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Abstract

bandwidth barrier of existing sampling schemes in CRNs.

Spectrum sensing is a key technique in cognitive radio networks (CRNs), which enables cognitive radio nodes to
detect the unused spectrum holes for dynamic spectrum access. In practice, only a small part of spectrum is occupied
by the primary users. Too high sampling rate can cause immense computational costs and sensing problem. Based on
sparse representation of signals in the frequency domain, it is possible to exploit compressed sensing to transfer the
sampling burden to the digital signal processor. In this article, an effective spectrum sensing approach is proposed for
CRNs, which enables cognitive radio nodes to sense the blind spectrum at a sub-Nyquist rate. Perfect reconstruction
from fewer samples is achieved by a blind signal reconstruction algorithm which exploits £,-norm (0 < p < 1)
minimization instead of £ or £ /£, mixed minimization that are commonly used in existing signal recovery schemes.
Simulation results demonstrated that the £,-norm spectrum reconstruction scheme can be used to break through the

Introduction
In cognitive radio networks (CRNSs), spectrum sensing
aims to identify the frequency support of a signal, which
consists of spectrum intervals that the power of the signal
exceeds that of noise [1]. Recently, many researchers have
focused their attentions on spectrum sensing in CRNs, in
which the cognitive radio (CR) nodes are able to perform
the wideband spectrum sensing to detect the unoccupied
frequency bands for temporal using. As a very promising
technology in CRNs [2,3], the compressed sensing theory
can be used to alleviate the dynamic spectrum sensing
problem by blindly detecting the spectrum holes [3-5].
The basic idea behind compressed sensing (CS in short)
is to sample compressible signals at a lower rate than
the traditional Nyquist, and then reconstruct these sig-
nals with compressed measurements [3]. In CS, the sam-
pling and compression operations are combined into a
low complexity compressed sampling [4], in which com-
pressible signals can accurately be reconstructed from
a set of random linear measurements by using nonlin-
ear or convex reconstruction algorithms [6,7]. Typically,

*Correspondence: s.li@swansea.ac.uk
1 Key Laboratory of Biomedical Information Engineering of Ministry of
Education, Xi'an Jiaotong University, Xi'an 710049, China

College of Engineering, Swansea University, Swansea, SA2 8PP, UK
Full list of author information is available at the end of the article

@ Springer

the number of measurements in CS is much fewer than
that in Nyquist sampling, thus leading to a significant
reduction in sampling rates. Therefore, the requirements
to analog-to-digital converter resource can be reduced
significantly, which is of great importance for wideband
communication systems [4]. Previously, a lot of CS-based
techniques have been proposed [3,4]. The new CS the-
ory is hoped to significantly reduce the sampling rate
and computational costs at a CR node for compressible
signals [8].

A compressible signal means that it can sparsely be rep-
resented in some basis, and can exactly be reconstructed
only with a small set of random projections on an incoher-
ent basis [8-10]. Recently, many research efforts have been
done on random projection. The authors of [11] proposed
a collaborative compressed spectrum sensing, where the
compressed spectrum reconstruction is modeled with a
gaussian process framework model. The authors of [12]
investigate the problem of dynamic resource allocation
in CRNs, where several CS-based techniques are used to
detect occupied spectral bands from compressed mea-
surements. For current CRNs, the CS has been used to
alleviate the sampling bottleneck, which aims at decreas-
ing the sampling rates for the acquisition of compressible
signals [13,14].

© 2012 Li et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



Li et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:306

http://jwcn.eurasipjournals.com/content/2012/1/306

The CS techniques that have been used in spectrum
sensing can be classified into two categories: (1) Con-
vex relaxing-based methods, such as basis pursuit (BP)
[15,16] and Dantzig Selector [17]; (2) Greedy algorithm-
based methods, such as matched pursuit (MP) and its
variants [18]. Recently, many improved MP-based meth-
ods have been reported such as orthogonal matched pur-
suit [19], regularized orthogonal matched pursuit [20],
compressive sampling matching pursuit [21], and so
forth. Actually, the former or its variants can get higher
reconstruction accuracy, however it may cause expensive
computation costs. The greedy algorithm-based meth-
ods have less computing complex, however the recon-
struction accuracy is limited compared with the convex
programming. The basis pursuit denoising is commonly
used in signal processing due to its additional denois-
ing performance advantage [16,22]. The advantages of the
greedy algorithm-based approaches are fast, stable, uni-
form guarantees, however it requires a slightly stronger
condition on the restricted isometry property (RIP) con-
dition than first category [23].

The spectrum sensing in CRNs faces three main tech-
nical challenges: (1) The sampling rate, too high sampling
rate may cause very high cost of signal processing and
storage; (2) The design of radio front-end is very diffi-
cult, the computation intensive energy or feature detec-
tion operations are applied in many existing spectrum
sensing methods. However, by using CS-based approach,
the spectrum detection can be simplified; and (3) high-
speed DSP that operates at or above the Nyquist rate
is used in conventional spectrum estimation, which may
cause failure of exactly signals reconstruction because
of the high requirement on spectrum sensing timing
windows [3].

In this article, we aim at developing an effective CS-
based spectrum sensing approach at affordable complex-
ity. First, we take a multi-coset scheme to decompose
the spectrum in CRNs. One of the goals of each CR
is to effectively detect the unused spectrum holes while
the spectrum sparsity is known a priori for the dynamic
spectrum access of CRs. The cognitive spectrum sens-
ing is decomposed into two stages: spectrum sensing and
spectrum reconstruction. In spectrum sensing, the sensing
time to find the spectrum holes is critical for the ‘cogni-
tion’ of the CRs. On the other hand, the spectrum recovery
requires better anti-noise performance. In order to cope
with these challenges, we focus our works on the following
issues:

1. A CS-based spectrum sensing scheme is proposed
which can adaptively sense the blind occupied bands
with a sampling rate lower than that of Nyquist;

2. In the spectrum reconstruction, we proposed an
improved block sparse signal model, in which an
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approximate £,-norm (0 < p < 1) minimization is
used to improve the reconstruction quality and speed
spectrum.

3. To further enhance the performance and
reconstruction speed, an iterative weighted scheme is
proposed to approximate the £,-norm optimization
problem, by doing this the convergence speed can be
enhanced in reconstruction.

Notation: For vectors/matrices the superscript, T,
denotes transpose. A represents the (/, k)th element of a
matrix A. ||x|| denotes the £3-norm of vector x. In general,
x|, denotes the £,-norm of x that is defined as ||x|, =
(Zfil |x;|?)1/P. The common notations that summarized
in Table 1 is used in this article.

System models

Signal model

In practice, a signal can always be sparsely or near-sparsely
represented on a transform domain [24]. An N-length
signal x can easily be described as

X = W (1)

where the N x 1 vector 6 is the K-sparse representation of
x, and K is the number of nonzero elements of 6 (K < N).
W = {1, ¥2,...,¥Nn}isan N x N transform matrix, and
Y;(i = 1...N) is the similarly sampled basis function.

Table 1 Notation

x(t) A continuous-time signal with finite energy

X(H) The Fourier transform of x(t)

x[n] Bounded energy sequence

v Vector

v;, or v(i) ith entry of v

v(f) Vector that depends on a continuous parameter f

[ ] Matrix

L7 ikth entry of ®

P, ith column of ®

r: Samples vector of a signal at time domain

re Samples vector of a signal at frequency domain

F Non-zero frequency-domain support

gl g number of blocks and L denotes the number of all blocks
B, B; Bandwidth of sub-band, B; denotes the i-th sub-band

Q Threshold for blind spectrum reconstruction

IIxllo £o-norm of x

11l €,-norm of x, which is defined as [|x||, = (X, [x;]P)!/P

I(A) Support of A
M Denote a set of signals in CRN
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For a time window as ¢ €[0, Tp], N samples are neces-
sary for Nyquist theorem to exactly reconstruct the power
spectrum density.

x = Fr; (2)

where F is the discrete-time Fourier transform (DFT)
matrix and r; is the sample vector of a real-value signal
r(t) which needs to be reconstructed from samples x.

As mentioned above, the CS is able to accurately recon-
struct signals only with a small portion of samples with
size of M (M <« N)

Y= dx (3)

in which y denotes an M-length measurement vector,
and @ is the measurement matrix. The spectrum of r(¢)
can accurately be reconstructed when the measurement
y is available. Because M <« N so the sample rate can
be reduced significantly. Here, we aim at developing a
spectrum sensing scheme with fewer non-adaptive mea-
surements where @ is well presented.

Each CR node is able to classify and estimate spectrum
of a signal r(¢) by using the sample set x [3]. Suppose that
the total frequency range is available as BHz, then each
CR node periodically senses the spectrum environment to
find spectrum holes for opportunistic use [25]. Following
assumptions are made:

1. The frequency boundaries are known to the CR and
the bandwidth of the spectrum bands occupied by
each CR is much less than B.

2. The number of bands Q is known and their location
are unknown to the CR nodes. In a time burst, the
locations and the number of bands Q keep
unchanged but may vary for different time bursts.

3. The signal power spectrum density (PSD) over each
spectrum subband B,, is smooth, however the PSD
over two neighboring bands are independent.

Signal sampling model and problem formulation

For a time-continuous band-limited signal r(t), its Fourier
transform can be calculated as X(f) = x = W0, which is
piecewise continuous in frequency f. We assume that the
r(t) is a band-limited signal in the non-zero frequency-
domain support F, and X(f) = O for f ¢ F.

We aim to exactly reconstruct r(¢) from a set of sam-
ples based on following constraints: (1) r(¢) is blind which
means the locations of bands of r(t) are not available in
signal acquisition and reconstruction; (2) The sampling
rate should be minimal for exactly reconstruction; (3) The
signal can be reconstructed with a high probability even
when ambient additive and white noise involved.

In Nyquist sampling, the sample sequence x(nT’) con-
tains all the information about r(¢). However, in CS-based
sampling the uniform grid is divided into L consecutive
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sample blocks, which can implemented be by a constant
set C. Assume the length of C is ¢ and C includes the
indices of g samples in each block ( e.g., g; denote the
ith element). Then, the sequence of samples can be repre-
sented as
xey ] = x(nT), n=mL+c;,m e Z @)
0, otherwise.

Foraset Cwehave0 <c¢; < ¢ < --- < g <L—-1,it
is easy to understand that the sampling rate is g/L - rnyqQ
(rnyq is the Nyquist sampling rate). Clearly, due to g < L
the sampling rate is less than rnyq.

Having the estimation of frequency vector ry, it is neces-
sary to detect the number and location of occupied bands
of signal r(¢). We use a modulated wideband converter
(MWC) [5], which aims at sampling wideband sparse sig-
nal at a rate lower than that of Nyquist. Figure 1 shows the
MWC scheme.

Actually, the DFT X, (f) of x,[#n] can be obtained
according to Equation (5)

Xalf) =3 g [m)e P
)

1 L-1 @X r )
=Ir 2= T XUt T
here 1 < i < g and f € F. Let x(f) denote vector
X (f),(ci € C) in frequency domain, then Equation (5)
can be rewritten as

y(f) = Ax(f) (6)

in which y(f) denotes a vector with length of g. It should
be noted that the ith element of y(f) is X, (f), and the
matrix A is defined by

1 jekem

Ay = ﬁe L (7)

where the vector x(f) contains L unknown components
for eachf € F

Xi(f)=X(f+é),0§i§L—1,fe]-". ®)

in which the the multi-coset sampling pattern C includes
all sampling time offsets, which are distinct and positive
values less than L [1]. It is crucial to properly select L, g,
and C such that x(f) can be reconstructed from Equation
(6). In this case, the multi-coset sampling can provide the
average sampling rate as % and the spectrum space can
be extracted to bands with bandwidth %

Sequence x(f) is sparse since its Fourier property over
frequency domain. However, under many scenarios the
support set I(x(f)) is not available. Fortunately, it is pos-
sible to find a unique sparsest solution, and the authors of
[7] have proved that if x;(f) is a solution for y(f) = A x(f)
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Figure 1 Compressed sampling scheme.

when [[xs(f)[lo < 0(A)/2, then x,(f) is the unique solu-
tion. Here, o (A) is the column rank of A. It is evident
that the signal can perfectly be reconstructed when x(f) is
0 (A)/2-sparse.

Actually, the sparse level of A is related to the sampling
coset pattern [1]. Because in multi-coset strategy the value
of Q, B, and T are available, thus the signals can be recon-
structed with a high probability as a CS problem. For a
signal x(t) € M, if L > 1/BT, C is a universal pattern, and
q > 2Q, then for every f € F, it is clear that vector x(f) is
the unique solution of Equation (6).

Compressed spectrum sensing

For a normal signal, it is not difficult to find a sparse repre-
sentation in a certain space [26]. Actually, signals involved
in CRNs have been proved sparse in the frequency domain
[26]. So, it is possible to find the unoccupied spectrum
in CRNs with compressed spectrum sensing with a rate
lower than Nyquist.

Let r denote the frequency response vector of signal
r(¢) that can be obtained by y = ®F~!r, in which F is
the Fourier transform matrix and ® is the measurement
matrix.

r = arg min ||r||o s.Z. (CIDP’I)r:y 9)
r

It can be seen that Equation (9) is a non-convex prob-
lem. According to the RIP constraint we have M > ¢ - M -
log(N/K) (c € (0,1) is a universal constant). Equation (9)
has a unique solution when Equation (10) holds

r = argmin ||r||; s.t. (<I>F_l)r=y (10)
r
Actually, Equation (10) is a second-order cone program
and many software packages are available to solve this
problem [9]. On the other hand, some variants of LASSO

algorithm have been developed to deal with the noisy
signals by minimizing the usual sum of squared errors.

riasso = argmin e[y .t [(®F Dr-yla <e  (11)
r

where € bounds the noise in signals. A number of convex
optimization software packages have been developed to
solve the LASSO problem, such as cvx, SeDumi, Yalmip,
and so on [9]. Recently, the authors of [9] improved
Equation (11) with a weighted scheme of LASSO

rw.LAsso = arg min ||wr|; s.t. [(PF Dr-y|ly < e
r
(12)

where signal r is separated into K sub-vectors, and the
weight vector w =[wy, wy,. ..,wk]¥ can be calculated
according to p;—the subband power of the primary user
existing in the ith subband as w; = ﬁ.

Previous methods take the sparsity of signals into con-
sideration, and model the signal with CS theory in fre-
quency domain based on ¢; or £; /¢>-mixed minimization.

Blind compressed spectrum sensing

In CRNs, it is a very challenging topic to design a
spectrum blind sampling-reconstruction system without
knowing the locations of the bands. Actually, the bands
occupied by different users may be discrete in CRNS,
which makes it possible to design a spectrum-blind recon-
struction scheme by using CS based on a preceding
multi-coset model [27].

Let r; denote the Nyquist sample sequence of r(¢), then
we have y = ®r;. It is possible to reconstruct the fre-
quency response vector ry of r(¢) from compressed sam-
ples y. On the other hand, we have ry = ¥r;, in which ¥
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is the DFT matrix. It is easy to understand that Equation
(13) holds

y=oU r (13)

As discussed in Section “System models’, the frequency
response is sparse in CRNSs, so Equation (13) can be solved
with a two-step scheme: (1) use compressed measure-
ments y to estimate the sparse frequency response Iy
(actually this is an ill-posed problem); (2) reconstruct sig-
nal r(¢) according to the frequency response, which can be
done by an inverse Fourier transfer.

It is easy to know that 7 <« B which means 1y is
sparse in the frequency domain. In order to solve the first
problem, it can be formatted by CS theory

ry = argmin [iyllo st (@ ey —yl <er (14)
ry

In Section “Compressed spectrum sensing’, we have
summarized several methods that proposed to solve this
problem. For simplicity we use y and x to denote y(f) and
x(f), respectively. Then rewrite Equation (6) as

y=Ax (15)

in which A=F~'®W, and F denotes the DFT matrix of
compressed sample vector y.
Since x contains M unknown elements for each f, and
i

x,-X(f—{—MT),OfoM 1L,Vf e Fo (16)
where X (-) is the Fourier transform of time shifted r(¢).
As analyzed above, in a CRN every band contributes only
a few non-zero value, so x is a sparse vector which makes
it possible to use CS theory to reconstruct spectrum
of signals.

Let 0 (A) denote the Kruskal-rank of A [5]. When x is
”TA) -sparse then Equation (15) has a unique sparsest solu-
tion and the proof is given in [5]. It can be seen that
reconstruction with high probability is possible for signal
x that satisfies

o(A)

X is (17)

— sparse,Nf € Fy

As shown in Figure 1, if the number of sampling cosets
q is given, it can be proven that every signal r(t) € M
can perfectly be reconstructed by properly selecting
parameters Q, B, and 7.

Actually, if M < 1/BT and q are greater than Q, then
for every f € F a unique N-sparse solution x is available
according to Equation (15). According to Equation (16), it
can be seen that x takes M values of X(f) by intervals of
1/MT, therefore the non-zero components are fewer than
the number of bands in x(f). So we can say that x is Q-
sparse. Kruskal-rank o (A) = g, which implies that when
q > 2QB, x can perfectly be reconstructed without know-
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ing any information about the locations of bands when
f € Fo.

The blind reconstruction problem can be summarized
as

Iy = argmin ||ry||y
Iy
st. (@ Dry —yl2 < e,

q>2QB

(18)

A number of CS reconstruction algorithms are available
to solve this problem, and many £;-norm and €1 /¢2-norm
minimization-based approaches have been proposed for
the reconstruction of sparse signal. However, according
to the original idea of compressive sensing, £,-norm min-
imization with p < 1 can improve the recovery per-
formance for signals that are less sparse [24,28,29]. On
the other hand, the £,-norm minimization offers good
performance with reduced complexity.

Weighted blind spectrum reconstruction (WBSR)
Smoothly approximation of £o-norm problem

In CS theory, £o-norm is the ideal minimization; however,
it is an NP-hard problem to find out the sparest solution.
In general, ¢;-norm minimization, the contour of |x||; =
k, grows and touches the hyperplane ®x =y, yielding a
sparse solution as shown in Figure 2a. Unfortunately, this
may cause a special situation that when the hyperplane
is parallel to the contour of ||x||; = k, infinite solutions
can be derived, which may cause the unreliability of the
system, as shown in Figure 2b.

On the other hand, the £3-norm minimization may fail
to work in CS. It is due to the fact that the contour of £5-
norm grows and touches the hyperplane, yielding an un-
sparse solution, which is no sense in solving our problem.

Our goal is to find out the sparest solution, which can
be measured by using its £o-norm pseudonorm. Unfortu-
nately, the £p-norm minimization problem is non-convex
with combinatorial complexity. An effective signal recon-
struction strategy is to solve the £,-norm minimization
problem as

minimize (x|, (19)
s.t. Px=y

in which 0 < p < 1. The £,-norm minimization problem
is non-convex. However, in £,-norm minimization when
the contour of ||x||, grows and touches the hyperplane
®x =y yields sparse solution, as shown in Figure 3c. The
possibility that the contour will touch the hyperplane at
another point is eliminated.
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(@) I1-norm

Figure 2 Contours for £; and £, (0 < p < 1) norm minimization.

(#) ill 11-norm

(©) l-norm (0 < p < 1)

In order to improve the convergence speed of the ||x||,
problem, we build a differentiable and continuous func-
tion to approximate the ||x||o problem as

N
2 2
minimize ||x||, = Z(l — e /207
i=1

(20)

in which o is a very small constant that is used to guaran-

tee the differentiability of Equation (20). It is easy to see

2252 .
%i/20% approximates to zero. When

—x? /202

that whenx;is0,1 — e
x; is a non-zero value, then 1 — e approximates to
1, so this function can approximate to £yo-norm problem
smoothly.

In practice, the condition M > ¢ - K - log(N/K) is
restrictive for signal spectrum reconstruction. Based on
the analysis in above sections, we reformulate the blind
reconstruction problem with £,-norm (0 < p < 1)
minimization approach as

minimize ||r
imize

st. [(@¥ D —yly < e, (21)

q>2QB

where |[|r7|, is with 0 < p < 1. For p < 1, Equation (21)
becomes a non-convex problem which has multiple solu-
tions. If this problem can be solved with sufficient, then
improved results can be available. We rewrite a smooth
£p-norm of ry in Equation (22)

N
minimize F(xf) = Y (1 — w7207y
rf ,
i=1

(22)
st [(@¥ Dy —yly < s,

q>2QB

in which ¢ > 0 is a small constant. Equation (22) can be
solved with steepest-descent approach. It can be seen that

this optimization problem can offer accurate spectrum
reconstruction performance with reduced computation
complexity.

Signal reconstruction by £,-norm minimization

In this section, we will present an effective method to
reconstruct signals by using £, minimization. From the CS
theory, the solutions of y = A ry can be represented as [29]

ry = rjﬁ +V,§& (23)

where r}‘ is a special solution to Ars =y, which

can be calculated as r;:AT(AAT)’l. V, is an
N x (N —M) matrix and & is a N —M x 1 vector.
V, can be calculated by QR decomposition of matrix
A, then we can further rewritten the £,-norm
problem as

N
* (o T 12 2
minimize F(§) = Z 1 — ¢ OV El/20 (24)
T

! i=1
where vl.T is the ith row of matrix V,. It is clear that
Equation (24) is a differentiable function, so its gradi-
ent can be obtained [29], which reduce the problem size
from N to N — M. So, a number of existing approaches
are available to solve Equation (24) as an uncon-
strained optimization problem, such as quasi-Newton
[24], Broyden-Fletcher-Goldfarb-Shanno (BFGS) [29] and
so on.

Weighted approximation of £,-norm algorithm

Similar to £;-norm or mixed ¢;/£2-norm based recon-
struction algorithms, £,-norm also brings the dependence
on the power in each subband. In this section, we apply a
weighted bands constraint to deal with this imbalance. For
q > 2NB, Equation (22) can be reduced to

N
ke TE12 92
minimize Fo(§) = Y (1 —¢ 7027,
7 ;
i=1
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Figure 3 CS signal reconstruction.
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in which r} (i) is the ith row of special solution and vt.T
denotes the ith row of matrix V,. It can be seen that
Equation (25) remains differentiable, so it can be easily
solved with gradient descent method.

As analyzed in Section “System models’, in wideband
spectrum sensing, the blind sensing problem can be for-
mulated as Equation (9), where ry, ry, . . ., rx are K subsets
of r with different length (block-length), which corre-
sponds to the bands of multi-coset spectrum dividing
scheme. It is clear that the power of each band may be dif-
ferent, which depends on the power of the primary user

existing in the ith subband. So it can be reformulated as a
weighted bands problem:

K d;
. L1 7[r}‘(j)+v.TE]2/202
mlngmzez E wi-(1—e j ) (26)

i=1 j=1
The weights w;,i = 1,...,K can be calculated according
to the existing subband power (ESP) e;, w; = ei%’ here § is

a small constant (about 10~%) which is used to guarantee
w; to be non-convex. The initial condition of the recursive
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relation is w; = 1,i € {1,..., K}, which means that in the
first step all the blocks are weighted equally.

With the increase of the iteration times, larger values of
ESP in the ith subband are penalized lighter than smaller
values of ESP. A threshold can be applied to terminate the
iteration at the proper time, we have

ey =2 < (27)

in which r is the estimated frequency spectrum at the
Ith iteration and € bounds the iteration residual.

By this way, a compressible signal 1y can effectively be
reconstructed with measurement Ar; = y. The most
innovation feature of WBSR is that it is able to perfectly
reconstruct signals without prior information of the spar-
sity. Compared with previous methods, the advantages of
WBSR also are fast, stable, and uniform guarantees.

Simulation

To evaluate the proposed method, we simulate the system
on test signals contaminated by white Gaussian noise. We
consider bands in the ISM bands with a frequency range
from 2.4-2.4835GHz. In general, 2.4-2.4835 GHz spec-
trum bands are shared by many wireless devices, such as
home microwave oven, wireless sensor networks (Zigbee),
WLANS (IEEE 802.11), Bluetooth devices (IEEE 802.15.1),
cordless phones, wireless USB device, and so on. In CRNSs,
the primary users should be tolerant of ISM emission in
these bands. The unlicensed second users are able to uti-
lize these bands without causing interference to primary
users.

In simulations, we consider a Bluetooth signal in ISM
bands, and ignore the baseband protocol for Bluetooth
chip. First, we evaluate the performance on 2,048 noisy
Bluetooth signals, in which the noise is a white Gaussian
noise process. The signal is constructed using the formula
(QPSK):

r(t) = vEBsinc(B(t — T))cos(2nf(t — 1)) (28)

For simplicity, the energy coefficients E = 1, the time
offsets T = 0.5us, Q = 1, and B = 2 MHz. Because Blue-
tooth defines 79 channels, each channel being separated
by 1MHz Bluetooth’s transmitted signals are spread across
this 2.4 GHz band and the specification allows for 1600
frequency hops per second. In Bluetooth-based commu-
nications, because the information is spread across a
number of frequency channels.

In simulation, we use € as 10, According to the basic
idea of CS theory, the sampling is significantly reduced
by 60%. To compare the results, we use BP and LASSO
schemes under the same scenario. In Figure 3 the compar-
ison results are given. In each subfigure, the original signal
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and its spectrum are compared with the reconstructed sig-
nal and spectrum. The average squared errors are 0.3029,
0.0254, and 0.0087 for BP, LASSO, and WBSR, respec-
tively, which are obtained according to Equation (29)

1 N
Ear = le (r; — 72)* (29)

The performance of spectrum sensing of the proposed
scheme is depicted in Figure 4, where the estimated trans-
mit power is shown. It is seen that the PUs start the
transmission around ¢ = 400 with 1 W of power. Note that
the WBSR algorithm can correctly identify the presence of
the primary user activities with the LASSO based scheme,
which sets noise at 10dB. It can be seen that the WBSR
outperforms BP and LASSO based schemes in spectrum
sensing and signal reconstruction.

Compared with the existing schemes as shown in
Figure 4, WBSR significantly improves the spectrum sens-
ing speed by ignoring the edge detection phase. The
proposed scheme only uses the energy detection to evalu-
ate the weights for each iteration. Therefore, the proposed
WBSR outperforms the existing BP and LASSO-based
scheme with a much smaller sensing sensitivity and higher
accurate spectrum reconstruction for signals, so it might
be a promising technique for wideband spectrum sensing
in CRN.

In this article, the computational complexity of the pro-
posed algorithm can be measured in terms of the average
CPU time that is obtained from a total of 40 trials for
typical signals. Two kinds of signals with different lengths
are used in simulations: one with 65535, another with
19600. All simulations are performed on a laptop with an
Intel T5750 2 GHz processor and the CPU time was mea-
sured by the Matlab (version 2009b) commands tic and
toc. Table 2 depicts the simulation results, from which it
can be seen that the compressed ratio (M /N) is about 40%.
It is noted that the proposed WBSR is more efficient than
other algorithms.

© N\
2 L —True Spectrum State
€ [ . - - LASSO Estimated
g i \ ~ — WBSR Estimated
=
~ PN _
o S P
g 1~ \ D
a . —_— =
) S\
Wi S
500 1000 1500 2000 2500 3000
Time index (t)
Figure 4 Estimated emitted power levels.
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Table 2 Average CPU time over 40 runs for different
algorithm

Algorithm Signal length M/N (%) Average CPU time(s)
BP 65535 39.85 16.732
LASSO 65535 39.85 0.5361
WBSR 65535 39.85 0.2132
BP 19600 40 6.2863
LASSO 19600 40 0.1260
WBSR 19600 40 0.0806

In simulations, we compared the proposed £,-norm
minimization scheme with the most popular used ¢; (BP)
and ¢» (LASSO) optimizations and the results can be
found in Table 2. It is clear that the proposed WBSR
is converged much faster than BP and LASSO. Actually,
in the existing works, block-sparse spectrum sensing is
based on ¢;-norm optimization, spectrum-blind recon-
struction and LASSO-CWSS are based on £2-norm opti-
mization, respectively. In this simulation, when we use
£1-norm based optimization for a signal with 65,535 ele-
ments, the average CPU time used for reconstruction
with 95% accuracy (or higher) is about 16.732s. When
£y-norm is used, the average CPU time is 0.5361 s. How-
ever for WBSR, the average CPU time is only 0.2132s
that is much faster than the other two. Similar results can
be obtained for signals with different length. In order to
further demonstrate the performance of WBSR, we are
working to implement the algorithm in practical platform
and the results will be reported in the future.

Conclusion

In this article, we presented an approach that is able
to reconstruct the blind bands signals for CRNs with-
out knowing the bands location information, which can
improve the spectrum sensing efficiency and reduce the
sensing time. In addition, in order to further improve the
performance of existing CS-based signal reconstruction
algorithm and decrease the complexity, we proposed a
weighted £,-norm (1 < p < 1) minimization problem to
approximate the £p-norm minimization problem, instead
of £1-norm or ¢; /¢, mixed minimization in existing signal
reconstruction schemes. Simulation results show that the
proposed WBSR has a higher spectrum sensing sensitivity
and accuracy, and improved reconstruction speed.
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