
Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304
http://jwcn.eurasipjournals.com/content/2012/1/304

RESEARCH Open Access

TCP’s dynamic adjustment of transmission rate
to packet losses in wireless networks
Mi-Young Park1, Sang-Hwa Chung2* and Chang-Woo Ahn2

Abstract

Based on the assumption of transmission control protocol (TCP) that packets are lost due to congestion, TCP’s
congestion control algorithms such as fast retransmit/recovery (FRR) and retransmission timeouts (RTO)
unconditionally reduce the transmission rate for every packet loss. When TCP operates in wireless networks, however,
FRRs/RTOs are often triggered regardless of congestion due to sudden delay and wireless transmission errors. The
congestion irrelative FRRs/RTOs incur TCP’s misbehavior such as blindly halving the transmission rate, unnecessarily
retransmitting the outstanding packets which may be in the bottleneck queue. Although many previous studies have
been proposed to detect the congestion irrelative FRRs/RTOs, they paid little attention on effectively adjusting the
transmission rate for the detected congestion irrelative FRRs/RTOs.
In this article, we propose an enhanced TCP to dynamically adjust its transmission rate according to network
conditions. Our scheme adjusts the transmission rate in proportion to the available bandwidth in order to quickly
utilize the available bandwidth, and also re-adjusts it in inverse proportion to the loss rate in order to avoid burst
losses and long go-back-N retransmissions. By doing so, our scheme has significant effects to avoid the performance
degradation caused by the congestion irrelative FRRs/RTOs. Throughout the extensive experiments, we evaluate our
scheme and compare it with previous works in terms of goodput, fairness, and friendless under various network
topologies. The results show that our scheme significantly outperforms previous studies while it maintains the fair and
friendly behavior to other TCP connections.

Introduction
The transmission control protocol (TCP) [1-3] is the most
popular protocol in the Internet, and its mission is to pro-
vide reliable data transfer between a TCP sender and a
TCP receiver. For this, TCP has twomechanisms to detect
packet losses for retransmissions: fast retransmit/recovery
(FRR) and retransmission timeout (RTO) [2,4]. Assuming
that packets are lost due to congestion, TCP reduces its
transmission rate whenever an FRR or RTO is triggered in
order to avoid further congestion losses.
That assumption works very well in wired networks

where most FRRs or RTOs are triggered by the pack-
ets lost due to congestion, but it is not appropriate in
wireless networks where most FRRs/RTOs are triggered
by other reasons such as sudden delay [5-7], wireless
errors, andmobility. The congestion irrelative FRRs/RTOs

*Correspondence: shchung@pusan.ac.kr
2 Department of Computer Engineering, Pusan National University, Busan,
South Korea
Full list of author information is available at the end of the article

incur TCP’s misbehaviors such as (1) blindly halving the
transmission rate even when the available bandwidth is
sufficient, (2) unnecessarily retransmitting the outstand-
ing packets which may be in the bottleneck queue, and
(3) needlessly increasing the back-off value exponentially.
As a result, TCP underutilizes available bandwidth and its
performance degrades severely in wireless networks.
To date, many previous studies have been proposed to

solve such TCP’s problem in wireless networks. Some loss
differentiation schemes such as Westwood [8], JTCP [9],
and RELDS [10] have been proposed to differentiate wire-
less losses from congestion losses. Other schemes such
as Eifel [11-13], F-RTO [14,15], and STODER [16] have
been suggested to remove the unnecessary retransmis-
sions by detecting spurious FRRs/RTOs. The common
problem is that they paid little attention on adjusting
appropriately the transmission rate when the FRRs/RTOs
are triggered regardless of congestion even though con-
trolling the transmission rate is very critical in improving
TCP’s performance.

© 2012 Park et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 2 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

In case of TCP Westwood and Prairie, they estimate
the available bandwidth, and adjust TCP’s transmission
rate according to the estimated bandwidth. Although they
have more significant impact on improving TCP’s per-
formance, these schemes could have a high possibility
to cause more frequent burst losses and long go-back-
N retransmissions as the rate of wireless transmission
errors increases. This is because these schemes do not
consider the packet loss rate when they adjust the trans-
mission rate. In this article, we propose an enhanced TCP
to dynamically adjust its transmission rate according to
network conditions such as the available bandwidth and
the loss rate. When an FRR/RTO is triggered, our scheme
adjusts the transmission rate in proportion to the available
bandwidth in order to quickly utilize the available band-
width, and also readjusts it in inverse proportion to the
loss rate in order to avoid burst losses and long go-back-
N retransmissions. In addition, when successive RTOs are
triggered, our scheme initializes the back-off value if the
network is not congested in order to avoid a long idle
time period of an RTO. By doing so, our scheme has
significant effects to avoid the performance degradation
caused by the congestion irrelative FRRs/RTOs in wireless
networks.
To evaluate our scheme, we design about 100 different

simulation scenarios by setting different values of network
parameters, and conduct simulation-based experiments
using a network simulator, QualNet 4.5 [17]. Through-
out the extensive simulations, we (1) observe how often
congestion irrelative FRRs/RTOs are triggered, (2) mea-
sure the performance enhancement of our scheme and
compare it with previous studies such as F-RTO, JTCP,
and Prairie [18], (3) evaluate our scheme’s fairness and
friendliness. The results show that our scheme signifi-
cantly outperforms previous studies while it maintains the
fair and friendly behavior to other TCP connections.
In the following section, we describe TCP’s misbe-

haviors caused by the congestion irrelative FRRs/RTOs.
After that, we introduce previous studies to handle such
TCP’s problem, and explain our motivation. In “Dynamic
responding algorithm” section, we propose our scheme
to dynamically adjust the transmission rate according to
the available bandwidth and the loss rate. Lastly, we eval-
uate and compare our scheme with previous studies in
“Experimentation and analysis”, and conclude this article
in the last section.

TCP’s misbehavior caused by wireless losses
TCP [1-3] uses packet loss as an indicator of congestion.
Thus, whenever packets are lost in the networks, TCP’s
congestion control algorithms such as FRR and RTO are
triggered to reduce transmission rate by updating the two
variables: the congestion window (cwnd) and the slow
start threshold (ssthresh) [2,4].

The two variables are critical to TCP’s perfor-
mance since the transmission rate depends on the two
variables. cwnd is the size of the packets which can be
sent without receiving any acknowledgements from a TCP
receiver, and as cwnd is larger TCP’s transmission rate
is higher. cwnd is initialized by one segment when a
connection starts or when an RTO is triggered. Then, a
TCP sender increases cwnd exponentially whenever a new
ACK arrives until cwnd reaches ssthresh. After reaching
ssthresh, cwnd increases linearly. ssthresh is a critical bor-
der for a TCP sender to decide if the transmission rate
increases exponentially or linearly. The value of ssthresh
is initialized by an arbitrarily high value, and it is updated
to the halved value of cwnd whenever an FRR/RTO is
triggered.
In wireless networks, cwnd and ssthresh are often

unnecessarily reduced whenever an FRR/RTO is triggered
due to some characteristics of wireless networks such as
sudden delay, wireless errors, etc. Moreover, TCP has no
ability to identify if an FRR/RTO is triggered by congestion
or not. It responds to all FRRs/RTOs by blindly reduc-
ing the transmission rate as well as by retransmitting the
outstanding packets unnecessarily. Thus, it is unavoid-
able for TCP to underutilizes available bandwidth and
its performance degrades severely in wireless networks
[19,20].
In this section, using a simple scenario, we observed

how TCP’s congestion control algorithms respond to
packet losses caused by wireless transmission errors. The
scenario is designed to have only one TCP flow between a
TCP sender and a TCP receiver in order to avoid causing
congestion. Thus, none of RTOs or FRRs is triggered
due to congestion in the scenario. First, we simulated
the scenario without adding wireless transmission errors
between the sender and the receiver, and traced all the
variables related to TCP’s congestion control into a trace
file. After that, we simulated it again after adding 1% wire-
less losses (packets are lost due to wireless transmission
errors), and then we compared the differences of TCP’s
behavior with/without wireless losses.
Figure 1 shows the results. In Figure 1a, we checked

the differences of TCP’s cwnd before/after adding wire-
less transmission errors. In the figure, we can see that
cwnd dramatically increases after a TCP connection starts
at 1 s, and it reaches its maximum value at 1.25 s. After
that, cwnd does not decrease and keeps its maximum size
until the simulation ends because there is no packet loss
(the black line in Figure 1a). On the other hand, when
wireless errors are added, cwnd sharply shrinks when an
RTO expires at 1.25 s (the yellow line in Figure 1a). After
that, it starts to increase, but it decreases again due to
another wireless loss. Finally, cwnd could not reach its
maximum value again even though the network is not
congested.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 3 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

Figure 1 TCP’s misbehaviors with wireless losses.

Figure 2 shows the variations of cwnd increasing expo-
nentially or linearly before/after ssthresh around 8 s in
Figure 1a. When ssthresh is set to 12,000 and cwnd is
smaller than ssthresh (12,000), cwnd increases exponen-
tially until it reaches ssthresh. After cwnd reaches ssthresh
around 8.7 s, cwnd increases linearly.
When a packet is lost, generally TCP requires a long

time to recover its maximum transmission rate. Using the
periodic model [21], we can calculate the recovery time
(rt) using the following formula.

rt = bandwidth × RTT2

2 ∗ packetsize
(1)

Figure 2 cwnd’s exponential or linear increases before/after
ssthresh.

For example, let us suppose that the bandwidth is
11Mbps, the packet size is 1000 Bytes, and the round-trip
time is 100ms. Then, it takes approximately 7 s for TCP to
reach its maximum transmission rate after a single FRR.
As the bandwidth or RTT increases, the recovery time also
increases. If the bandwidth is 54Mbps, the recovery time
becomes 34 s. In other words, a TCP connection could end
without fully utilizing the available bandwidth even from
a single packet loss.
Figure 1b shows the differences of TCP’s ssthresh

before/after adding wireless transmission errors in the
scenario. When there is no wireless losses, ssthresh does
not decrease from its initial value which is arbitrarily high
(the black line in Figure 1b). But, when we add wireless
losses into the simulation scenarios, ssthresh decreases
sharply and frequently due to wireless losses (the yel-
low line in Figure 1b). ssthresh is the border for TCP to
decide if it increases its transmission rate exponentially or
linearly after a packet loss. As ssthresh becomes smaller,
TCP enters earlier the phase to linearly increase its trans-
mission rate. As a result, the recovery time from a loss
significantly increases.
Figure 1c shows the packet sequence number before/

after an RTO expires. In the figure, each dot indicates the
sequence number of a data packet which is received at
the time shown in x-axis, For example, two data pack-
ets arrived at a TCP receiver in order at 153.14 s. Also,
we can see that two out-of-order packets are received
at 153.16 s. After 1.2 s of the idle time, an RTO is

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 4 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

expired at 154.34 s and 8 packets are retransmitted until
154.67 s.
Such retransmissions are necessary only when those

packets are lost. However, if the RTO is triggered by
sudden delay and the data packets are still in transit
or in the queue, the retransmissions might be just a
waste of time and bandwidth. Also, such unnecessary
retransmitted packets could create a new series of dupli-
cate ACKs that can be long enough to cause another
FRR.
Figure 1d shows the case when three successive RTOs

are triggered due to wireless losses in the scenario. At
about 39 s, the first RTO is triggered, and the second and
the third RTOs are triggered at 43 and at 51 s, respectively.
TCP sender’s waiting time in each RTO is approximately
2, 4, and 8 s due to TCP’s back-off mechanism. Dur-
ing the idle time, a TCP sender cannot send any data
packets wasting available bandwidth and time. If RTOs
are triggered regardless of congestion, a TCP sender does
not need to perform its back-off mechanism, and should
retransmit the lost packets as soon as possible since the
network is not congested.
As shown in Figure 1, TCP’s FRRs/RTOs do not work

anymore as they were originally intended to when they
are triggered regardless of congestion. Such congestion
irrelative FRRs/RTOs are the main cause of TCP’s perfor-
mance degradation in wireless networks. To avoid such
performance degradation, TCP needs to know the cause
of FRRs/RTOs, and should respond to each of FRRs/RTOs
differently according to the causes.
Here, we classify FRRs/RTOs into three types according

to the causes: congestion FRRs/RTOs, spurious FRRs/
RTOs, and wireless FRRs/RTOs. Congestion FRRs/RTOs
are those FRRs or RTOs triggered by congestion losses
(packets are lost due to congestion), spurious FRRs/RTOs
[5,6,22] are those FRRs or RTOs triggered by sudden
delay without any packet losses, and wireless FRRs/RTOs
are those FRRs or RTOs triggered by wireless losses
(packets are lost due to wireless transmission errors).
Among the three types, congestion FRRs/RTOs are
conventional FRRs/RTOs, and both wireless and spu-
rious FRRs/RTOs are the congestion irrelative FRRs/
RTOs.

Related study andmotivation
Since TCP’s FRRs/RTOs [2,4] are originally designed to
control congestion, their behaviors are not appropriate
if they are triggered regardless of congestion. In case of
wireless FRRs/RTOs, it might be necessary for TCP to
perform go-back-N retransmissions, but TCP should not
reduce sharply its transmission rate and does not need to
increase exponentially its back-off value since the network
is not congested. In case of spurious FRRs/RTOs, even
the retransmissions are unnecessary since the FRRs/RTOs

could have been avoided if a TCP sender had waited
longer.
Unfortunately, TCP has no ability to distinguish the

cause of an FRR or an RTO. It responds to all FRRs/RTOs
blindly by reducing sharply the transmission rate and
by increasing the back-off value unnecessarily. Thus, it
is unavoidable for TCP to underutilize available band-
width and its performance degrades severely in wireless
networks.
To date, many previous studies have been proposed to

solve such TCP’s problem in wireless networks. Some
loss differentiation schemes such as Westwood [8], JTCP
[9], and RELDS [10] have been proposed to detect
wireless FRRs/RTOs. These schemes distinguish wire-
less losses from congestion losses, and let TCP avoid
reducing unnecessarily its transmission rate when any of
FRRs/RTOs are triggered by wireless losses.
To detect spurious FRRs/RTOs, several schemes have

been proposed such as Eifel [11-13], F-RTO [14,15], and
STODER [16]. These schemes are very effective in detect-
ing spurious RTOs, and they help TCP avoid unnecessary
retransmissions caused by spurious RTOs. The common
problem of the above schemes is that they paid little
attention on adjusting the transmission rate appropriately
when spurious or wireless FRRs/RTOs are detected even
though controlling appropriately the transmission rate is
critical in improving TCP’s performance.
In case of TCP Westwood [8] and Prairie [18], they

dynamically estimate the available bandwidth, and adjust
the transmission rate by updating ssthresh and cwnd to the
large values in proportion to the estimated available band-
width. They have more significant impact on improving
TCP’s performance compared to the other previous stud-
ies. Unfortunately, updating cwnd and ssthresh to large
values does not always improve TCP’s performance. If the
loss rate due to wireless errors is high, a large cwnd could
have a high possibility to have frequent burst losses as well
as to have long go-back-N retransmissions compared to a
small cwnd. Thus, if the packet loss rate is high, a small
cwnd could be better to improve TCP’s performance.
To confirm our claim, we conducted a simple exper-

iment using a simulation scenario to check the impact
of cwnd’s size when the rate of wireless errors is high.
The scenario is designed to have only wireless losses,
and the rate of packet losses due to wireless errors is
approximately 5%. In each simulation, we just limited the
maximum size of cwnd and measured the performance
using the same scenario. Figure 3 shows the result. The
graph simply shows that the performance degrades as the
value of cwnd increases. While it is well known that TCP’s
performance improves significantly when cwnd is propor-
tional to the available bandwidth, this experiment shows
that it is also necessary to make cwnd be smaller when the
rate of packet losses is high.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 5 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

Figure 3 Performance according to cwnd’s maximum size when
the loss rate is 5%.

Dynamic responding algorithm
As mentioned above, it has been overlooked that cwnd
needs to be smaller when wireless transmission errors
are high. In this section, we propose an enhanced TCP
to dynamically adjust its transmission rate based on the
packet loss rate as well as the available bandwidth. Since
many previous studies have been proposed to estimate the
available bandwidth, we use one of them, Prairie’s estima-
tion (ABW), which is more stable and accurate than TCP
Westwood’s. In this article, we describe how to estimate
the packet loss rate at TCP sender side, and how to adjust
ssthresh and cwnd according to the estimated bandwidth
and the estimated loss rate.
Measuring accurately the rate of packet losses caused

by wireless errors is almost not possible at transport layer.
Thus, we will estimate the packet loss rate by checking
how often FRRs/RTOs are triggered since TCP invokes
FRRs/RTOs whenever packets are lost. Although our esti-
mation includes the rate of packet losses caused by con-
gestion, it is useful since cwnd needs to be smaller even
when packets are lost due to congestion.
When a kth FRR or RTO is triggered, we assume that

one packet is lost and the kth loss rate is computed based
on the following formula.

Loss ratek = 1
partial total data sent

× 100 (2)

where partial total data sent is the number of data pack-
ets sent by a TCP sender during the time between (k−1)th
FRR/RTO and kth FRR/RTO.
Since the loss rate could fluctuate under dynamic net-

work conditions, we smooth the loss rate using the expo-
nential weighted moving average like the following for-
mula.

SLoss ratek = SLoss rate(k−1)(1 − θk) + Loss ratekθk
(3)

As θk ranging from zero to 1 increases, SLoss ratek is
greatly affected by the current network status. Otherwise,
SLoss ratek is more reflecting the past estimation.
In our scheme, θk is also dynamically determined to

reflect network conditions as shown in the following for-
mula.

θk = Intervalcurrent
Intervalmax

(4)

where Intervalcurrent is the time between (k − 1)th
FRR/RTO and kth FRR/RTO, and Intervalmax is the max-
imum value of Intervalcurrent samples. In other words,
as Intervalcurrent is larger, SLoss ratek reflects the current
estimation greater than the past estimation.
If the loss rate is high, a large cwndmight result in burst

losses or long go-back-N retransmissions. Thus, as the
loss rate increases, cwnd needs to be smaller even when
the bandwidth is sufficient. Our question is how much
cwnd needs to be decreased as the loss rate increases.
To find our best answer, we represent the relation

between cwnd and the loss rate in a simple way as
shown in Figure 4. In the figure, y-axis represents
reduced cwnd, which is the cwnd reduced according to
the loss rate, and x-axis represents the loss rate rang-
ing from 0 to 1. In the graph, cwnd max denotes the
possible maximum value of reduced cwnd when the loss
rate (Sloss rate) is higher than 0, and β is the mini-
mum size of reduced cwnd when the loss rate is higher
than α. Thus, reduced cwnd ranges from β to cwnd max.
As the loss rate (x) increases, reduced cwnd decreases
from its maximum size (cwnd max) according to the solid
line in Figure 4. When the loss rate is higher than α,
reduced cwnd is set to its minimum size (β). This is to
avoid making cwnd be smaller than one segment.
In the graph, “> 0” means the first number higher than

0, thus, we assume it as zero and formulate the inverse
proportion relation between cwnd and the loss rate based

Figure 4 Relation between the loss rate and cwnd.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 6 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

on the two points (0, cwnd max) and (α, β) using the
below linear equation.

y =
{

β−cwnd max
α

× x + cwnd max if 0 ≤ x < α

β if x ≥ α

(5)

The following is our algorithm to update cwnd and
ssthresh according to our estimated bandwidth and loss
rate.
An algorithm updating ssthresh and cwnd when a fast

recovery or a RTO is triggered

1: ssthresh = ABW
2: cwnd = ssthresh / 2
3: reduced cwnd = cwnd
4: if(SLossrate � 0)
5: reduced cwnd =

β−cwnd max
α

× SLossrate + cwnd max
6: reduced cwnd =max(reduced cwnd, β)
7: end if
8: cwnd =min (cwnd, reduced cwnd)

When an FRR or an RTO is triggered, ssthresh is updated
to the estimated available bandwidth (ABW) at line 1
instead of being halved. Since ssthresh is the border for
TCP to decide if its transmission rate increases expo-
nentially or linearly, the recovery time after a packet
loss is affected by ssthresh. As ssthresh is larger, the
recovery time after a packet loss is shorter. By set-
ting ssthresh to ABW, it lets TCP increase its transmis-
sion rate exponentially until cwnd fully utilizes available
bandwidth.
At line 2, cwnd is updated to the halved value of

ssthresh. Although a TCP sender could send data pack-
ets as much as ssthresh without receiving an ACK from
a TCP receiver, we update cwnd to the halved value of
ssthresh. The reason is to avoid causing sudden conges-
tion in a queue by a large cwnd. Since cwnd is smaller than
ssthresh, cwnd will increase exponentially until it reaches
ssthresh.
If the loss rate is zero, cwnd is finally determined to the

halved value of ssthresh at line 8. Otherwise, reduced cwnd
is calculated according to Equation (5) as we mentioned
before. Equation (5) is represented in lines from 5 to 6
of the algorithm. After computing reduced cwnd, cwnd
is readjusted to the minimum value between the halved
value of ssthresh and reduced cwnd at line 8. By tak-
ing the minimum value, it enables to avoid burst losses
caused by insufficient bandwidth as well as the high loss
rate.
The following shows another algorithm to remove

unnecessarily increased idle time of an RTO.

An algorithm updating the back-off value when an RTO
is triggered

1: if(BDP > the halved value of cwnd max)
2: initializes the back-off value
3: end if

When successive RTOs are triggered, the back-off value
exponentially increases, which incurs a huge idle time of
the sender. If the network is not congested, such unnec-
essarily increased back-off value will be just a severe
waste of bandwidth and time. Our scheme initializes the
back-off value if the network is not congested when suc-
cessive RTOs are triggered. In order to check if network
is congested or not, our scheme uses the bandwidth-delay
product (BDP), which is calculated by the product of the
available bandwidth and the round trip time (it is well
known that TCP’s performance is maximized when cwnd
is equal to BDP).
At line 1 in the algorithm, our scheme checks if cur-

rent BDP is larger than the halved value of cwnd max
when an RTO is triggered. If the condition is satisfied, we
assume that the network is not congested. In that case, our
scheme initializes the back-off value in order to avoid an
unnecessary idle time.
As shown in the algorithms, our scheme lets TCP

respond to every FRR/RTO dynamically by considering
the available bandwidth and the loss rate. By doing so,
our scheme helps TCP avoid causing frequent burst losses
while it utilizes the available bandwidth. As a result, it has
significant effects to avoid the performance degradation
caused by the congestion irrelative FRRs/RTOs.
If we use a quadratic equation instead of the linear

equation in (5), it would be better to adjust the trans-
mission rate more appropriately, but it could cause more
overhead of the complexity. In order to avoid such over-
head, we used the linear equation in (5). Compared to the
conventional TCP, our scheme does more computations
to control its transmission rate according to the network
conditions. The complexity overhead of our scheme is
based on the simple linear equation in (5). Since the value
of x in the equation ranges from 0 to 1, the computation
in the equation is simple and the overhead is reasonable.
To maximize the performance enhancement of our

scheme, we conducted extensive experiments to find the
best value for α, β , and cwnd max, and the results will be
shown in the following section.

Experimentation and analysis
In this section, we observe how our scheme adjusts the
transmission rate per FRR or RTO, and evaluate our
scheme in terms of goodput, fairness, and friendliness
using a network simulator, QualNet [17]. For this, we
design more than 100 different simulation scenarios by

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 7 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

Table 1 Simulation parameters

Simulator QualNet 4.5

Topology A chain topology, a dumbbell topology

Bandwidth Wireless (1/2/5/11Mbps), wired (10/100Mbps)

Propagation delay 1/5/10/30/60/90ms

Application FTP/generic

Transport protocol TCP Reno

TCP send/recv buffer 50000 Bytes

TCP packet size 1024 Bytes

UDP packet size 512 Bytes

Queuing policy DropTail

Simulation time 200 s (including 35-s warm-up)

setting different values of network parameters such as
the loss rate, and the hop count under various network
topologies. Table 1 shows the detailed parameters used
in our simulation scenarios. We used TCP Reno as con-
ventional TCP and its congestion window size is limited
to hold 50 packets. In all experiments, each scenario lasts
about 200 s, and data packets of TCP are continually
transmitted during the simulation time.
Each scenario has wireless losses as well as congestion

losses. To make congestion losses, we increased the num-
ber of TCP flow gradually like 1, 3, 6, 12, 15, 18, and 21
flows between the sender and the receiver. As the num-
ber of TCP flow increases, the loss rate due to congestion
also increases. To incur wireless losses, we added wireless
transmission errors at the wireless link using QualNet’s

fault interface. The packet loss rate in the scenarios ranges
from 0 to 15%, and the ratio of wireless losses to conges-
tion losses is approximately one of 1:0, 2:8, 3:7, 4:6, 5:5, 6:4,
7:3, 8:2, 0:1 in a scenario.
Throughout the extensive scenarios, we aim (1) to

observe how often congestion irrelative FRRs/RTOs are
triggered, (2) to suggest the best values for α and β in
our algorithm, (3) to check if our scheme works as we
intended, (4) to measure the performance enhancement
of our scheme and compare it with previous studies, (5) to
evaluate our scheme’s fairness and friendliness.

Three types of FRRs/RTOs
In our experiment, we observed how often congestion
irrelative FRRs/RTOs are triggered in a simple topology
shown in Figure 5a. The simple topology consists of two
nodes and a base station. S denotes the sender, and D
denotes the receiver. S connects to the base station via a
10-Mbps wired link with 10-ms propagation delay, and the
base station is linked to D via a 2-Mbps wireless link with
1-ms propagation delay.
And we modified QualNet’s source code to trace all the

packet information related to the triggered FRRs/RTOs
into trace files in a scenario. During each scenario simula-
tion, we traced all information of the packets dropped at
MAC Layer into a file named by “DroppedAtMac”, traced
all the packets dropped at network layer into “DroppedAt-
Network”. Also, we traced all the packets which triggered
FRRs or RTOs at Transport layer into “FRRatTransport”
or “RTOatTransport”, respectively.

Figure 5 Three types of FRRs/RTOs.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 8 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

When the simulation ends, we checked if each packet
at “FRRatTransport” or “RTOatTransport” exists at
“DroppedAtMac” or “DroppedAtNetwork”. If a packet of
“FRRatTransport” exists at “DroppedAtMac”, we assumed
that the FRR is triggered due to wireless errors, and we
treated it as wireless FRRs. If the packet is found at
“DroppedAtNetwork”, we assumed that the FRR is trig-
gered due to congestion, and we treated it as congestion
FRRs. In a similar way, if a packet of “RTOatTranport”
exists at “DroppedAtMac”, we treated the RTO as wireless
RTOs. If the packet is found at “DroppedAtNetwork”, we
treated the RTO as congestion RTOs. Lastly, if the packet
is not found either at “DroppedAtMac” or “DroppedAt-
Network”, we assumed that the FRR or the RTO is trig-
gered by sudden delay, and we treated it as spurious FRRs
or RTOs.
Figure 5 shows the results of our observation. In

Figure 5b, each of CRTO, WRTO, and SRTO represents
congestion, wireless, and spurious RTOs, respectively, and
the ratio of each of them is shown in a solid line bar graph.
Each of CFRR, WFRR, and SFRR represents congestion,
wireless, and spurious FRRs, respectively, and the ratio is
shown in a dashed line bar graph.
For example, when the loss rate is 3% and the ratio

of wireless losses to congestion losses is 7:3, 44 RTOs
are triggered in a scenario, and each ratio of congestion
and wireless RTOs is, respectively, 11 and 89% among 44
RTOs. In case of FRRs, 28 FRRs are triggered, and each
ratio of congestion, wireless, and spurious FRRs is 61, 18,
and 21%, respectively.
In Figure 5b, we can see that as congestion increases

(to the right direction in the figure), the ratio of CRTO or
CFRR increases. On the other hand, as the ratio of wire-
less losses increases (to the left direction), the ratio of
congestion irrelative FRRs/RTOs increases. In either case,
however, the ratio of congestion irrelative FRRs/RTOs
is always higher than 30%. If we consider the fact that
most packets are lost due to wireless transmission errors
in wireless networks, the ratio of congestion irrelative

FRRs/RTOs might be much higher than 30% in real net-
works.
Figure 5c shows the number of retransmitted packets in

a scenario according to the loss rate, and also shows the
ratio of “unnecessary” retransmitted packet among all the
retransmitted packets. For example, when the packet loss
rate is 1% and the ratio of wireless losses to congestion
losses is 0:1 in a scenario, 727 packets are retransmit-
ted (in Figure 5c), and 30% of them are unnecessarily
retransmitted (in Figure 5d). From the two graphs, we
can see that, as the ratio of wireless losses increases, the
ratio of “unnecessary” retransmitted packet significantly
increases. In the worst case, almost 90% of retransmitted
packets are unnecessarily retransmitted.

Testing for α and β

Whenever an FRR/RTO is triggered, our scheme updates
cwnd and ssthresh according to the linear equation (5)
as described in “Dynamic responding algorithm” section.
The slope of the equation represents the degree of reduc-
tion in cwnd according to the loss rate, and that is
determined by α, β , and cwnd max.
To find the best values for α,β , and cwnd max, we tested

various values between the lower bound and the upper
bound of each variable. For β , which is the minimum size
of cwnd, we tested the values ranging from one segment
to the halved size of the maximum value of cwnd, which
is 65535 in conventional TCP. For α, which is a threshold
to prevent cwnd from being smaller than β , we tested the
values ranging from 0.1 to 10%. For cwnd max, which is
the possible maximum value of reduced cwnd, we tested
the values ranging from 10000 to the maximum value of
cwnd, 65535.
After testing various values, we chose the strong can-

didates for the values, and again conducted experiments
to see the best combination. Figure 6a,b shows the
results. First, Figure 6a shows the performance compar-
ison according to α and β when cwnd max is fixed to
65535. In the figure, we chose the strong candidates of

Figure 6 Testing values for α and β.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 9 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

the combinations of α and β . After that, in Figure 6b,
we tested various values for cwnd max with the strong
candidates of α and β . The result shows that the per-
formance is the best when α, β , and cwnd max is 0.5%,
10000 bytes, and 25000 bytes, respectively. Namely, while
cwnd decreases linearly as the loss rate increases based
on the equation, these parameters indicate that (1) if the
loss rate is higher than zero, cwnd cannot be higher than
25000, and (2) if the loss rate is higher than 0.5%, cwnd
cannot be smaller than 10000. The following results in this
article are based on these values.

Comparison of responding behaviors to FRRs/RTOs
Using a simple scenario, we observed if our scheme
responds to packet losses as we intended, and also com-
pared our scheme’s response with conventional TCP’s
response. In the scenario, only one TCP connection flows
from the source to the destination in the simple topology.
Thus, packets are lost only due to wireless transmission
errors and the loss rate is about 5%.
In Figure 7a,b, we compared the variations of cwnd

between TCP and our scheme during the go-back-N
retransmissions after an RTO expires in the scenario. In
Figure 7a, TCP’s cwnd becomes one segment (1024) at
54.70 s when an RTO is triggered, and ssthresh reduces
into 5120. Whenever an ACK is received, cwnd increases
gradually, and it is finally set to 6480 at 54.87 s when the
retransmissions end. On the other hand, our algorithm’s
ssthresh becomes 132811 at 54.70 s by reflecting the avail-
able bandwidth. And, its cwnd becomes about 11024 at
54.75 s by reflecting the available bandwidth and the loss

Table 2 Comparison of TCP and the proposed scheme

Comparison RTOs FRRs Retransmitted
packets

Goodput

TCP 56 82 711 607057

Dynamic Responding 32 82 419 899390

rate. When the retransmissions end, cwnd of our scheme
is set to 10000 at 54.82 s.
During the go-back-N retransmissions of the RTO, TCP

retransmitted 13 packets and also our scheme retransmit-
ted 13 packets. We checked how much time it took to
retransmit the packets in each scheme. In case of TCP, it
took 0.158 s to retransmit 13 packets, and in case of our
scheme it took 0.114 s to retransmit the same number of
packets. This shows that our scheme recovered from the
loss faster than TCP by avoiding reducing unconditionally
cwnd and ssthresh.
Figure 7c,d shows the differences between TCP’s res-

ponse and our scheme’s response when an FRR is
triggered. In each graph, the variations of cwnd/ssthresh
are represented. In Figure 7c, TCP sends the lost packet,
which triggered the FRR, at 27.44 s, and it increases cwnd
by one segment whenever a duplicate ACK is received
until 27.49 s. When a new ACK is received, cwnd is set to
the halved value (5245) at 27.57 s.
Our scheme’s response is similar with that of TCP until

a new ACK is received as shown in Figure 7d.When a new
ACK is received, our scheme does not blindly halve cwnd,
but it updates cwnd according to the available bandwidth

Figure 7 Comparison of response to FRR and RTO.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 10 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

Figure 8 Comparison in the back-off value.

and the loss rate. As a result, our scheme’s cwnd is similar
with the previous cwnd (12631).
In Table 2, we compared how many FRR or RTOs are

triggered in the scenario in each response. As shown in
the table, when every packet loss is responded by the
conventional way of TCP, 711 data packets are retrans-
mitted, and 56 RTOs/82 FRRs are triggered. However,
when all the packet losses are responded by our scheme,
only 419 data packets are retransmitted, and 32 RTOs/82
FRRs are triggered in the same scenario. This table shows
that our scheme could reduce the number of the conges-
tion irrelative FRRs/RTOs, and the number of unneces-
sarily retransmitted packets by responding appropriately
to the triggered FRRs/RTOs according to the network

conditions. As a result, our scheme’s performance reached
148% of TCP’s performance in the scenario.

Comparison of back-offmechanism
We compared the variations of the back-off value when
each of TCP and our scheme is applied to a scenario in
the simple topology. In the scenario, there are 10 con-
nections between the sender and the receiver, and the
loss rate is about 10% (the ratio of wireless losses to con-
gestion losses is 3:7). In Figure 8a, TCP’s back-off value
reaches 32 in the worst case, while our scheme’s back-off
value reaches 8 in the same scenario. As the back-off value
increases, the waiting time for the sender to trigger an
RTO exponentially increases.

Figure 9 Results in a simple topology.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 11 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

Figure 10 A dumbbell topology.

We checked how much time the sender spent time
on waiting to trigger RTOs. Figure 8b shows the packet
sequence number around when the back-off value reaches
32 in the scenario. As shown in the figure, successive
RTOs are triggered at 105.36, 108.76, 115.26, 127.65, and
151.30. In each RTO, the sender’s waiting time increases
exponentially like about 2, 3, 6, 12, and 24 s. In other
words, a TCP sender wastes 47 s during the time from 103
to 151 s in the scenario.
Such back-off mechanism is necessary only when con-

gestion is heavy. Otherwise, it just wastes time and band-
width. We checked the queue usage to see if there was
heavy congestion when the back-off value reached 32.
Figure 8c shows the queue usage during the time from
115 to 124 s before the last successive RTO is triggered.
As shown in the figure there is no congestion until 119 s.

After 119 s, the queue usage is getting full and then it is
almost empty at about 120 s. During the idle time of a TCP
sender assuming that the network is severely congested,
the queue usage is not always high, and it changes dynam-
ically by other TCP connections. Consequently, such long
back-off value was unnecessary to a TCP sender.
Our scheme does not increase blindly the back-off value

when successive RTOs are triggered. It increases the back-
off value only when the network is assumed to be con-
gested. For this, our scheme checks if BDP is larger than
the halved value of cwnd max as we mentioned before.
If it is, it initializes the back-off value assuming the net-
work is not congested. This is why the back-off value of
our scheme is lower than that of TCP in Figure 8a. As a
result, our scheme can remove unnecessary idle time of
the sender and it outperforms TCP significantly.

Figure 11 Performance comparison.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 12 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

Figure 12 Results in a chain topology.

Performance evaluation
We evaluated the performance of our scheme under
various topologies, and compared it with the previous
studies such as F-RTO [14,15], JTCP [9], and Prairie [18].
F-RTO is one of previous schemes to detect spurious
RTOs, JTCP is one of previous schemes to detect wire-
less FRRs/RTOs, and Prairie is one of previous schemes to
respond FRRs/RTOs according to available bandwidth.
Figure 9 shows the results in the simple topology.

The graph in Figure 9a is from the scenarios when all
FRRs/RTOs are triggered regardless of congestion. In the
graph, we compared the two performances of TCP Reno
and our scheme according to the loss rate. As shown in the
graph, there is no difference when the loss rate is 0%. How-
ever, as the loss rate increases, our scheme outperforms
significantly TCP. For example, when the loss rate is 1%,
our scheme’s performance is 106% of TCP’s. And, when
the loss rate is 6%, our scheme’s performance is 148% of
TCP’s.
In Figure 9b, we checked the performance variations of

our scheme according to the ratio of wireless losses to
congestion losses. The graph is from the scenarios whose
loss rate is 5% and the ratio of wireless losses to conges-
tion losses is 1:9, 2:8, or 8:2. It shows that the performance
enhancement is significantly different according to the
ratio of wireless losses to congestion losses even though

the loss rate is the same (5%). For example, when the ratio
is 1:9 (congestion losses are much higher), the enhance-
ment is 6%. However, when the ratio is 8:2 (wireless losses
are much higher), the enhancement is about 32%. This
observation shows that our scheme’s performance is bet-
ter as the ratio of the congestion irrelative FRRs/RTOs
increases.
We also evaluated the performance of our scheme in

a more complex dumbbell topology shown in Figure 10.
In the figure, TCP traffics flow from left to right while
UDP traffics flow from right to left. TCP’s packet sizes are
fixed to 1000 bytes (UDP’s 512 bytes), and TCP receivers
always follow the delayed ACKs algorithm as well as the
Nagle algorithm. We designed about several hundreds of
scenarios by changing the values, n, m, the bandwidth
(bw1, bw2), the propagation delay (p1, p2), and the wireless
fault rate (fault) (n ranging from 1 to 12, m from 1 to 10,
bw1 is one of 10/100Mbps, bw2 is one of 1/2/5/11Mbps,
p1 is one of 5/10/30/60/90ms, p2 is 1ms, wireless trans-
mission errors (fault) occurs one of 0/5/15/30/45/60/75
times during a 200-s simulation).
In Figure 11a, b, c, d, we measured and compared the

performances of the schemes according to the loss rate,
the number of reverse traffic, and the propagation delay. In
Figure 11a, we can see that Prairie’s performance severely
degrades as the loss rate increases while our scheme

Figure 13 A simple dumbbell topology.

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 13 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

Figure 14 Fairness and friendliness.

shows the highest performance. And we counted the
number of unnecessarily retransmitted packets according
to the loss rate in Figure 11b. As shown in the graph,
our scheme has the lowest unnecessary retransmission
while the unnecessary retransmission in previous schemes
increases gradually according to the loss rate. Even when
the reverse traffic/the propagation delay increases, our
scheme shows better performance compared to the other
schemes as shown in Figure 11c, d. This is because our
scheme has an ability to adjust the transmission rate
dynamically and appropriately according to the network
conditions.
Lastly, we evaluated our scheme under a multi-hop

wireless network. Figure 12a shows a 4-hop chain
topology of IEEE 802.11b wireless nodes. The bandwidth
of the wireless link is 11Mbps with 1-ms propagation
delay. In this topology, we observed if the performance
enhancement of our scheme degrades or not as the num-
ber of hops increases.
Figure 12b shows the result in the chain topology. The

graph shows that our scheme’s performance is the highest
among the previous studies, and its performance increases
according to the number of hops. This is because as the
number of hops increases, the ratio of the congestion irrel-
ative FRRs/RTOs increases due to sudden delay or high
wireless errors and our scheme has advantages to handle
such FRRs/RTOs.
Throughout the three different topologies, we evaluated

our scheme and compared it with the previous studies.
The results consistently showed that our scheme has the
highest performance among the previous studies, and
its performance is better as the ratio of the congestion
irrelative FRRs/RTOs increases.

Fairness and friendliness
In order to assess the ability of our scheme in allowing
a fair distribution of bandwidth, we also evaluated our
scheme in terms of fairness and friendliness. The network
topology used in this simulation experiment is the single-
bottleneck dumbbell topology as shown in Figure 13.

Fairness is the bandwidth allocation measure for the
multiple connections of the “SAME” TCP. To evaluate the
fairness, we use the fairness index mentioned in [23]. The
fairness index is calculated using the following formula.

Fairness = (
∑

xi)2

n(
∑

x2i)
(6)

where xi is the throughput of the ith connection, and n
is the number of the same TCP connections. The fairness
index ranges from 1/n to 1.0; a perfectly fair bandwidth
allocation results in a fairness index of 1, and if all band-
width are consumed by one connection, it results in 1/n.
TCP Reno is well known to get fair network capacity. In

this experiment, we measured the fairness of our scheme
and compared it with that of TCP Reno. Figure 14a shows
the fairness of TCP Reno and that of our scheme accord-
ing to the number of the same connections. For example,
when two TCP Reno connections are running from the
source to the destination in Figure 13, the fairness of two
TCP Reno connections is about 0.995. And, when two
connections of our scheme are running, our scheme’s fair-
ness is about 1. Although the fairness index of our scheme
tends to fluctuate according to the number of connections,
it is very similar with TCP’s fairness index and the values
are higher than 0.986 even when many connections com-
pete one another. It means that our scheme as well as TCP
achieves satisfactory fairness index.
To check if our scheme is able to coexist friendly

with other TCP connections such as TCP Reno, we did

Table 3 Friendliness between two different TCP variants

TCP
source

Proposed
scheme source

TCP average
throughput

Proposed scheme
average throughput

1 9 296610 309328

3 7 284701 317354

5 5 286520 327523

7 3 284258 359688

9 1 298804 391007

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 14 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

some simulations. First, we evaluated how one connec-
tion of our scheme influences on one TCP Reno connec-
tion. Figure 14b shows the result. “TCP1 TCP2” shows
the throughput of each of two TCP Reno connections
when the two Reno connections compete with each other.
For example, the throughput of one TCP connection is
1,308,284 Bytes, and the throughput of the other TCP con-
nection is 1,427,256 Bytes. “Dynamic1 Dynamic2” shows
the throughput of each connection of our scheme when
two connections of our scheme compete with each other.
“TCP Dynamic” shows the throughput of each when
one TCP Reno competes with one connection of our
scheme.
If we compare the throughput of TCP1 in “TCP1 TCP2”

with that of TCP in “TCP Dynamic”, we can see that
TCP Reno’s performance does not degrade due to the
connection of our scheme. It means that our scheme is
very friendly to TCP Reno while it outperforms TCP
Reno.
Using more connections, we checked if the connections

of our scheme can coexist with TCP Reno in a friendly
way. Table 3 shows another result when ten connections
of TCP Reno and our scheme are running from the source
to the destination in Figure 13. The first and the sec-
ond columns in the table show the number of TCP Reno
connections and that of our scheme’s connections, respec-
tively, among the ten connections. The third and the forth
columns show the average throughput of each scheme.
For example, when three TCP Reno connections com-
pete with seven connections of our scheme, the average
throughput of TCP Reno is 284,701 Bytes, and that of our
scheme is 317,354 Bytes. In this table, we can also see that
our scheme is friendly to TCP Reno while it outperforms
TCP Reno.

Conclusion
In wireless networks, TCP’s performance significantly
degrades since its congestion control algorithms (FRRs
and RTOs) are often triggered regardless of congestion.
To avoid such performance degradation, we proposed an
enhanced TCP to dynamically adjust the transmission rate
based on the available bandwidth and the loss rate. When
an FRR/RTO is triggered, our scheme adjusts the trans-
mission rate in proportion to the available bandwidth, and
also re-adjusts it in inverse proportion to the loss rate.
By doing so, our scheme has significant effects to avoid
the performance degradation caused by the congestion
irrelative FRRs/RTOs.
Throughout the extensive experiments, we showed that

our scheme significantly outperforms previous studies
while it maintains the fair and friendly behavior to other
TCP connections. Specially, as the number of the conges-
tion irrelative FRRs/RTOs increases, our scheme showed
better performance compared to the other schemes. Since

our scheme requires only sender-side modification of
TCP, it does not need any support either from the receiver
side or from the intermediate nodes. Thus, it is convenient
to deploy our scheme in wireless networks to improve
TCP’s performance.

Competing interest
The authors declare that they have no competing interests.

Acknowledgments
This research was supported by Basic Science Research Program through the
National Research Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology(2012R1A1A2043531).

Author details
1 Department of Computer Engineering, Dong-A University, Busan, South
Korea. 2 Department of Computer Engineering, Pusan National University,
Busan, South Korea.

Received: 14 November 2011 Accepted: 9 August 2012
Published: 25 September 2012

References
1. GR Wright, WR Stevens, TCP/IP illustrated, Volume 2, The Implementation

(Addison Wesley, Reading, MA, 1995), pp. 891–1025
2. M Allman, V Paxson, W Stevens, TCP congestion control, RFC2581 (1999),

http://tools.ietf.org/html/rfc2581. Accessed 29 August 2012
3. WR Stevens, TCP/IP Illustrated, Volume 1, The Protocols (Addison Wesley,

Reading, MA, 1994), pp. 223–274
4. V Paxson, M Allman, Computing TCP’s retransmission timer, RFC2998

(2000), http://tools.ietf.org/html/rfc2988. Accessed 29 August 2012
5. A Gurtov, in Proc. IFIP TC6/WG6.8 Working Conference on Emerging Personal

Wireless Communications, vol. 195 Effect of delays on TCP performance.
(Lappeenranta, Finland, August 2001), pp. 87–108

6. A Gurtov, R Ludwig, in Proc. 22th Joint conference of the IEEE Computer and
Communications, vol. 3 Responding to spurious timeouts in TCP.
(San Francisco, USA, March 2003), pp. 2312–2322

7. J Wang, M Zhou, Y Li, in Proc. of 7th IEEE International Conference on High
Speed Networks andMultimedia Communications, LNCS vol.3079,
Toulouse, France Survey on the end-to-end internet delay
measurements. (Springer-Verlag, Toulouse, 2004), pp. 155–166

8. G Yang, R Wang, M Gerla, MY Sanadidi, TCPW bulk repeat. Comput.
Commun. 28(5), 507–518 (2005)

9. EH-K Wu, M-Z Chen, JTCP: jitterbased TCP for heterogeneous wireless
networks. IEEE J. Sel. Areas Commun. 22(4), 757–766 (2004)

10. C-H Lim, J-W Jang, Robust end-to-end loss differentiation scheme for
transport control protocol over wired/wireless networks. IET Commun.
2(2), 284–291 (2008)

11. R Ludwig, RH Katz, The Eifel algorithm: making TCP robust against
spurious retransmissions. ACM SIGCOMM Comput. Commun. Rev. 30(1),
30–36 (2000)

12. R Ludwig, M Meyer, The Eifel detection algorithm for TCP, RFC3522
(2003), http://tools.ietf.org/html/rfc3522. Accessed 29 August 2012

13. R Ludwig, A Gurtov, The Eifel response algorithm for TCP, RFC4015 (2005),
http://tools.ietf.org/html/rfc4015. Accessed 29 August 2012

14. P Sarolahti, M Kojo, K Raatikainen, F-RTO: an enhanced recovery algorithm
for TCP retransmission timeouts. ACM SIGCOMM Comput. Commun. Rev.
33(2), 51–63 (2003)

15. P Sarolahti, M Kojo, Forward RTO-recovery (F-RTO): an algorithm for
detecting spurious retransmission timeouts with TCP and the stream
control transmission protocol (SCTP), RFC4138 (2005), http://tools.ietf.
org/html/rfc4138. Accessed 29 August 2012

16. K Tan, Q Zhang, W Zhu, in Proc. IEEE Global Telecommunications
Conference, vol. 6 STODER: a robust and efficient algorithm for handling
spurious retransmit timeouts in TCP. (St. Louis, USA, December 2005), pp.
3692–3696

17. SCALABLE Network Technologies: PRODUCTS QualNet, http://http://
www.scalable-networks.com/. Accessed 29 August 2012

http://tools.ietf.org/html/rfc2581
http://tools.ietf.org/html/rfc2988
http://tools.ietf.org/html/rfc3522
http://tools.ietf.org/html/rfc4015
http://tools.ietf.org/html/rfc4138
http://tools.ietf.org/html/rfc4138
http:// http://www.scalable-networks.com/
http:// http://www.scalable-networks.com/

Park et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:304 Page 15 of 15
http://jwcn.eurasipjournals.com/content/2012/1/304

18. N Parvez, E Hossain, TCP Prairie: a sender-only TCP modification based on
adaptive bandwidth estimation in wired-wireless networks. Comput.
Commun. 28(2), 246–256 (2005)

19. L-P Tung, W-K Shih, T-C Cho, YS Sun, MC Chen, TCP throughput
enhancement over wireless mesh networks. IEEE Commun. Mag. 45(11),
64–70 (2007)

20. Z Fu, P Zerfos, H Luo, S Lu, L Zhang, M Gerla, in 22th Annual Joint
Conference of the IEEE Computer and Communications Societies
(INFOCOM2003), vol. 3 The impact of multihop wireless channel on TCP
throughput and loss. (San Francisco, USA, March 2003), pp. 1744–1753

21. M Hassan, R Jain, High Performance TCP/IP Networking: Concepts Issues, and
Solutions (Pearson/Prentice Hall, New Jersey, USA, 2004), pp.125–151

22. YJ Zhu, L Jacob, On making TCP robust against spurious retransmissions.
Comput. Commun. 28(1), 25–36 (2005)

23. A Aggarwal, S Savage, T Anderson, in Nineteenth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM 2000), vol. 3
Understanding the performance of TCP pacing. (Tel Aviv, Israel, March
2000), pp. 1157–1165

doi:10.1186/1687-1499-2012-304
Cite this article as: Park et al.: TCP’s dynamic adjustment of transmis-
sion rate to packet losses in wireless networks. EURASIP Journal on Wireless
Communications and Networking 2012 2012:304.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Introduction
	TCP's misbehavior caused by wireless losses
	Related study and motivation
	Dynamic responding algorithm
	Experimentation and analysis
	Three types of FRRs/RTOs
	Testing for α and β
	Comparison of responding behaviors to FRRs/RTOs
	Comparison of back-off mechanism
	Performance evaluation
	Fairness and friendliness

	Conclusion
	Competing interest
	Acknowledgments
	Author details
	References

