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Abstract

A shipborne ad-hoc network (SANET), a maritime counterpart of the terrestrial vehicle ad-hoc network, can provide
ships with diverse multimedia services by substituting digital maritime VHF communications for expensive satellite
communications. This article proposes ad-hoc self-organizing TDMA (ASO-TDMA), a medium access control (MAC)
protocol targeting SANETs. Frames in ASO-TDMA are divided into several sub-frames, and based on the proposed
rules for assigning time slots, ships can only reserve time slots for data transfers through their available sub-frames.
Accordingly, ASO-TDMA provides better performance in terms of reducing receiver collisions from hidden terminal
problems compared to self-organizing TDMA (SO-TDMA) and carrier-sensing TDMA (CS-TDMA), two existing MAC
protocols for maritime VHF communications. In addition, the article compares the performance of the three MAC
protocols in terms of delays and collision rates (CRs). The results suggest that, given the same delay, ASO-TDMA can
reduce the CR by as much as 30% in comparison with SO-TDMA and CS-TDMA. Similarly, given the same CR,
ASO-TDMA can reduce delays by as much as 26% in comparison with SO-TDMA and CS-TDMA.
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Introduction
Maritime communication systems such as the global mar-
itime distress and safety system [1] and the automatic
identification system (AIS) [2] have focused mainly on
ship security, location tracking, identification, and surveil-
lance. Although small-sized text message transfers based
on narrow-band direct printing [3] or navigational telex
[4] have been introduced, maritime communication sys-
tems have generally lacked versatility in comparison with
terrestrial wireless communication systems because it has
been considered premature for ships to provide multime-
dia services.
Recently, there has been a gradual increase in ship’s

demand for various multimedia services such as full-
duplex digital data transfers, video streaming, and even
internet access. Without loss of generality, satellite com-
munication systems may be a good candidate for realizing
such multimedia services because they can reliably sup-
port high data rates as well as offer immense communica-
tion coverage. However, satellite communications can be
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burdensome for ship subscribers because of its remark-
ably high cost. At sea, where a ship rarely finds other
ships referred to as neighboring ships (NSs), satellite com-
munications may be an inevitable option for obtaining
multimedia services. On the other hand, a ship can eas-
ily locate NSs near the shore. In this case, we can take
advantage of ad-hoc communication between ships by
using another radio frequency band such as the terrestrial
mobile ad-hoc network or the vehicle ad-hoc network.
We refer to a new maritime ad-hoc network replacing
satellite communications as a shipborne ad-hoc network
(SANET), as defined in [5]. Hence, a SANET near the
shore, together with satellite communications at sea, may
offer consistent and affordable multimedia services.
Based on current standardization activities through the

World Radiocommunication Conference (WRC) [6], mar-
itime digital communications in VHF bands are consid-
ered a good counterpart of satellite communications for
multimedia services. VHF communications can support
relatively high data rates (tens of kbps). These data rates
can increase to hundreds of kbps through orthogonal
frequency division multiplexing (OFDM) [7,8]. Accord-
ingly, the physical layer specifications recommended for
the maritime digital VHF communication systems in [7],
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including those for multiplexing, modulation, and channel
coding, can be applicable to SANETs.
A SANET must efficiently manage channel access

for randomly deployed ships at sea by considering the
inherent infrastructure-less network environment. Thus,
SANETs demand a decentralized and predictable medium
access control (MAC) protocol in the data link layer.
There are two MAC candidates for SANETs. One is IEEE
802.11 carrier sense multiple access/collision avoidance
(CSMA/CA), which is a contention-based MAC proto-
col used for terrestrial ad-hoc networks [9]. The other is
a contention-free time division multiple access (TDMA)
based MAC protocol in which the ships’ channel access
is not centrally controlled but decentralized under the
given frame. The latter includes self-organizing TDMA
(SO-TDMA) and carrier-sensing TDMA (CS-TDMA).
These two MAC candidates are similar in that ships sense
the channel status. When a channel is busy, CSMA/CA
goes to a random back-off, but SO-TDMA or CS-TDMA
searches for other idle time slots in the current frame.
Although CSMA/CA is currently employed in terrestrial
ad-hoc networks, it has not been verified as a MAC pro-
tocol for a maritime counterpart under any standards.
On the other hand, SO-TDMA and CS-TDMA are rec-
ommended as MAC protocols for maritime VHF com-
munications and are currently used for the AIS, one of
the most widely used maritime services [2,7]. In addition,
CSMA/CA entails unbounded delays in heavy traffic envi-
ronments and receiver collisions from hidden terminal
problems. Accordingly, we focus only on contention-free
TDMA-based MAC protocols for SANETs.
SO-TDMA and CS-TDMA cannot directly be applica-

ble to SANETs because they are only designed for one-hop
communication between a base station and a ship. Thus,
there is a need for an appropriate MAC protocol for
SANETs that address the following aspects:

- Ad-hoc manner: although both SO-TDMA and CS-
TDMA are suitable for peer-to-peer communications
regarding ship communications or even vehicular
communications, they do not consider ad-hoc
communication. Since SANETs are based on ad-hoc
communication, a ship can be a relay node between a
source and a destination. Data from a source may
disappear while being forwarded by several relay ships
[10]. Thus, a MAC protocol for SANETs needs to
consider reliable data transfers (rdts) and guarantee
complete end-to-end data transfers without failure.

- Frame length: in SO-TDMA or CS-TDMA, ships just
send information on their identity (e.g., vessel
numbers, locations, and IMO numbers) within a
single frame lasting 1min [2]. In a SANET, it is
necessary to consider other multimedia services such
as data transfers, e-mails, text messages, and video

streaming. Accordingly, a MAC protocol for SANETs
should be designated to reduce the overall delay by
reducing the length of a frame, to a greater extent
than SO-TDMA and CS-TDMA.

- Receiver collision: SO-TDMA and CS-TDMA
experience receiver collisions from hidden terminal
problems. For example, two ships that cannot sense
each other reserve the same time slot and send data to
the same NS [11]. Thus, a MAC protocol for SANETs
must mitigate this problem of receiver collisions.

Given the above aspects, we propose ad-hoc self-
organizing TDMA (ASO-TDMA), a MAC protocol for
SANETs that can reduce the length of a frame for mul-
timedia services requiring high data rates. ASO-TDMA
can manage SANETs’ ad-hoc environments by allowing
for rdts, one-hop data, non-acknowledgement (NACK),
timeout, and retransmission. In addition, ASO-TDMA
can reduce the possibility of receiver collisions. For this,
each frame is fragmented into several sub-frames, and a
network is divided into several hops. A hop is defined as
a zone determined by its distance from a base station. A
ship located in an arbitrary hop can only reserve time slots
in available sub-frames based on the proposed rules for
the assignment of time slots, which helps ships to avoid
receiver collisions. Thus, ASO-TDMA is expected to out-
perform SO-TDMA and CS-TDMA in terms of receiver
collisions and overall delays.
The rest of this article is organized as follows: “SANET

architecture” section discusses the SANET architecture,
“Previous works” section provides a review of previous
research on SO-TDMA and CS-TDMA. “ASO-TDMA for
SANETs” section presents ASO-TDMA by phase. “Per-
formance analysis” section analyzes the performance of
ASO-TDMA in terms of delays and collision rates (CRs)
and compares it with that of SO-TDMA and CS-TDMA,
and the article ends with “Conclusions” section.

SANET architecture
Figure 1 illustrates the SANET architecture consisting of
several ships and a base station. The base station can pro-
vide ships with various maritime multimedia services by
operating application servers. In addition, the base sta-
tion, which is connected to IP-based backbone networks,
enables the ships to support IP-based multimedia ser-
vices. The ships, which are equipped with maritime VHF
communication systems, can use these multimedia ser-
vices by connecting to the base station when they are near
the shore. In addition, the ships can send data to other
ships and can communicate with one another by using the
VHF communication systems.
The topology of a SANET is not fixed because all ships

at sea navigate toward their destinations with different
directions and speeds although several ships may navigate
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Figure 1 SANET architecture.

along with a specific navigation route. Hence, a SANET
is assumed to be an infrastructure-less network in which
all ships are randomly but sparsely deployed at sea at any
given point in time. Since the transmission distance in
VHF communications is tens of kilometers [12], a ship
may not directly be connected to a base station (or its
destination ship) once the base station is beyond its trans-
mission coverage area. We refer to a ship attempting to
connect to a base station as the initiating ship (IS), as
shown in Figure 1. If the IS has multiple NSs within its
VHF transmission coverage area, these NSs become relay
nodes and forward the IS’s data to their NSs in an ad-
hoc manner. Finally, the IS’s data arrive at the base station.
If the IS is unable to locate NSs within its transmission
coverage area, it changes its mode of communications
to satellite communications in order to achieve seamless
multimedia services.

Previous works
We review SO-TDMA and CS-TDMA in this section. As
discussed earlier, these two MAC protocols have been
used to provide AIS services. SO-TDMA is mainly used
in AIS services (i.e., traffic class A), whereas CS-TDMA is
employed to make full use of the frame (i.e., traffic class B)
when there is a decrease in traffic class A [13].

SO-TDMA
Each SO-TDMA frame is divided into 2,250 time slots,
and the length of each frame is given as 1min. The frame
is globally fixed, and ships are synchronized to the frame
with the help of GPS or Galileo. SO-TDMA is composed
of four phases: the initialization phase, the network entry

phase (NEP), the first-frame phase, and the continuous-
operation phase.
In the initialization phase, a ship listens for channel

activity during a frame to find idle time slots. Among
idle time slots, nominal transmission slots (NTSs) through
which the ship can send its data are determined.
In the NEP, a ship joins the network by determining the

initial NTS and sending its data through the first NTS.
The following parameters are used to determine the first
NTS:

- Nominal start slots (NSSs) refer to randomly selected
starting time slots.

- Nominal increment (NIs) refer to periods for
selecting available NTSs. NIs are determined by
dividing the number of time slots in each frame by the
report rate (the desired number of NTSs per frame).

- Selection intervals (SIs) refer to the intervals at which
NTSs are determined. SIs are calculated as 0.2 × NI

As illustrated in Figure 2, the ship randomly selects
NSSs after the initialization phase and determines the SI
around the NSSs. The ship then chooses NTSs among
idle time slots within the SI and executes data transfers
through the NTSs. If all time slots within the SI are occu-
pied, the time slot assigned by a ship, which is furthest
away from the ship, is chosen.
In the first-frame phase, the ship selects the remaining

NTSs within NIs. For this, the ship chooses nominal slots
(NSs), which correspond to NSSs in the NEP, and are as
much as an NI away from the NSS. The ship then selects
another NTS among idle time slots in the SI and sends
data through the NTS, as shown in Figure 2. The rest of
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Figure 2 Description of frames in SO-TDMA.

the NTSs are determined by the report rate. For instance,
a report rate of 10 (messages per frame) implies that a ship
can reserve 10 NTSs for each frame. This repeats until a
frame has elapsed and all NTSs are determined. If there
is a change in the report rate during any phase, the ship
returns to the NEP because the NI depends on the report
rate.
In the continuous-operation phase, the ship continu-

ously sends its data through the NTSs previously deter-
mined in the network entry and first-frame phases. During
the first-frame phase, the ship draws a random integer
n(n = 3, 4, . . . , 8) for each NTS. After one NTS has been
used for n frames in the continuous-operation phase, a
new NTS is selected within the same SI as the original
NTS. Accordingly, the ship again returns to the network
entry and first-frame phases. This is executed in order to
avoid receiver collisions between ships by changes in their
locations.

CS-TDMA
The execution of CS-TDMA is similar to SO-TDMA,
except for the number of reserved time slots and report
intervals. The new parameters for CS-TDMA are as fol-
lows.

• Candidate periods (CPs) correspond to NTSs in
SO-TDMA.

• Report intervals (RIs) correspond to the report rate in
SO-TDMA. When a ship reserves NTSs, which can
be equal to the report rate, in SO-TDMA, it requires
10 CPs for each RI in CS-TDMA. Thus, the length of
each frame in CS-TDMA is determined by dividing
the RI by 1min (i.e., the frame length for SO-TDMA).

• Nominal transmission times (NTTs) correspond to
NSSs in SO-TDMA.

• Transmission intervals (TIs) that correspond to SIs in
SO-TDMA are obtained as RI

3 .

In the initialization phase, a ship mainly searches for
idle time slots by checking the CS detection threshold. If
the power of the signal exceeds the threshold, the time
slot is considered occupied. In the NEP, the ship randomly
selects NTTs and determines the TI around the NTT,
as illustrated in Figure 3. Within the TI, the ship selects
one CP and sends data through the CP. In the first-frame
phase, the ship chooses 10 CPs and sends data through
these CPs. The continuous-operation phase of CS-TDMA
is similar to that of SO-TDMA.

ASO-TDMA for SANETs
ASO-TDMA consists of several phases, including the ini-
tialization phase (IP), the NEP, and the data transmission
phase (DTP). In this section, we describe the frame struc-
tures in ASO-TDMA and explain these three phases.
Table 1 specifies all the network parameters.

Frame structure
We define a hop before discussing the frame structures in
ASO-TDMA. A hop is defined as a zone determined by
the distance from a base station. Assuming that the max-
imum VHF transmission distance is 30 km, an area that is
within 30 km from a base station belongs to hop 1. Simi-
larly, an area within 30–60 km from a base station belongs
to hop 2. Thus, the further the area is away from a base
station, the larger the number of hop is.

½ TI ½ TI

NTTRI NTT

½ TI

RI

……… ……… ………
CP

10 CPs are
reserved.

Figure 3 Description of frames in CS-TDMA.
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Table 1 Network parameters

Parameters Description

N The number of ships

i The index of ships (1 ≤ i ≤ N)

m The number of hops (or sub-frames)

hi The hop of ship i

k The index of hops (or sub-frames) (1 ≤ k ≤ m)

Nk The number of time slots belonging to sub-frame k

NAf The number of time slots in one frame for ASO-TDMA

Frames in ASO-TDMA differs from those in SO-TDMA
and CS-TDMA. Each frame is divided intom sub-frames,
which individually correspond to m hops, as shown in
Figure 4. That is, sub-frame k corresponds to hop k. This
frame fragmentation with respect to hops is intended to
reduce the possibility of receiver collisions between ships,
and the next section provides a further explanation. As in
SO-TDMA and CS-TDMA, each frame in ASO-TDMA
consists of multiple time slots such that the number of
time slots in each frame is determined as NAf , and there
are Nk time slots in sub-frame k. Because ships are gen-
erally found near the shore, lower numbered sub-frames
receive more time slots: N1 > N2 > · · · > Nm−1 > Nm
(N1 + N2 + · · · + Nm−1 + Nm = NAf ).
The length of the time slot can be determined by

considering the maximum propagation delay, the trans-
mission delay (i.e., the data rate and the data packet
size), and the switching time specified in [7]. In addi-
tion, the values of m, NAf , and Nk need to be deter-
mined by considering network environments such as
regional ship density or ship navigation routes. As in
SO-TDMA and CS-TDMA, frames in ASO-TDMA are
globally fixed, and ships join the network by using their
GPS.

Initialization phase
Every ship currently at sea belongs to a hop, and its hop
number is determined by its location. In the initialization
phase, ship i determines its hop hi by assuming that all
ships have information on the location of a base station.
By using its GPS, ship i can obtain its location, and thus

calculate the straight-line distance Di between itself and a
base station. Then, ship i obtains hi as

hi =
⌈

Di
30 km

⌉
. (1)

In addition, ship i scans one frame to locate idle time
slots and checks the existence of NSs. If ship i does not
detect any NS in the current frame, then it returns to the
initialization phase in the next frame. If ship i detects NSs
in the current frame, it determines available time slots
(ATSs) for the data transfer, which correspond to NTSs
in SO-TDMA and CPs in CS-TDMA. ATSs for ship i
are determined based on the following rules for assigning
time slots.

- If ship i belongs to hop k (i.e., hi = k), it generally
selects available sub-frames whereby it avoids
receiver collisions with other ships that concurrently
occupy the same time slot as ship i and send their
data to the same NSs as ship i.

- For a better understanding, we consider the
illustration in Figure 5. Ship 1 belongs hop 1, ships 2
and 3 belong to hop 2, and ship 4 belongs to hop 3. In
addition, ship 2 is an NS of ships 1, 3, and 4. If ships 1,
3, and 4 can select their ATS during the same
sub-frame, then it is possible for them to choose the
same ATS in the sub-frame. Thus, receiver collisions
can occur for ship 2 if ships 1, 3, and 4 simultaneously
send their data through the same ATS during the
same sub-frame. To avoid receiver collisions, the
three ships cannot use the same sub-frame at the
same time. By contrast, ship 5 does not risk any
receiver collision with ship 1, and thus, ships 5 and 1
can use the same ATS and sub-frame.

- Accordingly, the indices for the available sub-frames
of ship i, SFi, which avoids receiver collisions, can be
expressed as

SFi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k

k − 3l, 0 < l ≤ �k
3
�

k + 3l, 0 < l ≤ �m − k
3

�.
(2)

frame 1 frame 3frame 2, NAf

…..

Sub-frame
for m hops

Sub-frame
for (m-1) hops

Sub-frame
for 1 hop

NmNm-1N1

Figure 4 Description of frames in ASO-TDMA.
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Figure 5 An illustration of a receiver collision.

where l is a positive integer. Equation (2) implies that
a ship cannot share sub-frames with ships located 1
or 2 hops away from itself.

- Ship i randomly selects one ATS among idle time
slots in each available sub-frame.

- If there are no idle time slots in one available
sub-frame, ship i skips to select an ATS in the
sub-frame.

- If ship i has x available sub-frames, then it can
reserve x ATSs at the maximum.

- For instance, ifm = 10, then a ship belonging to hop
1 has an opportunity to reserve ATSs in sub-frames 1,
4, 7, and 10. Thus, at most, the ship can reserve four
ATSs.

If ship i cannot find any idle time slots in all avail-
able sub-frames in the current frame, it returns to the
initialization phase again in the next frame.

NEP
In the NEP, a ship joins the network by sending any packet
through all ATSs determined in the previous frame. Thus,
the NEP is executed during the frame immediately fol-
lowing the initialization phase. A ship can send a routing
request packet before it sends its data packet. We do not
specify any routing approach because we focus on explain-
ing a MAC protocol in this article. A ship can also send its
own data packet as an IS and forward the data packet as
a relaying ship after determining a routing path. Unlike in
SO-TDMA and CS-TDMA, a ship does not have to draw a
random number in order to periodically change its occu-
pied time slots because ASO-TDMA attempts to avoid
receiver collisions through the proposed rules for assign-
ing time slots. Figure 6 shows a flow chart describing the
initialization and network entry phases in ASO-TDMA.

DTP
The DTP basically repeats the tasks executed in the ini-
tialization and network entry phases. A ship continuously
determines its hop and available sub-frames, detects NSs,
and scans idle time slots to obtain ATSs because of
its mobility.

Detected NSs?

Y

IP, NEP

Waiting for 
a frame

N

Checking idle time slots in all 
available sub-frames

Determining hops and sub-frames

NIdle time slots in 
sub-frames?

IP

Determining ATSs

Y

Sending data 
through ATSs

DTP

NEP

Determining the random 
Number for all ATSs

IP: initialization phase
NEP: network entry phase
DTP: Data transmission phase

Figure 6 Initialization and network entry phases in ASO-TDMA.

In addition to these tasks, the ship is required to inves-
tigate the results of rdt by determining whether its NSs
receive information without any corruption. The ship can
check the results of rdt via one-hop data or NACK from
NSs upon scanning the current frame. The ship’s receipt
of one-hop data from its NSs during the current frame
implies the success of the data transfer in the previous
frame. If the ship receives NACK during the current
frame, it retransmits the data in the next frame because
NACK implies the corruption of transmitted data in the
previous frame. If the ship receives neither one-hop data
nor NACK after 2hi frames, it retransmits the data. Here,
2hi is heuristically determined such that the waiting time
can be adjustable according to the network environment.
If the ship experiences a change, it waits for the next

frame and determines new ATSs by scanning the current
frame. In addition, if the ship cannot detect any NSs in
the current frame, it waits for the next frame by checking
the availability of NSs, as illustrated in Figure 7. Finally,
if the ship stops the transfer of data transfer, it informsNSs
of the release of its ATSs.

Performance analysis
We analytically investigate the performance of ASO-
TDMA in terms of the CRs and delays by theoreti-
cally deriving two approximate performance parameters
under several assumptions. In addition, we compare
ASO-TDMA with SO-TDMA and CS-TDMA in terms of
the CRs and delays in order to demonstrate the superiority
of ASO-TDMA over the two MAC protocols.
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Figure 7 DTP in ASO-TDMA.

CR
As discussed earlier, ASO-TDMA can reduce receiver col-
lisions between ships belonging to different hops through
the proposed rules for assigning time slots as well as
frame fragmentation. However, a ship may experience a
receiver collision with another ship belonging to the same
hop. That is, ship i in hop k can reserve the same ATS
with another ship in hop k that is not an NS of ship i,
which is referred to as a non-neighboring ship (a non-
NS). If these two ships have a common NS and send
their data to the NS through the same ATS, then they
can experience a receiver collision in the common NS.
Because a ship can reserve at most x ATSs in x avail-
able sub-frames, it may experience a receiver collision
for each ATS in the available sub-frame. To obtain the
CR for ASO-TDMA, CRA, we define several parameters
(Table 2).
We consider ship ii to belong to hop k. Ship ii can

reserve x ATSs in x sub-frames whose indices are in the
set of Xk . In this case, ship ii can experience a receiver
collision with non-NS jj during sub-frame kk, which is an
element of Xk . To obtain the CR of ship ii for sub-frame
kk, CRA(ii)(kk)(k), we need to predetermine the following
two probabilities:

1. PA1: The probability that non-NS jj in hop k reserves
the same ATS as ship ii during sub-frame kk.
Non-NS jj can reserve ATSs among ATSs by
excluding the time slots occupied by its NSs (as
much as nsjj) in sub-frame kk. Assuming that the
probability of non-NS jj selecting ATSs among ATSs

Table 2 Parameters for deriving CRs for ASO-TDMA

Parameters Description

ii The index of ships located in hop k

nk The number of ships in hop k

nsii The number of NSs for ship ii

x The number of sub-frames for ship ii

Xk The set of sub-frame indices for ship ii, (Xk =
{. . . , k − 3, k, k + 3, . . .})

kk The element of Xk , (kk ∈ Xk)

Nkk The number of time slots in sub-frame kk

jj The index of non-NSs of ship ii in hop k, (1 ≤
jj ≤ nk − nsii)

CRA(ii)(kk)(k) The CR for ASO-TDMA for ship ii in hop k for
sub-frame kk

(i.e., Nkk − nsjj) is equiprobable, we can obtain PA1 as

PA1 = 1
Nkk − nsjj

. (3)

2. PA2: The probability that non-NS jj has the same NS
as ship ii. The number of NSs of Non-NS jj is defined
as nsjj. One of nsjj NSs can be an NS of ship ii. In
addition, two of them can be two NSs of ship ii.
Assuming that the number of common NSs between
ship ii and non-NS jj is equiprobable, we can express
PA2 as

PA2 = 1
nsjj

×[ 1 + 2 + · · · + (nsjj − 1) + nsjj]

= (nsjj + 1)
2nsjj

. (4)

For one non-NS jj, we can calculate the CR as PA1×PA2.
Since there are nk−nsii non-NSs for ship ii, we can express
CRA(ii)(kk)(k) as

CRA(ii)(kk)(k) =
nk−nsii∑
jj=1

[(
1

Nkk − nsjj

)
× (nsjj + 1)

2nsjj

]
.

(5)

Since ship ii can use x available sub-frames whose
indices are elements of Xk , we can calculate CRA(ii)(k) as

CRA(ii)(k) =
∑
kk∈Xk

CRA(ii)(kk)(k). (6)

Finally, we can obtain CRA by averaging Equation (6)
according to ii and k and express as

CRA = 1
m

{ m∑
k=1

[
1
nk

nk∑
ii=1

CRA(ii)(k)

]}
. (7)
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In order to obtain CRs of SO-TDMA and CS-TDMA
(CRS andCRC , respectively), we first define several param-
eters (Table 3).
For SO-TDMA, we can obtain PS1 and PS2, which cor-

respond to PA1 and PA2, respectively, as follows.

1. Ship i may experience a receiver collision with a
non-NS j that can reserve one NTS by excluding
NTSs of its NSs (i.e.,

∑nsj
q=1 nq) and its remaining

NTSs (i.e., ni − 1). Thus, there may be a receiver
collision of ship i if non-NS j can reserve one NTS
among time slots, whose number can be expressed as
NSf − ∑nsj

q=1 nq − (nj − 1). Assuming that the
probability of non-NS j selecting NTS among ATSs
is equiprobable, we can calculate PS1 as

PS1 = 1
NSf − ∑nsj

q=1 nq − (nj − 1)
. (8)

2. As in the case of PA2, we can obtain PS2 by assuming
that the number of common NSs between ship i and
non-NS j is equiprobable. Thus, we can express PS2 as

PS2 = (nsj + 1)
2nsj

. (9)

Because there are (N − nsi) non-NSs for ship i, we can
express the CR of SO-TDMA for ship i for NTS l, CRS(i)(l),
as

CRS(i)(l) =
N−nsi∑
j=1

[(
1

NSf − ∑nsj
q=1 nq − (nj − 1)

)

× (nsj + 1)
2nsj

]
. (10)

Table 3 Parameters for deriving CRs for SO-TDMA and
CS-TDMA

Parameters Description

ni The number of NTSs (CPs) assigned by ship i

l The index of NTSs (CPs) assigned by ship i, (1 ≤ l ≤ ni)

nsi The number of NSs for ship i

j The index of non-NSs for ship i, (1 ≤ j ≤ N − ni)

nj The number of NTSs assigned by ship j

q The index of NSs for ship j, (1 ≤ q ≤ nj)

nq The number of NTSs assigned by ship q

NSf The number of time slots in a frame for SO-TDMA

NCf The number of time slots in a frame for CS-TDMA

CRS(i)(l) The CR for SO-TDMA for ship i at NTS l

CRS(i)(l) The CR for CS-TDMA for ship i at CP l

We can determine the CR of SO-TDMA for i, CRS(i), by
summing up all CRS(i)(l)s as

CRS(i) =
ni∑
l=1

CRS(i)(l). (11)

Finally, we obtain CRS by averaging Equation (11) with
respect to i as

CRS = 1
N

N∑
i=1

CRS(i). (12)

For CS-TDMA, we can derive PC1 and PC2, which cor-
respond to PA1 and PA2, respectively, as follows.

1. In CS-TDMA, the number of CPs for ship i, ni is
fixed to 10 [2]. There may be a receiver collision for
ship i if non-NS j can reserve one CP among time
slots, whose number can be expressed as
NCf − ∑10

q=1 nq − (10 − 1). Under the same
assumption, we can obtain PC1 as follows.

PC1 = 1
NCf − 10 × nsj − (10 − 1)

. (13)

2. As in the case of PS2, we can obtain PC2 as follows.

PC2 = (nsj + 1)
2nsj

. (14)

Thus, we can derive CRC(i)(l) by using PC1 and PC2. As
in the case of SO-TDMA, we can obtain CRC as follows.

CRC = 1
N

N∑
i=1

ni∑
l=1

[
1

NCf − 10 × nsj − (10 − 1)

× (nsj + 1)
2nsj

]
. (15)

Delay
We now derive delays for ASO-TDMA, SO-TDMA, and
CS-TDMA (DA,DS, andDC , respectively). Here, we define
a delay as the sum of the amount of time a ship spends
reserving its ATSs (NTSs or CPs) and the amount of time
it spends sending data through the ATSs (NTSs or CPs).
Table 4 shows the parameters for derivingDA,DS, andDC .
In ASO-TDMA, a ship can reserve ATSs if it can locate

an NS. That is, the ship has to wait until there is an NS.
In addition, when there is a hop change, the ship has to
wait one frame to go back to the initialization and network
entry phases. Thus,DA depends on whether there is a hop
change/an NS.
We assume that a ship successfully completes a data

transfer in the previous frame and counts the number of
frames (w) after the previous frame (w ≥ 1), as illustrated
in Figure 8. If the ship has no hop change and detects an
NS in the first frame after the data transfer in the previ-
ous frame (i.e., frame 1), it can send data during frame 1.
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Table 4 Parameters for deriving delays for ASO-TDMA,
SO-TDMA, and CS-TDMA

Parameters Description

w The index of frames

PNS(A)(w) The probability of the ship having its NSs
during frame k for ASO-TDMA

PNS(S)(w) The probability of the ship having its NSs
during frame k for SO-TDMA

PNS(C)(w) The probability of the ship having its NSs
during frame k for CS-TDMA

PH(A)(w) The probability of the ship experiencing a
hop change during frame k for ASO-TDMA

TSpL The time slot index of the last ATS (or NTS)
in the previous frame for the three MAC
protocols

TSwF The time slot index of the first ATS (or NTS) in
frame w for the three MAC protocols

TSwL The time slot index of the last ATS (or NTS) in
frame w for the three MAC protocols

τ The length of the time slot for the three MAC
protocols

Thus, we can obtain DA for frame 1, DA1, as follows:

DA1 = (1− PH(A)(1)) × PNS(A)(1) × (dA11 + dA12) (16)

where dA11 is the amount of time a ship spends waiting for
the first ATS in frame 1 and dA12 is the amount of time a
ship spends waiting to use all ATSs in frame 1. As shown
in Figure 8, we can derive dA11 and dA12 by using the time
slot index of corresponding ATSs as follows:

dA11 =
(
NAf − 1 + TS1F − TSpL

)
× τ (17)

dA12 =
[
TS1L − TS1F + (1 − x)

]
× τ (18)

where x is the number of ATSs. If the ship has a hop
change or does not detect any NS until frame 2, then we
can derive DA for frame 2, DA2, as follows.

DA2 = (
1 − PNS(A)(1) + PH(A)(1) × PNS(A)(1)

)
× [

(1 − PH(A)(2)) × PNS(A)(2)
]

×(dA21 + dA22) (19)

where dA21 is the amount of time a ship spends waiting for
the first ATS in frame 2 and dA22 is the amount of time a

ship spends waiting while using all ATSs in frame 2. We
can express dA21 and dA22 as follows.

dA21 = (
2NAf − 1 + TS2F − TSpL

) × τ (20)
dA22 = [TS2L − TS2F + (1 − x)] × τ . (21)

Using Equations (16) and (19), we can generalize DA for
frame w, DAw, as

DAw =
[w−1∏
a=1

(
1 − PNS(A)(a) + PH(A)(a) × PNS(A)(a)

)]

× [
(1 − PH(A)(w)) × PNS(A)(w)

]
×(dAw1 + dAw2). (22)

In addition, dAw1 and dAw2 are also generalized as

dAw1 = (
w × NAf − 1 + TSwF − TSpL

) × τ (23)
dAw2 = [TSwL − TSwF + (1 − x)] × τ . (24)

Finally, we can express DA as

DA =
∞∑
w=1

DAw. (25)

In SO-TDMA, a ship has to wait for reserving NTSs
until it finds an NS, and thus, DS depends on whether
there is an NS. As shown in Figure 9, if a ship detects NSs
during the first frame after successfully completing a data
transfer in the previous frame, we can obtainDS for frame
1, DS1, as follows:

DS1 = PNS(S)(1) × (dS11 + dS12) (26)

where dS11 is the amount of time a ship spends waiting for
the first NTS in frame 1 and dS12 is the amount of time a
ship spends waiting while using all NTSs in frame 1. As in
the cases of dA11 and dA12, we can express dS11 and dS12 as

dS11 = (
NSf − 1 + TS1F − TSpL

) × τ (27)
dS12 = [TS1L − TS1F + (1 − ns)] × τ (28)

A successful data transfer
in the previous frame

frame w=1 frame w=2

dA11

TSpL TS1F TS1L TS2F TS2L

τ …….

…….

……

dA12

dA21 dA22

DA1 = (1-PH(A)(1)) *PNS(A)(1)*(dA1+dA12)

Figure 8 Description of frames for obtaining delays for ASO-TDMA.
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. . . .

…….

A successful data transfer
in the previous frame frame w=1 frame w=2

……

TSpL TS1F TS1L TS2F TS2L
…….

dS21

dS11 dS12

dS22

D1 = PNS(S)(1)*(dS11+dS12)

τ

Figure 9 Description of frames for obtaining delays for SO-TDMA.

where ns is the number of NTSs for a ship. As in the case
of DAw, we can generalize DS for frame w, DSw, as

DSw =
[w−1∏
a=1

(
1 − PNS(S)(a)

)]

×PNS(S)(w) × (dSw1 + dSw2) (29)

where dSw1 and dSw2 are calculated as

dSw1 = (
w × NSf − 1 + TSwF − TSpL

) × τ (30)
dSw2 = [TSwL − TSwF + (1 − ns)] × τ . (31)

Finally, we can express DS as

DS =
∞∑
w=1

DSw. (32)

In CS-TDMA,DC (likeDS) depends on whether there is
an NS. As shown in Figure 10, we determine DC based on
RIs, not frames, because CPs are chosen in the RI cycle.
We define the index of RI as v and draw the relationship
between w and v to be w = �y × v�, where y = RI

1min [2].
Accordingly, NCf is given as �y� × NSf .
As shown in Figure 10, if a ship detects an NS during the

first RI after the success of the previous RI, we can obtain
DC for RI 1, DC1, as follows.

DC1 = PNS(C)(1) × (dC11 + dC12) (33)

where

dCv1 =
(
�y × 1� × NSf − 1 + TSwF − TSpL

)
× τ (34)

dC12 =
[
TS1L − TS1F + (1 − 10)

]
× τ . (35)

As in the case ofDSw, we can generalizeDC for RI v,DCv,
as

DCv =
[v−1∏
a=1

(
1 − PNS(C)(a)

)] × PNS(S)(v)

×(dCv1 + dCv2) (36)

where

dCv1 =
(
�y × v� × NSf − 1 + TSwF − TSpL

)
× τ (37)

dCv2 =
[
TSwL − TSwF + (1 − 10)

]
× τ . (38)

Finally, we can derive DC as follows.

DC =
∞∑
v=1

DCv. (39)

Performance evaluation
We compare the three MAC protocols (i.e., ASO-TDMA,
SO-TDMA, and CS-TDMA) in terms of CRs and delays
by using the derived performance parameters. For perfor-
mance evaluation, we consider the following conditions.

Conditions
As shown in Figure 11, we model the following five types
of ships to investigate the CRs and delays of the three
MAC protocols. For this, we assume that any location of
a ship can be expressed as two coordinates (X, Y). Since
we consider m hops, we assume Xmax and Ymax to be
m × 30km and X0 and Y0 to be 0.

RI, v=1

TI

…….

A successful data transfer
in the previous frame

dC11 dC12

dC21 dC22

frame w=1 frame w=2 ……

TS L

TS1F TS1L TS2F TS2L

τ RI, v=2 RI, v=3 ……

TSpL

Figure 10 Description of frames for obtaining delays for CS-TDMA.
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Base
station

The end of hops

(1)

(2)

(4)
Ymax

(3)(5)

X0 XmaxY0

Figure 11 Ship types for performance evaluation.

- Ship type (1): Ships moving toward the sea with the
initial position (X0, YR), where YR is a random
number uniformly distributed between Y0 and Ymax.

- Ship type (2): Ships moving toward the shore with the
initial position (Xmax, YR).

- Ship type (3): Ships moving upstream along the shore
with the initial position (XR, Y0), where XR is a
random number uniformly distributed between X0
and Xmax.

- Ship type (4): Ships moving downstream along the
shore with the initial position of (XR, Ymax).

- Ship type (5): Ships moving randomly in any
direction with the initial position of (XR, YR).

With these five types of ships, we consider the following
conditions.

- N(1), N(2), N(3), N(4), and N(5) indicate the numbers
of ships belonging to the five types of ships,
respectively, where N(1)+N(2)+N(3)+N(4)+N(5)=N .

- N(1), N(2), N(3), N(4), and N(5) are determined to
satisfy with N(1) = N(2) = N(3) = N(4) < N(5).

- N(5) is also given as N1(5) + N2(5) + · · · + Nm(5),
where Nm(5) corresponds to the number of Type 5
ships belonging to hopm. Because ships tend to be
located near base stations, we assume that
N1(5) > N2(5) > · · · > Nm(5).

- When any ship type reaches a border (e.g., Xmax for
Type 1 ships), the ship type is dropped, and a new ship
with the same ship type is added. Thus, N still holds.

- For all ship types, the velocity is assumed to be a
random number with the same uniform distribution

Based on the above model of ship types, we consider the
following conditions for numerical analysis.

• m is given as 5.
- The velocity of each ship is uniformly distributed

from 10 to 30 knots.

- The RI for CS-TDMA is given as one minute, that is,
the length of each frame in CS-TDMA is the same as
that in SO-TDMA.

- NSf and τ are given as 2,250 and 60
2250 s, respectively,

as defined in [2].
- For any N , N(1)=N(2)=N(3)=N(4)=0.1 × N(5). In

addition, for any N(5), N1(5) > N2(5) > · · · > Nm(5),
and N1(5) + N2(5) + N3(5) is 0.8 × N(5).

- For any NAf in ASO-TDMA, N1 > N2 > · · · > Nm,
and N1 + N2 + N3 is 0.8 × N .

CR
Figure 12 shows the CRs for the threeMAC protocols with
respect to the number of ships. An increase inN increases
the CR for all three MAC protocols. When NAf and NSf
are the same (i.e., 2,250), ASO-TDMA reduces the CR
by as much as 30% in comparison with SO-TDMA and
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Figure 12 CRs for ASOTDMA, SOTDMA, and CSTDMA based on
the number of ships.
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Figure 13 Delays for ASOTDMA, SOTDMA, and CSTDMA based
on the number of time slots in each frame.

CS-TDMA. This result indicates that ASO-TDMA based
on the proposed rules for assigning time slots and frame
fragmentation is more likely to reduce collisions between
ships than SO-TDMA and CS-TDMA.
We determine whether we can further reduce the num-

ber of time slots in each frame, which can directly influ-
ence delay performance. That is, the smaller the number
of time slots in a frame, the shorter the delay is. As shown
in Figure 12, the three MAC protocols show similar CRs
when NAf is 1,750. If NAf is 1,750 for ASO-TDMA, then
DA can be lower than DS or DC . If NAf exceeds 1,750
for ASO-TDMA, then CA can be lower than CS or CC .
Thus, there is a performance trade-off between CRs and
delays based on changes in NAf . We now examine how
delay performance varies according to NAf to clarify this
performance trade-off.

Delay
Figure 13 illustrates the delays of the three MAC pro-
tocols according to the number of time slots in each
frame. A decrease in NAf reduces delays because the
amount of time a ship spends waiting while reserving
ATSs decreases. As discussed earlier, an NAf value of
1,750 ensures that the CR for ASO-TDMA is similar to
those for SO-TDMA and CS-TDMA. In this case, DA is
approximately 26% lower than DS and DC . Although NAf
is identical to NSf , DA is still slightly lower than DS and
DC . This implies that ASO-TDMA can provide SANETs
with superior performance in terms of delays and CR
performances compared to SO-TDMA and CS-TDMA.

Conclusions
This article proposed ASO-TDMA, a MAC protocol tar-
geting SANETs. ASO-TDMA supports fragmented frame

structures consisting of several sub-frames according
to hops. In addition, ASO-TDMA provides ships with
important rules for assigning time slots that can reduce
receiver collisions, which is a serious problem in SO-
TDMA and CS-TDMA. The article derives some perfor-
mance parameters to compare the three MAC protocols
in terms of CRs and delays and five types of models
regarding ships in a SANET for numerical analysis. The
results indicate that, all else being equal, ASO-TDMA
outperforms SO-TDMA and CS-TDMA in both CRs
and delays. In addition, there is a performance trade-off
between CRs and delays according to the number of time
slots in each frame, implying that, give the same delay
(CR), the CR (delay) is lower (shorter) for ASO-TDMA
than for SO-TDMA and CS-TDMA.
Thus, ASO-TDMA should be an effective MAC pro-

tocol for SANETs, which are designed to provide ships
with diverse maritime multimedia services. In addition,
the results of the numerical analysis for CRs and delays
can be used as an engineering table for designing SANETs
based on ASO-TDMA. Finally, this article’s performance
analysis, which considers several types of ships, can be
applied to any MAC protocol for SANETs and extended
to other network settings.
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