 8 Average rate versus inter-cell inter-relay handoff overhead: vy = 100 m/s. It depicts the impact of the inter-cell inter-relay handoff
overhead on the average rate for the original moving speed vy = 100 m/s. We assume that the RSs are fixed, which are good enough to ensure the
transmission rate. That is, the channel of BS-to-RS stays in a good state or transits to a good state with a high probability. Therefore, the state of the
BS-to-RS channel is good for 16QAM, since the RSs are deployed in the advantageous geographic locations, the modulation schemes of the
RS-to-train channel can be BPSK, QAM, or 16QAM based on different channel states. The corresponding transmission rates of BPSK, QAM, and
16QAM are 1, 2, and 4, respectively. We set the default discount factor as A = 0.9. The duration of one symbol is 0.1 ms. The simulation results are
attained when the train is moving at speed v; = 20 m/s. The Monte Carlo simulations are conducted over a large number of trials, and the
state-transition probability matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values
are normalized to Vr%' which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff,
may occur for a given user at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little
overhead, which is set to zero, and the overhead for performing the inter-cell inter-relay handoff is varying from 0.1 to 1.
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the proposed method achieves much higher reward than
all the other three methods, because it takes into account
the effects of both the overhead and the moving speed
on the reward function. It is also noticed that the conven-
tional method achieves better reward than the overhead
method when the overhead is relatively low; as the over-
head for performing the handoffs increases, the rewards
of the proposed method and the overhead method outper-
form the conventional one due to the fact that the effect of
the overhead becomes increasingly larger. Without con-
sidering the handoff overhead and the moving speed,
using the conventional method to make inter-relay hand-
off decisions results in the worse reward performance
among all the four methods.

Next, we examine the average rate performance as the
moving speed and handoff overhead change. Figures 6 and
7 show the average rate versus the actual moving speeds
when vp = 100m/s and v9 = 50m/s, respectively. The
simulation setting is the same as that in Figures 2 and 3.
By always connecting to the RS with the best SNR, the
conventional method achieves the highest transmission
rate. Both Figures 6 and 7 show that the proposed method
achieves almost the same average rate as the conventional

one, indicating that the proposed method can achieve
the highest reward without sacrificing much transmis-
sion rate. The speed method also achieves almost as good
transmission rate as the proposed one, but at a price of
reduced reward performance. Without considering the
moving speed changes, the average rate achieved by the
overhead method can change significantly with the actual
moving speed, and much worse than the average rates
achieved by the other handoff methods when the actual
moving speed is much larger or smaller than the original
speed.

Figures 8 and 9 show the average rate performance ver-
sus the inter-cell inter-relay handoff overhead for vo =
100 m/s and 50 m/s, respectively. The simulation setting
is the same as that in Figures 4 and 5. The average rates
using both the conventional and the speed methods do
not change with the handoff overhead, as the handoff
decisions in both these methods are independent of the
overhead. The proposed method achieves approximately
the same average rate as the conventional method, except
when the overhead for handoff is very high, in which
case the mobile user may decide not to handoff to a bet-
ter RS in order to achieve higher reward. The overhead
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Figure 9 Average rate versus inter-cell inter-relay handoff overhead: vy = 50 m/s. It depicts the impact of the inter-cell inter-relay handoff
overhead on the average rate for the original moving speed vy = 50 m/s. We assume that the RSs are fixed, which are good enough to ensure the
transmission rate. That is, the channel of BS-to-RS stays in a good state or transits to a good state with a high probability. Therefore, the state of the
BS-to-RS channel is good for 16QAM, since the RSs are deployed in the advantageous geographic locations, the modulation schemes of the
RS-to-train channel can be BPSK, QAM, or 16QAM based on different channel states. The corresponding transmission rates of BPSK, QAM, and
16QAM are 1, 2, and 4, respectively. We set the default discount factor as & = 0.9. The duration of one symbol is 0.1 ms. The simulation results are
attained when the train is moving at speed v = 20 m/s. The Monte Carlo simulations are conducted over a large number of trials, and the
state-transition probability matrices of RS-to-train channels are chosen randomly for each trial based on different SNR thresholds. All the SNR values
are normalized to yr%, which has a normalized value of 1. Note that only one type of the inter-relay handoff, either intra-cell or inter-cell handoff,
may occur for a given user at any decision epoch. For illustration purposes, we consider that the intra-cell inter-relay handoff introduces little
overhead, which is set to zero, and the overhead for performing the inter-cell inter-relay handoff is varying from 0.1 to 1.

method does not consider the effect of the moving speed
and achieves the lowest average rate among all the handoff
methods.

5 Conclusions

In this article, we have studied the problem of inter-relay
handoff in a relay-assisted network. The problem is for-
mulated as an SMDP, which considers both the effect
of moving speed on the channel SNR and the overhead
for performing handoffs. Our results indicate that the
proposed method can achieve much higher reward, com-
pared to the handoff methods that consider either the
handoff only, moving speed only, or conventional hand-
off method based on channel quality only. Furthermore,
the proposed handoff method achieves as high average
transmission rate as the conventional handoff method that
always connects the mobile user to the best RS. In addi-
tion, numerical results indicate that the proposed method
can be applied to the networks with users having a wide
range of moving speeds. When the overhead for perform-
ing the handoff is very high, the proposed method can be
simplified to the overhead method without sacrificing the
reward performance much.

Appendix: Derivation of the channel state
transition probability when the speed changes
Usually, the SNR state transition probability at an original
speed vy can be measured, which can be seen as known.
In order to derive the SNR state transition probability
when the speed changes, it is meant to find the relation-
ship between the SNR state transition probabilities at the
actual speed v; and the original speed vy. Based on (8) and
(9), the SNR state transition probabilities with the speed
of v1 can be obtained as

LN T T

N — 25
Ploi+1 . 15 (25)
NYTWT.
1 s
kk—1 T (26)
Tk

substituting (10), (11), and (12) into (25) and (26), we can
get
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According to the expression of the maximum Doppler
frequency (4), the SNR state transition probabilities with
the actual speed v, can be further reformulated as

Fk+1
27T1"1<+1 Vlfc myQ, T,
myrd
b

Pris ™ - iy (29)
e myrd —e rd
Y
0
an"k V]fg myrd Ts
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Pij—17 Tt Tirr (30)
o0 -0

e Yed —e "Yrd

where m = V%/V%.

Since the information about the SNR state transition
probability of the train at speed vy is known, we need
to transform (29) and (30) into the function with respect
to the SNR state transition probability with the original
speed. In the similar way as the derivation of (29) and (30),
the channel state transition probabilities with the speed vg
can be obtained as

_T k+1
27 Tgq1 Vch
— 0 ¢ € na T
yrd

pg,k+1 ~ Y Ry ’ (31)
e Vr% —e Y
_ T
/@‘%ﬂe "d Ts
0 "rd
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eia —e T
In terms of the expression of the SNR state probabilities

at the original and actual speeds, the SNR state transition
probabilities at the actual speed v; can be calculated as

Prks1 = Plis1® ™ (33)
Phko1 =Poi19 > (34)
where
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Endnote

2Here we only consider the RS-to-train link, because the
RS is assumed to be in the fixed place, such that the BS-
to-RS link will not change much.
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