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Abstract

We investigate the joint effect of channel estimation and frequency flat transmitter and receiver I/Q imbalance on an
Orthogonal Frequency Division Multiplex (OFDM) system. We assume independent fading with identically and
independently distributed (i.i.d) mirror carrier channel coefficients. Closed form expressions for symbol error rate and
bit error rate of M-QAMmodulation are derived. We consider join and separate channel estimation, as well as joint
and separate equalization of the mirror carriers. Performance is evaluated by treating the I/Q interference as a
non-Gaussian random variable. The results show that a Gaussian approximation of I/Q interference is very good,
especially for low order modulations.
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Introduction
Orthogonal frequency division multiplexing (OFDM)
based transceivers have been selected for several wire-
less standards such as IEEE 802.11, LTE and WiMax,
and are the likely selection for 4th generation sys-
tems fulfilling the International Mobile Telephony (IMT)-
Advanced requirements [1]. Low-cost implementation of
transceiver devices is challenging in view of impairments
associated with imperfect analog components. Imper-
fections due to power amplifier (PA) non-linearity, fre-
quency offset, phase noise, timing jitter, quantization
noise and I/Q imbalance distort the baseband signal [2].
The most challenging IMT-Advanced requirements are
for local area scenarios [1]. In local area, transmission
powers are comparatively small, which alleviates prob-
lems with PA non-linearity. In OFDM systems, carrier
frequency offset, phase noise and timing jitter cause
inter-carrier interference (ICI) which is strongest between
neighboring subcarriers, and their relative strength is
related to the subcarrier bandwidth. Their effect may thus
be reduced by selecting a suitable OFDMparametrization.
With increasing computational capabilities, the number
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of bits in analog-to-digital conversion may be increased,
reducing quantization noise. Thus the only impairment
left without a straight forward engineering cure is I/Q
imbalance.
Different approaches for digital compensation of the I/Q

imbalance have been proposed [3-5]. The goal of compen-
sation is to provide an improved image rejection, which by
nature depends on the accuracy of the digital estimation
and compensation approaches used.
Knowledge about the quantitative relationship between

transceiver parameters such as the image rejection ratio
(IRR) and system parameters such as the symbol error
probability is essential for the design and dimensioning of
communications systems. In practice, channel estimation
cannot be done perfectly in a fading environment.
Several solutions have been proposed in the literature to

estimate the I/Q imbalance parameters, and to compen-
sate in analog and digital domains [4-11]. Blind estimation
and compensation techniques [5], interference cancela-
tion based [6], pilot aided and preamble based techniques
have been discussed to estimate the channel and the I/Q
imbalance parameters [8-10]. Joint estimation of channel
and the I/Q parameters can be found in [11].
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The I/Q imbalance compensation for different fading
environments and modulation orders, have been investi-
gated in [3]. Performance degradation due to I/Q imbal-
ance under perfect channel knowledge is evaluated in
[12]. It is a challenging task to implement computation-
ally efficient estimation techniques while minimizing the
estimation error with the impact of I/Q imbalance.
Krondorf and Fettwis [13,14] numerically evaluate the

bit error rate performance of a coded and uncoded
OFDM systems with all impairments including carrier fre-
quency offset (CFO), I/Q imbalance, frequency selectivity
and channel estimation errors on direct conversion ZF
receiver with Least Square (LS) channel estimation. The
inter-carrier interference (ICI) due to CFO and I/Q imbal-
ance on effective transmitted symbol is assumed to be
Gaussian distributed.
In this article, we concentrate on digital compensation

of the I/Q imbalance. The goal is to understand system
performance of three different estimation and equaliza-
tion schemes which are commonly used in communica-
tion systems. The baseline solution is separate channel
estimation and separate equalization of mirror subcarri-
ers. This is contrasted with joint channel estimation with
separate or joint equalization. We present closed form
expressions for both the symbol error rate (SER) and the
bit error rate (BER) with Gray coded bit mapping in inde-
pendently Rayleigh fading channels under the joint effects
of least squares channel estimation and frequency flat
transmitter and receiver I/Q imbalance. Comparing to the
Gaussian BER approximation results of [13], we observe
that the Gaussian approximation works well, especially for
small constellation sizes.
The remainder of this article is organized as follows.

Section ‘System model’ describes the system model under
the effect of I/Q imbalance and imperfect channel estima-
tion. In Section ‘Signal models with channel estimation
errors’, we evaluate the error displacement vector for three
different channel estimation and equalization schemes
related to joint/separate treatment of the mirror subcar-
riers. In Section ‘M-QAM symbol error rate’, we calculate
the SER based on displacement error vector analysis. It is
further simplified using the power distribution pattern of
the desired and mirror signals. Then, the previous result
is extended towards BER in Section ‘Bit error rate for
M-QAM symbol transmission’ with a closed form solu-
tion for square M-QAM modulations. Analytical limits
for perfect channel knowledge are addressed in Section
‘Analytical limits’. Ultimately, simulation results and con-
clusions are made in Sections ‘Simulation results’ and
‘Conclusion’, respectively.
Notation. E(·), Q(·), erfc(·), and P(E) symbolize the

expectation operator, the Gaussian Q-function, comple-
mentary error function and the error probability, respec-
tively. The superscripts ∗ stands for complex conjugate

and det(·) and | · | refer the matrix determinant and
absolute value in that order.

Systemmodel
We consider the effect of transmitter and receiver I/Q-
imbalance on channel estimation in broadband multicar-
rier communication with direct conversion transceivers.

I/Q imbalance model
In the down-conversion of an ideal direct conversion
receiver, the incoming signals in the I (in-phase) and Q
(quadrature) branches are perfectly match with gains and
orthogonal in phase. However, real receivers introduce
gain mismatch and non-orthogonality in phase of I and
Q branches due to imperfect electronic implementation.
These imperfections at the demodulator can be seen as a
receiver I/Q imbalance in baseband domain [3]. Similarly,
the phase and gain mismatch of the modulator introduce
the transmitter I/Q imbalance.
The transmitter I/Q imbalance can bemodeled as s(t) =

G1x(t)+G∗
2x∗(t)where s(t) is the output at the modulator

after I/Q corruption and x(t) is the ideal baseband equiva-
lent transmitted signal under perfect matching. In a same
fashion demodulator output after receiver I/Q imbalance
is y(t) = K1r(t) + K2r∗(t) where r(t) is the input sig-
nal at the receiver front end which is corrupted by the
channel h(t) ∼ CN (0, σ 2

h ) and noise n(t) ∼ CN (0,N0).
Both transmitter and receiver I/Q imbalance coefficients
G1 = (1 + gTejφT )/2, G2 = (1 − gTe−jφT )/2 and K1 =
(1 + gRe−jφR)/2, K2 = (1 − gRejφR)/2 are the complex
coefficients which can be determined by the total effective
amplitude and phase imbalances of the transceivers, g and
φ, respectively. Notice that the above impairment model
assumes frequency-flat I/Q imbalance within the signal
band which is a rather typical assumption in this context.
The above I/Q imbalance model corresponds to the

following transformations of the effective baseband equiv-
alent signals at the receiver output

y(t) = K1 (s(t) ⊗ h(t)) + K2 (s(t) ⊗ h(t))∗

+ K1n(t) + K2n(t)∗ .
(1)

In the equivalent frequency domain signal, there is ICI
between mirror carrier pairs which are located symmet-
rically around the center subcarrier [10] (see Figure 1);

y+ = h++x+ + h+−x∗− + K1n+ + K2n∗− , (2)

where h++ = K1h+G1 + K2h∗−G2, h+− = K1h+G∗
2 +

K2h∗−G∗
1 are the I/Q modulated frequency domain chan-

nel coefficients and h+ and h− are the channel coefficients
on mirror carrier pair. The received signal on subcarrier
is y+ and the corresponding transmitted symbols on mir-
ror carriers are x+ and x−. Similarly noise samples can be
defined.
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Figure 1 Block diagram representation of an OFDM systemwith transmitter and receiver I/Q imbalances. The subcarrier and mirror carrier
channels are h+ and h− and the transmitter and receiver I/Q imbalance coefficients are G1, G2 and K1, K2, respectively.

The mirror-frequency attenuation is described by the
image rejection ratio (IRR) of the receiver RF front-end,∣∣∣K1
K2

∣∣∣2, which is typically in the order of 25–40 dB [15]
in practical receivers. Below, we shall frequently use the
inverse IRR, the image leakage ratio, K =

∣∣∣K2
K1

∣∣∣2 in the
analysis.

Channel estimation error model
In general, the estimation error for a channel c is given by
e = ĉ − c, where ĉ indicates the channel estimate. Only
for minimum mean square error-channel estimation, the
error term e and the estimated channel ĉ are uncorrelated;
E{e∗ĉ} = 0 [16]. A versatile channel estimation model in
[17] describes the correlated channel estimation error for
an arbitrary linear channel estimators. The model decou-
ples the correlation between ĉ and e by introducing a new
uncorrelated random variable (RV) z,

c = aĉ + z, (3)

where a = ρ σc
σ̂c

is the biasing factor and σ 2
c and σ̂ 2

c are the
variances of the channel and its estimate. The normalized
correlation coefficient is ρ = E{ĉ∗c}/σcσ̂c. The uncorre-
lated estimation error z can be obtained from a complex
Gaussian process CN (0, σ 2

z ), where σ 2
z = (1 − |ρ|2)σ 2

c .
LS channel estimation is a subset of the above error

model and error e in general is the zero mean with a cer-
tain variance due to effective noise and it is independent
of c over a slow fading channels [16]. Using (3), we can
decouple the LS estimation error to uncorrelated z and a
biasing factor. Then ρ2 = σ 2

c
σ 2
c +σ 2

e
, where σ 2

e is the error

variance. Hence, the biasing factor becomes a = σ 2
c

σ 2
c +σ 2

e
=

ρ2. For LS estimation, the biasing factor is directly given
by the correlation coefficient. If error e and channel c are
correlated to each other then the biasing factor becomes
a = E{ĉ∗c}/σ̂ 2

c and same channel estimation error model
can be still valid.

Signal models with channel estimation errors
This article considers different combinations of I/Q-
imbalance aware channel estimation and equalization.
Both estimation and equalization can be performed sep-
arately or jointly for the mirror subcarrier pair. Three
combinations make sense: (i) Baseline solution with sep-
arate channel estimation and separate equalization. (ii)
Joint channel estimation but separate equalization. (iii)
Joint channel estimation and joint equalization. These can
be easily described under the channel estimation error
model (3), and a similar error displacement vector model.
Frequency selective channels with independently fad-

ing mirror carrier pairs are considered. This is a realis-
tic assumption in broadband communications where the
channel coherence bandwidth is typically smaller than
the frequency separation between mirror carrier pair. We
consider LS estimation throughout.
The pair of I/Q modulated channel coefficients h++

and h+− at each subcarrier index can be estimated either
separately or jointly, using a known sequence of pilots.
The I/Q corrupted signal models with channel estimation
errors can be constructed based on (2) for the three cases
considered.

Separate channel estimation with separate equalization
A known BPSK pilot sequence is inserted in to the OFDM
symbol to estimate the I/Q modulated channel h++ =
K1h+G1 + K2h∗−G2 on the kth subcarrier, assuming the
channel is time invariant under several OFDM symbols.
The receiver estimates the channel without awareness of
the I/Q imbalance, using a LS estimator. Using (2), the
estimated channel becomes

ĥ++ = h++ + h+−
x∗
p−
xp+

+ K1np+ + K2n∗
p−

xp+︸ ︷︷ ︸
e

. (4)

For known pilots xp+ and xp− on the mirror carrier
pair, the estimation error becomes a complex Gaussian
RV with zero mean and the variance σ 2

e = (|K1G2|2+
|K2G1|2

)
σ 2
h + Np(|K1|2 + |K2|2). The biasing factor then
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becomes a =
∣∣∣σ 2

h+++η

∣∣∣
σ 2
h+++σ 2

e +2�{η} where η = (|K1|2 + |K2|2
)

σ 2
hG1G2 is the correlation E{e∗+h++} with same pilot

transmission on mirror carrier pair. The noise power
spectral density of the pilot transmission is given by Np
and σ 2

h is the variance of the physical channel h+ (not of
the channel to be estimated, h++).
After single tap equalization, the estimate of the data

symbol on the subcarrier of interest is

x̂+ = x+ + z++x+ + h+−x∗− + K1n+ + K2n∗−
aĥ++

. (5)

The error displacement vector, characterizing the sym-
bol estimate error becomes

� = x̂+ − x+ = z++x+ + h+−x∗− + K1n+ + K2n∗−
aĥ++

,

(6)

where the estimation error z++ is independent from ĥ++
by definition and n+, n− are also independent processes.
However, there is a correlation exist between h+− and
ĥ++. Hence, � can be modeled as a fraction of two corre-
lated complex Gaussian RVs when conditioned on a given
set of transmitted symbols on mirror subcarrier pair.

Joint channel estimation and separate equalization
Here, we consider a receiver where there is a simple pilot
structure to mitigate the effect of the I/Q imbalance on
the channel estimation, but where I/Q compensation is
not considered in equalization. This case was analyzed
in [18]. We formulate the analysis in terms of estimat-
ing the full h until explicit equalization is performed. To
remove the effect of I/Q imbalance from channel esti-
mation, pilot transmission from two consecutive OFDM
symbols is considered and the pilot symbols transmitted
on these subcarriers are

Xp =
[
x1+ x∗

1−
x2+ x∗

2−

]
, (7)

where xj, j = 1, 2 are the pilot data symbols in two con-
secutive OFDM symbols. These are selected so that Xp
becomes non-singular for each mirror subcarrier pair,
i.e., det (Xp) = ∣∣x1+x∗

2− − x∗
1−x2+

∣∣ �= 0. A simple selec-
tion maintaining the orthogonality between subcarriers is
based on a Walsh-Hadamard matrix [10]; xj+ = 1, x1− =
−1, and x2− = 1. The estimated channel coefficients ĥ are
functions of these pilot data symbols. The LS estimate of
the channel is ĥ = h+X−1

p n̄. Here the elements of the I/Q
corrupted noise vector n̄ are n̄i = K1ni+ +K2n∗

i−. In terms
of the channel estimation error, the received signal is

y =
(
aĥ++ + z++

)
x+ + h+−x∗− + K1n+ + K2n∗− (8)

Single-tap zero-forcing equalization against aĥ++, assum-
ing channel statistics are known to the receiver, gives the
error displacement vector

� = z++x+ + h+−x∗− + K1n+ + K2n∗−
aĥ++

, (9)

where a = σ 2
h++

σ 2
h+++Np

2 (1+K)
=
[
1 + Np(1+K)

2(|G1|2+K |G2|2)σ 2
h

]−1
. As

in the previous case, � can be modeled as a ratio of two
correlated complex Gaussian RVs.

Joint channel estimation and joint equalization
In addition to the wanted and interfering signal com-
ponents on subcarrier k, h++, and h+−, we now also
treat the corresponding quantities on the mirror subcar-
rier −k. For this, we define h−+ = K1h−G∗

2 + K2h∗+G∗
1

and h−− = K1h−G1 + K2h∗+G2. These channel coeffi-
cients can be estimated as above. All channel coefficients
experience channel estimation error with variance σ 2

e =
Np
2
(|K1|2 + |K2|2

)
. The biasing factor for both h++ and

h−− is a =
[
1 + Np(1+K)

2(|G1|2+K |G2|2)σ 2
h

]−1
, and for h+− and

h−+ it is b =
[
1 + Np(1+K)

2(|G2|2+K |G1|2)σ 2
h

]−1
. The joint signal

model for the mirror pair is

[
y+
y∗−

]
=
[
h++ h+−
h∗−+ h∗−−

]
.
[
x+
x∗−

]
+
[
K1n+ + K2n∗−
K∗
2n+ + K∗

1n∗−

]
(10)

After I/Q-compensating two-tap zero forcing equaliza-
tion, the symbol estimates become

x̂ = x+Ĥ−1Zx+Ĥ−1ñ. (11)

The estimated data vector x̂, transmitted symbol vector
x, estimated channel matrix Ĥ, uncorrelated estimation
error matrix Z and I/Q corrupted noise vector ñ are

x̂ =
[
x̂+
x̂∗−

]
, x =

[
x+
x∗−

]
, Ĥ =

[
aĥ++ bĥ+−
bĥ∗−+ aĥ∗−−

]

Z =
[
z++ z+−
z∗−+ z∗−−

]
, ñ =

[
K1n+ + K2n∗−
K∗
2n+ + K∗

1n∗−

] (12)

From (11) and (12), the estimated symbol on subcarrier
can be written as

x̂+ = x+ + α+x+ + α−x∗− + α0 , (13)

where α± = (aĥ∗−−z+± − bĥ+−z∗−±)/D, α0 = (aĥ∗−−ñ+−
bĥ+−ñ∗−)/D, and the determinant of Ĥ is D = a2ĥ++
ĥ∗−− −b2ĥ+−ĥ−+ ≈ a2ĥ++ĥ∗−−, where the approximation



Oruthota and Tirkkonen EURASIP Journal onWireless Communications and Networking 2012, 2012:303 Page 5 of 14
http://jwcn.eurasipjournals.com/content/2012/1/303

is due to |K2|2 << |K1|2 and |G2|2 << |G1|2. Now the
displacement vector can be approximated to

� ≈ z++x+ + z+−x∗− + ñ+
aĥ++

− bĥ+−
a2ĥ++ĥ∗−−

(
z∗−+x+ + z∗−−x∗− + ñ∗−

)
.

(14)

For the biasing factors, a≥b holds for all possible signal-
to-noise ratios (SNR) values, and ĥ+−

ĥ++ĥ∗−−
is very small.

Hence, the displacement vector� can be approximated by
neglecting the latter part of (14) to

� ≈ z++x+ + z+−x∗− + K1n+ + K2n∗−
aĥ++

. (15)

Now, z+− is independent from ĥ++ and then the dis-
placement vector can be modeled as a ratio of two inde-
pendent complex Gaussian RVs.

Probability density function of the displacement vector
The displacement vectors of first two schemes (6) and
(9) can be modeled as quotients of two correlated com-
plex Gaussian random variables and the last scheme (15)
can be treated as a quotient of two independent com-
plex Gaussian random variables. For all cases, let us define
the numerator and the denominator as �N = δ+x+ +
δ−x∗− + K1n+ + K2n∗− and �D = aĥ++. The multiplica-
tive factors δ+ and δ−, and the biasing factors a and b
are different for the different cases described before. Both
RVs, �N and �D have zero mean. Their variances are
σ 2
N = σ 2

δ+P++σ 2
δ−P−+N0(|K1|2+|K2|2) and σ 2

D = a2σ̂ 2
h++ ,

conditioned on a symbol pair x+ and x−. The energies
of symbols on the subcarrier and its mirror are given by
P± = |x±|2. The numerator and the denominator can be
represented in a polar form with corresponding magni-
tudes by rN and rD, and angles by θN and θD. The joint
distribution can be found in [19];

f (rN , rD, θN , θD)

= π−2det(�)rNrDe−
(
ϕ11r2N+ϕ22r2D+2rN rD cos(θD−θN+χ12)

)
(16)

where � is the inverse covariance matrix of � =[�D �N ]
with correlation coefficient ρ�

� =
[

ϕ11 ϕ12
ϕ∗
12 ϕ22

]
= 1

σ 2
Nσ 2

D − |ρ�|2
[

σ 2
N −ρ�

−ρ∗
� σ 2

D

]
,

ϕ12 = −ρ� = |ρ�|ejχ12

(17)

Hence, ϕ11/ϕ22 = σ 2
N/σ 2

D and correlation coefficients for
first two schemes discussed above are ρ� = |K1|2σ 2

h(
(1 + K)G∗

1G
∗
2 + |G2|2 + K |G1|2

)
and ρ� = |K1|2 (1 + K)

G∗
1G∗

2σ
2
h , respectively. For the last scheme it becomes zero.

Let us define the magnitude r = rN/rD and the phase θ =
θD − θN of the displacement vector. These follow the joint
distribution

f�(r, θ) = 2
π

r[
σ 2
N + σ 2

Dr2 + 2r|ρD| cos(θ + χ12)
]2 .

(18)

For the derivation of SER, it is convenient to have a PDF
of � in Cartesian coordinates instead of polar form. The
joint PDF f�(r, θ) is given by f�(x, y) = 1

r f�(r, θ) where
x = r cos θ and y = r sin θ ;

f�(x, y)= 2
π

[
1

σ 2
N +σ 2

D(x2+y2)+2|ρ�|(x cosχ12−y sinχ12)

]2
(19)

When the numerator and the denominator are indepen-
dent, the joint distribution can be simplified to

f�(x, y) = 2
π

[
1

σ 2
D(x2 + y2) + σ 2

N

]2
. (20)

M-QAM symbol error rate
In this section, we derive the SER expression in an OFDM
system with I/Q imbalance, imperfect channel estimation
and independent fading.

Symbol error rate for M-QAM symbol
We focus on the reception of regular M-QAM signals
which are most commonly used in multi-carrier systems.
The constellation diagram for 16-QAM with basic con-
stellation boundaries is shown in Figure 2. The amplitude
levels of adjacent symbols in both I and Q branches are
separated by the distance d. Assuming equi-probable sym-
bol transmission of a rectangular M-QAM consisting of
direct product of Mi-PAM constellation M = M1 · M2,
the average power is Es = (M2

1 + M2
2 − 2)d2/12. When

the displacement vector moves the received signal to the
decision region of another constellation point, a symbol
error occurs. To simplify the analysis, we determine two
types of error events with corresponding probabilities. In
events A1, there is an error in the I- or Q-branch, but not
in both. For a given constellation point, up to four kinds of
A1 events may occur, due to a displacement in one of the
four directions ±I,±Q. In events A2, there is an error in
both branches, and similarly up to four kinds of A2 events
may occur for a given constellation point. The constel-
lation points may be split to three classes—corner, edge
and middle points. We denote these with subscripts C, E ,
andM, respectively. The multiplicities of the error events
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Figure 2 Distinguished areas for the occurrence of symbol errors in 16-QAM constellation. The distance between constellation points is d.
A1 and A2 are the corresponding disjoint error probability areas.

of different types are different for the different classes,
as shown in Figure 2. The energy of the desired symbol
P+ = Pm,n can be written as

Pm,n
d2

= (1 + 2m)2 + (1 + 2n)2 , m = 0, . . . , M̄1 − 1,

n = 0, . . . , M̄2 − 1
(21)

where M̄i = Mi/2, i = 1, 2, m and n are integer indices
which represent the desired symbol. Similarly, the energy
of the image symbol P− =Pp,q can be written by the indices
p and q with the same range asm and n, respectively.
Given the joint PDF in the Cartesian plane, the error

probabilities P(� ∈ A1) and P(� ∈ A2) can be evaluated
for a given pair of desired and mirror symbol character-
ized by the indicesm, n and p, q.

�1
m,n,p,q = P(� ∈ A1) =

−d/2∫
−∞

+d/2∫
−d/2

f�(x, y)dxdy

�2
m,n,p,q = P(� ∈ A2) =

−d/2∫
−∞

−d/2∫
−∞

f�(x, y)dxdy (22)

However, for the receiver I/Q imbalance closed form
solutions are exist, for generic covariance matrix the inte-
grals above are not solvable in closed forms (when trans-
mitter I/Q imbalance is very small then ρ� → 0 and hence
the distribution of the displacement vector follows (20)).
To progress with the analysis a first order approximation

can be applied. Taking the first two terms in the Taylor
series expansion around |ϕ12| = |ρ�| = 0 yields

f�(x, y) ≈ 2c2

π
(
c2 + x2 + y2

)2
− 8|ρ�|c2 (x cosχ12 − y sinχ12

)
π
(
c2 + x2 + y2

)3
(23)

where c2 = ϕ11/ϕ22 = σ 2
N/σ 2

D. Now we get

�1
m,n,p,q = η0 − 4η0

π
arctan η0 − 8|ρ�|c2 sinχ12

πd3

×
[
η0η1 + 2

η30
arctan η0

]

�1
m,n,p,q = 1

2
− η0 + 2η0

π
arctan η0

− 4|ρ�|c2 (cosχ12 − sinχ12)

πd3

×
[
η0η1 + 2

η30
(π − 2 arctan η0)

]

where η0 = (1 + 4λm,n,p,q)−1/2, η1 = (1 + 2λm,n,p,q)−1/2

and λm,n,p,q = c2/d2. In these expressions,

λm,n,p,q = M2
1 + M2

2 − 2
12Es

×
{

σ 2
δ+Pm,n + σ 2

δ−Pp,q + N0(|K1|2 + |K2|2)
a2σ̂ 2

h

}
.

(24)

The error probability can be evaluated by considering
the three classes of constellation points separately which
is depicted in Figure 2. The conditional probabilities can
be represented using disjoint events A1 and A2. Then
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we can derive the error probabilities for the three set of
constellation points, corner, edge and middle.

Ps(EC/E/M|x+, x−) = ζ 1
C/E/M�1

m,n,p,q+ζ 2
C/E/M�2

m,n,p,q
(25)

and �i
m,n,p,q is a function of both desired and image

symbols x+ = [
(1 + 2m) + j(1 + 2n)

]
d and x− =[

(1 + 2p) + j(1 + 2q)
]
d. The multiplicities are

ζ 1
C = 2, ζ 1

E = 3, ζ 1
M = 4 (26)

ζ 2
C = 3, ζ 2

E = ζ 2
M = 4 (27)

The conditioning is removed by averaging over all pos-
sible desired andmirror symbol points. First removing the
conditioning over the mirror symbol, we define �i

m,n =∑M̄1−1
p=0

∑M̄2−1
q=0 �i

m,n,p,q.
As the channel coefficients on mirror carriers are inde-

pendent, the average SER for the given OFDM system
equals the average SER per mirror carrier pair. The con-
tribution to the symbol error probabilities due to corner,
edge and middle points now become

Ps(EC/E/M|m, n) = 1
M

(
ζ 1
C/E/M�1

m,n + ζ 2
C/E/M�2

m,n

)

Ps(EC/E/M) = 1
M

M̄1−1∑
m=0

M̄2−1∑
n=0

ζ 1
C/E/M�1

m.n

+ ζ 2
C/E/M�2

m,n
(28)

where M is the size of the constellation. The average SER
becomes

Ps(E) = 1
M

(Ps(EC) + Ps(EE) + Ps(EM)) (29)

These expressions lead to evaluate the average SER
for all three cases, with the corresponding intermediate
variables derived in Section ‘Signal models with channel
estimation errors’.

Closed form expression for SER
Here, we refine the analysis for square QAM constel-
lations with

√
M even. The probability density func-

tion f�(x, y) depends on the transmitted symbol energies
on mirror subcarriers. The symbol energy distribution
among the four quadrants is identical and symmetric

around the diagonal points, then it is sufficient to analyze
one quadrant. Thus, (24) can be further simplified to

λm,n,p,q = M − 1
6

(
μ0Pm,n + μ1Pp,q + μ2

)
, (30)

where the pre-factors μ0, μ1, and μ2 can be found in
Table 1. SNR is denoted by γ = Es/N0.
The sums �i

m,n over the mirror symbols can be decom-
posed in to two by considering the energy of the mirror
signal of the first quadrant.

�i
m,n =

M̄−1∑
p=0

M̄−1∑
q=0

�i
m,n,p,q =

∑
p=q

�i
m,n,p,q

+ 2
∑
p>q

�i
m,n,p,q, i = 1, 2

(31)

where M̄ = √
M/2. The have proven

Proposition 1. The symbol-error probability of an
OFDM system with independently fading subcarriers,
least squares channel estimation and I/Q imbalance is

P(E) =
(

4
M

)2 M̄−1∑
m=0

M̄−1∑
n=0

(
ζ 1
m,n�

1
m,n + ζ 2

m,n�
2
m,n
)
. (32)

The multiplicities are ζ 1
m,n = 4 − δm,M̄−1 − δn,M̄−1 and

ζ 2
m,n = 4 − δm,M̄−1 · δm,M̄−1 in terms of the Kronecker

δ-symbol.

Example: 4-QAM: From (32), we can derive the SER
for 4-QAM easily. There is only one constellation point
inside the first quadrant, which is a corner point.

P(E) = 2�1
1 + 3�2

1 , (33)

where �1
1 = �1

1,1, �2
1 = �2

1,1, and λ1,1 = M−1
6 {2μ0+

2μ1 + μ2}.
Example: 16-QAM: As shown in Figure 2, in the first

quadrant there is one corner point m = 1 with energy
P1 = 2, two edge points m = 2, 3 with energy P2 = 10,

Table 1 μ0,μ1, andμ2 with F1 = |G1|2+K |G2|2 and F2 = |G2|2+K |G1|2 for three estimation and equalization processes

μ0 μ1 μ2

No IQ-compensation
(1+K)F1

(
|G1|2+|G2|2+ Np

σ2h
+2�{G1G2}

)
Es|F1+(1+K)G1G2|2 − 1

Es
F2(1+μ0Es)

EsF1
(1+K)(1+μ0Es)

γ F1σ 2
h

IQ comp: channel estimation Np(1+K)

2F1σ 2
h Es

F2(1+μ0Es)
F1Es

(1+K)(1+μ0Es)
γ F1σ 2

h

IQ comp: chan. est. & equalization Np(1+K)

2F1σ 2
h Es

μ0(1+μ0Es)

1+μ0Es
F1
F2

(1+K)(1+μ0Es)
γ F1σ 2

h
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and one middle point m = 4 with energy P4 = 18. The
SER expression becomes

P(E) = 1
24

⎡
⎢⎣2�1

1 + 3�2
1︸ ︷︷ ︸

corner point

+ 2{3�1
2 + 4�2

2}︸ ︷︷ ︸
2 edge points

+ 4�1
4 + 4�2

4︸ ︷︷ ︸
middle point

⎤
⎥⎦
(34)

where �i
m = �i

m,1 + 2�i
m,2 + �i

m,4, i = 1, 2.

Bit error rate for M-QAM symbol transmission
Next, we calculate the bit error rate of an I/Q-distorted
system, assuming square QAM symbols, with even

√
M,

and Gray-coded bits. For Gray-coded M-QAM, the deci-
sion boundaries for horizontal signals are independent of
the vertical signal levels, and vice versa [20]. Thus for per-
fect channel information it is sufficient to calculate the
BER for horizontal

√
M-PAM. The probability distribu-

tion of the displacement vector in (19) is not circularly
symmetric over given set of symbol pair x+ and x− thus
the average error probability along the horizontal and
vertical directions are not exactly the same. Therefore,
both horizontal and vertical PAM error probabilities need
to be evaluated. The individual error probabilities along
both directions depend on the marginal densities. Next,
the error probability on horizontal vertical PAM can be
considered.
Consider a M-QAM symbol x+ = xr+ + jxi+, with dis-

tance d between adjacent symbols. Let �̄ = �(�) be the
real part of the displacement error vector corresponding
to the error probabilities along the real axis. For horizon-
tal PAM, the BER for a given imaginary part of a symbol
xi+ and the decision boundary Bk can be defined as the
probability that �̄ and xr+ fall on the different sides of the
decision boundary. Thus the conditional BER for the hor-
izontal part for a particular bit position bk of M-QAM for
a given imaginary part of the desired symbol xi+ and the
image signal x− is

P̃H(bk | xi+, x−) =
{
P̃
(
�̄ < Bk | xi+, x−

)
, xr+ > Bk

P̃
(
�̄ > Bk | xi+, x−

)
, xr+ < Bk

The conditioning on the imaginary part xi+ and the
mirror symbol x− is removed by averaging over all pos-
sibilities Hence, the total error probability of horizontal
PAM becomes

PH = 2
M2 log2

√
M

∑
∀xi+

∑
∀x−

log2
√
M∑

k=1
P̃H(bk | xi+, x−)

(35)

Here ∀x± represents the all QAM constellation points
which transmit on either subcarrier or its mirror. Simi-
larly, the bit error rate of vertical PAM can be derived. For
square QAM these BERs are the same.
The inner sum of the equations above represents the

sum of individual bit error probabilities. For a given
√
M-

PAM signal with
√
M even, there are an equal number

of points, M̄ = √
M/2, on the positive and negative side

of the constellation, and the allocated number of bits per
constellation point is L̄ = log2

√
M. The decision bound-

aries can be parameterized as Bk±r = ±2L̄−k(2r−1)d, k >

1, with a boundary index r and a bit index k, c.f., Figure 3.
The decision boundaries on right side of B1

1 have posi-
tive boundary index, Bk

r , and boundaries on the left side
have negative indices, Bk−r . The number of boundaries per
side corresponding to the kth bit position is R = 2k−2, k >

1, where r = 1, . . . ,R. The sum over the BERs of the
√
M

bits becomes

P� (E | xi+, x−) =
L̄∑

k=1
P̃H(bk | xi+, x−)

=
M̄∑

m=1
P
(

�̄m >
2m − 1

2
d
)

+
L̄∑

k=2

M̄∑
m=1

R∑
r=1

×
[
smr P

(
�̄m >| M̄(2r − 1) − R(2m − 1)

2R
| d
)

+ sm−rP
(

�̄m >
M̄(2r − 1) + R(2m − 1)

2R
d
)]
(36)

Figure 3 Gray coded 8-PAM constellation with decision boundaries Bk
±r , where k and r represent the corresponding bit index and

boundary index.
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The coefficients sm±r , depending on the bit position index
m and the boundary index r are

smr =
R∏

r̃=1,r̃ �=r
sgn

(
1
2

+ M̄(2r̃ − 1)
R

− m
)

(−1)r+1

sm−r =
R∏

r̃=1
sgn

(
1
2

+ M̄(2r̃ + 1)
R

− m
)

(−1)r+1

(37)

Note that for k = 2, the coefficients sm±r = 1,∀m. For the
above square QAM system with unequal error probabili-
ties on horizontal and vertical PAM, the average BER thus
simplifies to [20]

PM = 1
2

(PH + PV ) (38)

The evaluation of the individual probabilities P(�̄m >

κd) is not as simple as in the Gaussian case, because each
desired and mirror symbol combination, contributes their
own PDF which is centered around the corresponding bit
position. Evaluating these, we have

Proposition 2. The bit-error probability of an OFDM
system with independently fading subcarriers, least
squares channel estimation and I/Q imbalance is

PH = a0
M̄∑
n=1

M̄∑
p=1

M̄∑
q=1

⎧⎨
⎩

M̄∑
m=1

f
(
λm,n,p,q, κ1(m)

)

+
L̄∑

k=2

M̄∑
m=1

R∑
r=1

[
smr f

(
λm,n,p,q, κ2(m, r)

)

+ sm−rf
(
λm,n,p,q, κ3(m, r)

)]⎫⎬⎭ ,

(39)

where P
(
�̄m > κid

) = f
(
λm,n,p,q, κi

)
with three

different κ values: κ1 = (2m − 1)d/2,
κ2 =| (

M̄(2r − 1) − R(2m − 1)
)
/2R | d and

κ3 = (
M̄(2r − 1) + R(2m − 1)

)
d/2R. Furthermore,

a0 = 24−2L̄/L̄, M̄ = √
M/2, L̄ = log2

√
M and R = 2k−2.

The coefficients sm±r can be found in (37). The I/Q-
imbalance affects the terms λm,n,p,q of Equation (24).
Similarly, for the vertical PAM individual error probabil-
ities given by P

(
�̄n > κid

) = g
(
λm,n,p,q, κi

)
which can be

derived from its own marginal distribution f�(y).

Proof. The marginal distributions of � is evaluated first
from (19),

f�(x) = c2 − b2

(x2 + 2|ρ�| cosχ12x − |ρ�|2 sin2 χ12 + c2)3/2

f�(y) = c2 − b2

(y2 − 2|ρ�| sinχ12y − |ρ�|2 cos2 χ12 + c2)3/2
(40)

so that

f
(
λm,n,p,q , κi

)=1 − κi + |ρ� | cosχ12
d√

λm,n,p,q + κ2
i +

( |ρ� | cosχ12
d + κi

)2 −
(
κ2
i + |ρ� |2

d2

)

g
(
λm,n,p,q , κi

)=1 − κi − |ρ� | sinχ12
d√

λm,n,p,q + κ2
i +

(
κi − |ρ� | sinχ12

d

)2 −
(
κ2
i + |ρ� |2

d2

)
where c2 = σ 2

D/σ 2
D, b

2 = |ρ�|2/σ 2
D. The corresponding

κi values for vertical PAM can be obtained by replacingm
with n. Then, the average BER can be evaluated from (38)

Analytical limits
From the derived results, known results for error rates
in AWGN and Rayleigh channels with and without I/Q
imbalance in the absence of channel estimation errors can
be derived for square M-QAM constellation.

AWGN channel without I/Q imbalance
As a reference case, in AWGN with perfect receivers
(K1 = 1, K2 = 0 h(k) = 1), (24) can be reduced to

�1 =Q
(√

3γ
M − 1

)
− 2Q2

(√
3γ

M − 1

)

�2 =Q2
(√

3γ
M − 1

) (41)

where Q(·) is a Gaussian Q-function, and γ is the SNR
defined as before. Hence we recover the well known
expression [21]

P(E) =4�1
M − √

M
M

+ 4�2
M − 1
M

=1 −
[
1 −

√
M − 1√
M

· 2Q
(√

3γ
M − 1

)]2
.

(42)

AWGN channel with receiver I/Q imbalance
In an AWGN channel with receiver I/Q imbalance, the
displacement vector � can be represented as a complex
Gaussian random variable with mean μ� = K2

K1
x∗− and

variance σ 2
� = (1+K)N0. Hence the PDF of � becomes a

complex Gaussian distribution.

f (x, y) = 1
2πσ 2

�

exp
(

− (x − μx)2 + (y − μy)2

2σ 2
�

)
(43)

where μx = �{μ�} and μy = �{μ�}. The SER is con-
nected to the cumulative distribution functions (CDFs)
FX(d) and FY (d) by

P(E) = 1−
[
1 −

√
M − 1√
M

FX(d)

][
1 −

√
M − 1√
M

FY (d)

]

(44)
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where individual CDFs can be obtained by substituting
corresponding means μx and μy to

F(d) = Q
(
d − μ

σ�

)
+ Q

(
d + μ

σ�

)
. (45)

The argument inside the Q functions can be written
as d±μ

σ�
=
√

6γ
(M−1)(1+K)

(
1 ± �/�{μ�

d }) where μ�

d =√
M−1
6Es Kx

∗−. This result coincides with [22].

Rayleigh faded AWGN channel without I/Q imbalance
In Rayleigh fading with unit variance, Equation (24)
becomes λ = (M − 1)/6γ . There are four corner
points, 4(

√
M − 2) edge points and (

√
M − 2)2 middle

points, respectively. Hence, Equation (29) can be reduced
to

P(E) =4�1M − √
M

M
+ 4�2M − 1

M

=2
√
M − 1√
M

(
1 − γ̂

)−
(√

M − 1√
M

)2

×
(
1 − γ̂

4
π
tan−1 1

γ̂

)
(46)

where γ̂ =
√

3
2 γ

M−1+ 3
2 γ

. The results coincides with the
well-known error probability for Rayleigh channels [22].

Rayleigh faded AWGN channel with receiver I/Q imbalance
Similarly, for an I/Q corrupted Rayleigh faded system (24)
becomes

λ = M − 1
6

(
K |x−|2
Es

+ 1 + K
γ

)
(47)

With I/Q imbalance at the receiver, Equation (29) can be
reduced to

P(E) = M − 1
M

−
√
M − 1
M

2
γ̂

− (
√
M − 1)2

M
4

πγ̂
tan−1 1

γ̂

(48)

where γ̂ = 1√
1+ 2(M−1)

3

(
K |x−|2

Es + 1+K
γ

) , reproducing the result
of [23].

Simulation results
In this section, we compare the above analytical SER/BER
expressions to simulation results for an OFDM system in
frequency selective fading, with transmitter and receiver
I/Q imbalance and channel estimation errors. The OFDM
system discussed here is assumed properly synchronize in
time and frequency, and the cyclic prefix is sufficient to
remove the multipath effect completely. For the simula-
tion, we consider different M-QAM modulations (M =

16, 64, 256). The effect of I/Q imbalance is investigated
for different IRR values ranging from 25–55 dB. For the
worst case, we select g = 0.9 and φ = 2o for both trans-
mitter and receiver. The channel coefficients on mirror
carrier pairs can be modeled by an independent com-
plex Gaussian process CN (0, 1). The noise is assumed to
be white complex Gaussian CN (0,N0) as well. Pilots on
mirror carrier pairs are selected from BPSK constellation
as in [8,10] for channel estimation. When receiving each
information symbol transmitted, a least square channel
estimate is used which has been estimated from a pilot
symbol transmitted with exactly the same channel. When
joint channel estimation is performed, the pilots are cho-
sen from a Walsh-Hadamard code with BPSK symbols, as
in (7).
Figure 4 shows the theoretical and simulation results for

the three cases of channel estimation and equalization dis-
cussed in Section ‘Signal models with channel estimation
errors’. When there is no IQ-compensation at the receiver
(case a), SER performance is poor. The channel estima-
tion error in (4) contains both the I/Q corrupted mirror
carrier interference and the channel noise. There is an
irreducible error floor visible, due to the mirror carrier
interference which dominates at high SNR. When there
is IQ-compensation in the channel estimation (case b),
the performance is slightly better. However, the effect of
I/Q imbalance in the channel noise term, not compen-
sated in equalization, leads to an error floor as in as the
previous case. In case c, we compensate for I/Q imbal-
ance both in channel estimation and equalization phases.
Hence the performance is better than in the other two
cases, and the error floor is removed. The approximation
works perfectly and matches the simulation result well.
In the two first cases, the closed form analytical result
matches simulations perfectly.
Figure 5 shows the behavior of the biasing factors a and

b for the above three channel estimation and equalization
techniques for a worst I/Q condition (IRR = 25 dB) and a
close-to-ideal (IRR = 55 dB). The biasing factor on sub-
carrier channel estimation can be approximated to a ≈
[ 1+ Np

2σ 2
h
]−1 (for the separate channel estimation and equal-

ization a ≈[ 1+ Np
σ 2
h
]−1) for the above IRR range. Hence, the

effect of IRR is insignificant and the AWGN term dom-
inates the performance. Therefore, at high SNR values a
converges to unity Similarly, the biasing factor on mir-
ror carrier channel estimation can be written as b ≈[ 1 +

Np
2K |G1|2σ 2

h
]−1. For the given channel statistics, the behavior

of b for a I/Q corrupted receivers dominates by the SNR.
Hence, it converges to unity when SNR increases. But for a
ideal receiver with K = 0 it converges to zero irrespective
of SNR and the transmitter I/Q imbalance (|G1|2 ≈ 1).
The error rate performance simulations (Figures 6, 7,

8, and 9) focus on joint channel estimation and separate
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Figure 4 SER performance for the three estimation and equalization schemes. (a) Separate channel estimation with separate equalization.
(b) Joint channel estimation with separate equalization. (c) Joint channel estimation with joint equalization. Simulation and theoretical results for
16-QAM with gain g = 0.9 and phase φ = 2o for both transmitter and receiver.
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Figure 5 Behavior of the biasing factors a and b of the three estimation and equalization schemes for worst case (IRR= 25dB g = 0.9 and
φ = 2o) and close-to-ideal (IRR= 55dB g = 1 and φ = 0.2o) transceivers.
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Figure 6 SER for M-QAMmodulations (M = 16, 64, 256) of ZF equalization with perfect channel knowledge, imperfect channel
estimation and with Gaussian approximatedmirror carrier interference at IRR 25 dB for both transmitter and receiver.

equalization which is discussed in Section ‘Signal models
with channel estimation errors’.
Figure 6 depicts the SER performance of the ZF equal-

ization on the perfect channel knowledge and the effect
of imperfect channel estimation. The effect of channel

estimation is simulated with Gaussian approximated mir-
ror carrier interference as well. From Figure 4, it is clear
that the biasing factor a does not have any significant
impact on system performance. For the relatively small K,
a → aideal =[ 1+Np

σ 2
h
]−1 where aideal is the biasing factor of
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Figure 7 SER of 16-QAMmodulation of ZF equalization with perfect channel estimation and with imperfect channel estimation in
Rayleigh fading environment for different receiver IRR values (IRR = 25, 35, 55,∞dB). Asymptotic SINR values are marked in red.
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Figure 8 BER for M-QAMmodulation (M = 16, 64, 256) of ZF equalization against imperfect channel estimation in Rayleigh fading
environment for receiver IRR 25 dB.

an ideal receiver which again emphasis the above facts. At
higher SNR, the estimation error term z++ [σ 2

z++ = (1 −
a)σ 2

h+ ] converges to zero, while the biasing factor goes to
unity. Therefore, the imperfect channel estimation follows
the equalization with perfect channel knowledge at higher
SNR values. Performance of the Gaussian approximated
system shows slightly worst error floors with higher order

modulations. However, it is reasonable to assume the mir-
ror carrier interference as Gaussian distributed specially
at low order modulation schemes.
The effect of transmitter I/Q imbalance is mild

compared to the receiver I/Q imbalance and rest
of the simulations consider only the receiver I/Q
imbalance.
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Figure 9 BER of 16, 64, 256-QAMmodulation of the ZF equalization of imperfect channel estimation in Rayleigh fading environment for
different receiver IRR values (IRR = 25, 35,∞ (ideal) dB).
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Figure 7 presents how the ZF equalization with chan-
nel estimation works for three different IRR values (25,
35, and 55 dB) with. There is an irreducible error floor
because of the I/Q induced mirror carrier interference
which dominates the effective interference at high SNR
region. The convergence limit changes according to the
IRR value appears at the receiver. Hence, asymptotic SINR
approximately equivalents to the IRR and will affects
to the SER convergence as depicted in the same plot
(projection on to the ideal receiver implies that the
Gaussian approximation of I/Q interference). Eventually,
the receiver close to ideal receiver perform better.
Then Figure 8 shows the BER performance for

16/64/256-QAM symbols. It validates the expressions
derived in (39) with the simulation result for M-QAM
symbols with Gray coded bit mapping. Figure 9 interprets
the BER performance for 16/64-QAM with IRR = 25, 35.
For comparison ideal receiver (without the I/Q imbalance
K → 0) also plotted in the same figure. For higher order
modulations with higher image rejection follow the ideal
receiver for a lower SNR region. But for lower modulation
schemes, performance deviates more from the ideal case.
But in general, system converges to a particular BER value
at high SNR as a result of uncompensated mirror carrier
interference.

Conclusion
Closed form expressions for SER/BER performance for
the M-QAM modulated OFDM system in frequency
selective Rayleigh fading channel under the effect of trans-
mitter and receiver I/Q imbalance and imperfect channel
estimation has been derived. Commonly used three chan-
nel estimation and equalization schemes are considered
and performance is evaluated. If a Gaussian approxi-
mation is applied, good results for lower modulations
orders are found. For higher order modulation, a Gaussian
approximation slightly overestimates error floors. Chan-
nel coefficients on mirror subcarriers can be assumed
uncorrelated for mirror carrier pairs which are separated
more than the coherence bandwidth. In broadband com-
munication this would hold for most of the mirror carrier
pairs. The SER/BER expressions obtained here can thus
be considered as upper bounds for SER/BER in finite
delay spread channels, becoming tight in the limit when
the bandwidth becomes large compared to the coherence
bandwidth.
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