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Abstract

In this article, we investigate the Shannon capacity for L-branch maximal combining ratio (MRC) over generalized
multipath fading channel. We derive closed-form expressions of the maximal spectral efficiency over Rayleigh, Rician,
Nakagami-m, and Weibull multipath fading channel under flat fading conditions. The results are expressed in terms of
Meijer G-functions, which can be evaluated numerically using mathematical tools such as Mathematica and Maple.
We show, in particular, that the more the number L increases, the larger the Shannon capacity is. We deduce that four
branches are sufficient in several cases to mitigate the fading effect and the channel model will approaches the one
of AWGN.
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Introduction
The channel capacity is an important parameter in the
design of any communication system. It provides an upper
bound of maximum transmission rate in a given channel.
In 1948, Shannon derived the AWGN channel capacity
[1,2]. Recently, in wireless mobile communication sys-
tem, the diversity techniques have been used to combat
multipath fading and multiuser interference [3].
In last years, several articles have been published

regarding the Shannon capacity of fading channels with
various important diversity schemes, such as maximum
ratio combining (MRC), postdetection equal gain com-
bining (EGC), and selective combining (SC), in terms of
generalized special functions. The capacity with MRC in
correlated Rayleigh fading in terms of Poisson distribution
and Exponential integral was obtained in [4,5]. In [6,7],
an expression of the capacity of single branch receivers
operating over Rician, Nakagami-m, and Weibull fading
channel was obtained in term of Meijer G-function. Some
statistics properties, such as the probability density func-
tion (PDF) and the cumulative distribution function, of
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the instantaneous signal-to-noise ratio (SNR) per symbol
at the output of MRC receiver in correlated Nakagami-
m fading was derived in terms of Fox’s H and Gamma
functions [8] in [9,10]. A statistical analysis for the capac-
ity over Nakagami-m fading with MRC/SC/switch and
stay combining (SSC) in terms of Meijer G-function was
presented in [11]. In [12], the capacity expressions of cor-
related Nakagami-m fading with sual-branch MRC, EGC,
SC, and SSC were obtained in terms of Gamma func-
tion. Expressions for the capacity of generalized fading
channel with MRC/EGC for MIMO/SISO systems based
on moment generating function (MGF) approach was
obtained in terms of Fox’s H and Meijer functions [13,14].
Recently, a novel expression for the BER of modulations
and Shannon capacity over generalized-K and Nakagami-
m fading channels in terms of Meijer G-function and its
generalization [15] was investigated in [16,17].
The equivalent channel model of a multipath fading

channel using a MRC Rake receiver and flat fading has
been approximated by a fading channel with fading ampli-
tude is a square root of a sum of a square amplitude of
each fading [18,19]. The equivalent channel model in DS-
CDMA system with MRC-Rake receiver was investigated
in [18].
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In this article, we present novel closed-form and ana-
lytical expressions, in terms of Meijer G-function, for
the ergodic Shannon capacity for L-branch MRC-Rake
receiver over Rician, Rayleigh, Nakagami-m, and simple
approximation for Weibull multipath fading channel in
the non-frequency selective channels case. We generalize
for L-branch MRC the capacity expression given for sin-
gle path case (L = 1) in [6,7]. All the results are validated
by numerical Monte Carlo simulations. The study include
both DS-CDMA system and no-spreading system cases.
This article is structured as follows. In Section ‘Channel

model’, the equivalent channel models of both DS-CDMA
communication system and system without spreading
using a Rake receiver is introduced. In Section ‘Chan-
nel capacity’, the closed-form expression of the channel
capacity for multipath fading channel (case of Rayleigh,
Rice, Nakagami-m, and Weibull) is derived. The main
results are summarized and some conclusions are given in
Section ‘Conclusion’. For the convenience of the reader, an
short appendix is added, regarding Meijer G-function.

Channel model
In this section, we present the equivalent channel model
of communication systems using coherent MRC receiver
in both system without spreading and Direct spread spec-
trum system (DS-CDMA).

Systemwith MRC diversity
Consider MRC diversity systems in flat fading environ-
ment. Let

• xi, yi, bi be the i th transmitted symbol, i th combined
received symbol, i th zero-mean, N0/2-variance
Gaussian noise added,

• N0 is the noise power spectral density,
• hil be the fading amplitude corresponding to the ith

symbol and the l th antenna, assumed being i.i.d.,
• L be the number of diversity channels,
• Es be the average symbol energy.

The instantaneous combined received symbol energy-

to-noise at the output of theMRC is γ = Es
N0

L∑
l=1

h2il [19,20],

and then the normalized fading amplitude of channel is
given by:

AiL =

√√√√√√√√
L∑

l=1
h2il

L∑
l=1

E
[
h2il
] , (1)

where E[ .] denotes the expectation operator. The multi-
path channel model with MRC diversity can be written as

yi = AiLxi + bi (2)

DS-CDMA system

Let x(k)
i and y(k)

i be, respectively, the ith transmitted
and received code symbol of the kth user over a mul-
tipath fading channel of the uplink DS-CDMA system.
In [18], it is shown (see Figure 1) that for random
spreading sequences, the combination of the inner inter-
leaver/deinterleaver pair, the quadrature spreader, the
transmit/receive filter pair, the frequency up/down con-
verter pair, the fading multipath channel, and the Rake
receiver can be accurately modeled by the memoryless
channel of input x(k)

i and output y(k)
i given by:

y(k)
i =

⎡
⎣(g L∑

l=1

∣∣∣h(k)
il

∣∣∣2
)1/2

x(k)
i +√I0/2b(k)

i

⎤
⎦(g L∑

l=1

∣∣∣h(k)
il

∣∣∣2
)1/2

(3)

where:

- b(k)
i represents the zero-mean, unit-variance

Gaussian noise added to the i th transmitted code
symbol of the kth user,

-
∣∣∣h(k)

il

∣∣∣ is the fading amplitude associated to the kth

user, the l th path and the i th symbol (the h(k)
il are

complex numbers). The amplitudes are assumed
independent identically distributed (i.i.d.)

- L is the Rake receiver branch number,
- g is the spreading factor,

Figure 1 Equivalent channel model.
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- I0 is the total noise power spectral density (including
multiple access interference, thermal noise, and
multipath fading),

For a cell with K users where the channel energy of each

user is normalized to 1
(
E

[(
A(k)
iL

)2] = 1
)
, the channel

model (3) becomes:

y(k)
i =

(
A(k)
iL x(k)

i +
√
I0
2
b(k)
i

)
A(k)
iL , (4)

where A(k)
iL =

√√√√√√
L∑

l=1

∣∣∣h(k)
il

∣∣∣2
L∑

l=1
E

[∣∣∣h(k)
il

∣∣∣2] .

Remark 1. From (4) and (1), we can see that the equiva-
lent fading amplitude in both DS-CDMA and general case
of system without spreading using MRC technique is the
same. Consequently, the spectral efficiency is the same in
the two cases.

For simplicity of notation, and regardless of the user and
bit index, we use I0 as the total noise power, the AL as the
equivalent fading amplitude, and hl as the lth path fading
amplitude (that is, we drop the index i and index k).

Channel capacity
The Shannon capacity of a fading channel is the average of
AWGN channel capacity where the input is multiplied by
the normalized fading amplitude r. In the case of a flat fad-
ing, r is assumed to be constant over the symbol duration.
Consequently, the energy by symbol becomes E = Esr2,
and the average capacity of a fading channel is a func-
tion of the bandwidthW , the instantaneous received SNR
γ = γ̄ r2

C = WER
[
log2
(
1+γ̄R2)] = W

+∞∫
0

log2
(
1 + γ̄ r2

)
f (r)dr,

(5)

where γ̄ = Es
TWI0 is the average received SNR, T is the

symbol period, and f (r) denotes the probability density
function (PDF) of the fading amplitude random variable R.
In the following, we give the exact Shannon capacity (5)

for the channel models described in the previous section
in the case where all

∣∣∣h(k)
il

∣∣∣ are Rayleigh, Rician, Nakagami-
m or Weibull distributed random variables (RVs).

Rayleigh multipath fading channel
The Rayleigh multipath fading channel is a model of a
channel where the receiver can’t receive a direct signal line
of sight (LOS) from the source. All received signals are

diffracted, reflected or diffused. In this case, the fading of
jth path is given by

R =
√
X2
j1 + X2

j2, 1 ≤ j ≤ L, (6)

where Xj1 (in-phase component) and Xj2 (quadrature
component) are independent normally distributed RVs
with mean 0 and the same variance σ 2.

Consequently, the RV
√

L∑
j=1

2∑
k=1

(
Xjk/σ

)2 is a central chi
distribution of 2L degrees of freedom, and its pdf is given
by

f (r) = 21−Lr2L−1e− r2
2

�(L)
, (7)

where �(L) = ∫ +∞
0 tL−1e−tdt denotes the gamma func-

tion [8].
Thus, the PDF of the normalized fading amplitude

1√
2Lσ

√
L∑
j=1

2∑
k=1

X2
jk can be expressed as

f (r) = 2LLr2L−1e−Lr2

�(L)
(8)

From (5), the equivalent channel capacity is

C = W
+∞∫
0

log2
(
1 + γ̄ r2

) 2LLr2L−1e−Lr2

�(L)
dr

Using the change of variables γ = γ̄ r2, and the equal-
ity �(L) = (L − 1)! [8], the above expression can also be
expressed as

C
W

=
(
L
γ̄

)L
ln(2)(L − 1)!

+∞∫
0

ln (1 + γ ) γ L−1e−
L
γ̄

γ dγ (9)

Let Gm,n
p,q

[
x
∣∣∣∣ a1, . . . , an, . . . , apb1, . . . , bm, . . . , bq

]
be the Meijer G-

function [21] where m ≤ q, n ≤ p, and (ai)1≤i≤p, (bi)1≤i≤q
are two complex sequences. Using the transformation
formulas (42), (43), and (46) listed in Appendix 1:

e−
γL
γ̄ = G1,0

0,1

[
L
γ̄

γ |0
]

(10)

and:

ln (1 + γ ) = G1,2
2,2

[
γ

∣∣∣∣ 1, 11, 0

]
(11)

and (see (46) of the Appendix 1):
+∞∫
0

G1,2
2,2

[
γ

∣∣∣∣ 1, 11, 0

]
G1,0
0,1

[
L
γ̄

γ |0
]

γ L−1dγ

= G3,1
2,3

[
L
γ̄

∣∣∣∣−L, 1 − L
0,−L,−L

] (12)
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we obtain the exact expression of the normalized average
capacity (maximal spectral efficiency):

C
W

=
(
L
γ̄

)L
ln(2)(L − 1)!

G3,1
2,3

[
L
γ̄

∣∣∣∣−L, 1 − L
0,−L,−L

]
(13)

For single-path Rayleigh fading channel (L = 1), the
expression (13) is exactly that found by Sagias et al. [6]
using the single branch receiver (SBR). This is due to the
fact that the single finger Rake receiver and SBR have
identical function.
The Figures 2a,b depict the effect of fingers number L on

the average Shannon capacity obtained analytically from
(13) and via Monte Carlo simulation from (5) by generat-
ing 2500 Rayleigh-distributed random values. It is shown
that as L increases, the capacity increases and converges
to that of the AWGN channel. These curves show again
that the values L = 4 appears to be practically sufficient to
achieve the AWGN channel capacity and to eliminate the
fading effect.
The Figure 3 shows the PDF of the Rayleigh multipath

flat fading amplitude for L = 3, 4, and 6. The curves show
that for great values of L, the PDF is infinite for r = 1 (no
fading). Thus, the channel studied converge to the AWGN
one.

Rician multipath fading channel
In this case of fading, the mobile receive, in addition to
the other non LOS components, a direct signal from the
source. The fading of the jth path is a Rician distributed
and can be modelized by:

Rj =
√
X2
j1 + X2

j2, 1 ≤ j ≤ L, (14)

where Xj1 (in-phase component) and Xj2 (quadrature
component) are independent normally distributed RV
with the same variance σ 2 and means sj cos γj and sj sin γj,
respectively, (γj is a random real number and sj is the
LOS amplitude of the jth path Rician fading). Thus, the
normalized AL is:

AL =

√
L∑
j=1

2∑
k=1

X2
jk√

L∑
j=1

s2j + 2Lσ 2

(15)

Let’s note β =
(

L∑
j=1

(
sj/σ
)2 + 2L

)1/2
. The RV βAL is a

non-central chi distribution of 2L degrees of freedom, and

non-centrality parameter λ =
(

L∑
j=1

(
sj/σ
)2)1/2 . Its PDF

is known to be [22]

f (r) = λIL−1 (λr)
( r

λ

)L
e−

r2+λ2
2 , (16)

where IL−1(.) is a modified Bessel function of the first kind
of order L − 1 [8].
Using the Jacobian transformation method, the PDF of

AL is given by

f (r) = βλIL−1 (λβr)
(

βr
λ

)L
e−

(βr)2+λ2
2 (17)

The Shannon capacity for the equivalent channel (3) is
then

C = Wβλe−
λ2
2

+∞∫
0

log2
(
1 + γ̄ r2

)
IL−1 (λβr)

(
βr
λ

)L
e−

(βr)2
2 dr

(18)

γ
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Figure 2 Normalized average channel capacity versus average received SNR in Rayleigh L-path fading channel. (a) Analytical expression.
(b) Simulation and analytical expressions.
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Figure 3 PDF of the Normalized fading amplitudeAL in Rayleigh L-path fading channel.

Let’s note φ = λβ√
γ̄
. Using the change of variable γ =

γ̄ r2, we deduce that

C
W

= φL+1e− λ2
2

2 ln(2)λ2L

+∞∫
0

ln (1 + γ ) IL−1
(
φ
√

γ
)
e−

β2γ
2γ̄ γ

L−1
2 dγ

(19)

Since the modified Bessel function of the first kind can
be written as the infinite series ([23], BesselAiryStruve-
Functions/BesselI/06/01/01/)

IL−1
(
φ
√

γ
) =
(

φ
√

γ

2

)L−1 +∞∑
j=0

1
�(j + L)j!

(
φ
√

γ

2

)2j

(20)

the normalized Shannon capacity can also be written as

C
W

= e− λ2
2

ln(2)

(
β2

2γ̄

)L +∞∑
j=0

1
(j + L − 1)! j!

(
φ

2

)2j

× G3,1
2,3

[
β2

2γ̄

∣∣∣∣−j − L, 1 − j − L
0,−j − L,−j − L

]
(21)

This formula generalizes the capacity expression
founded by Sagias et al. [6] in the case of one path. It
generalizes also our first result corresponding to the nor-
malized Rayleigh multipath fading channel. Indeed, for
Rayleigh fading, all LOS amplitudes sj equal zero (λ = φ =
0, β2

2 = L), and then we find the above expression (13).
The two Figures 4a,b show the normalized average

Shannon capacity of a Rician multipath fading channel
obtained analytically from (21) and via simulation from
(5). The average energies associated with each path are

5 10 15 20
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(a) Analytical results

Monte-Carlo Simulation

Exact expression
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(b) Simulation and analytical results

Figure 4 Normalized average channel capacity versus average received SNR in a Rician L-path fading channel. (a) Analytical results. (b)
Simulation and analytical results.
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Table 1 Average energies of themultipath fading (LOS
and non LOS)

L 2 3 4

s(2)i
1
4 ,

1
4

1
4 ,

1
8 ,

1
8

1
4 ,

1
8 ,

1
16 ,

1
16

2σ 2 1
4

1
6

1
8

λ 2
√
6 2

√
2

β 2
√
2 2

√
3 4

given in Table 1. By simulation, the series in expression
(21) will converge after the 10th first terms for L = 2, 3
and after 30th first terms for L = 4 which contribute to
the computational complexity reduction.
Since the received power in the case of Rician fading is

greater than that in the case of Rayleigh, so the required
Rake receiver finger number to reach the AWGN capacity
must be less or equal to 4.
The Figure 5, shows the evolution of the PDF (17) as

function as the number of resolvable paths L. This Figure
has been plotted for the values given by the Table 1. As L
is greater, the normalized amplitude of Rician multipath
fading approaches to 1. Furthermore, the Rake receiver
may eliminate practically all fading and the couple chan-
nel plus Rake receiver has a behavior like that of a gaussian
channel.

Nakagami-mmultipath fading channel
Let N be the Nakagami-m distributed RV of average
energy E

[
N2] = 2σ 2, and fading parameter m =(

2σ 2)2
E
[
(N2−2σ 2)

2
] ≥ 1

2 . The PDF of N is given by [24]

p(r) = 2
�(m)

( m
2σ 2

)m
r2m−1e−

mr2
2σ2 (22)

The square of a Nakagami distribution � = N2 is a
gamma distribution �(α,β) of parameters α = m and
β = 2σ 2

m and PDF

p(γ ) =
(

m
2σ 2

)m
�(m)

γm−1e−
mγ

2σ2 (23)

In the case of this fading, we show the expression of the
channel capacity for two cases:

• The received average energies are equal (σi = σ ,
∀i � L),

• The received average energies are not necessarily
equal. This case generalizes the first one.

Case 1: received average energies are equal
Let (|Nl|)1≤l≤L be RVs Nakagami-m distributed of the
same average energy 2σ 2. Since the distribution of the
of two independent gamma RVs of parameters (α1,β)

and (α2,β) is a gamma distribution of parameters (α1 +
α2,β) [25], the RV

L∑
l=1

|Nl|2 is a gamma distribution of

parameters (mL, 2σ 2

m ) and mean 2Lσ 2.

Furthermore, 1√
2Lσ

√
L∑

l=1
|Nl|2 is a normalizedNakagami-

m distribution of fading parametermL and PDF

f (r) = 2
�(mL)

(mL)mL r2mL−1e−mLr2 (24)

It follows the expression of the normalized capacity of
the equivalent channel model given by the expression (3)
is [6]:

C = W

(
mL
γ̄

)mL

ln(2)�(mL)
G3,1
2,3

[
mL
γ̄

∣∣∣∣−mL, 1 − mL
0,−mL,−mL

]
(25)

0 1 2 3
0

0.5
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1.5
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r
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Figure 5 PDF of the Normalized fading amplitude in a Rician 4-path fading channel.
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This expression generalizes again that of Sagias et al. and
that given by (13). Indeed, for m = 1, (25) reduces to the
average capacity of the Rayleigh fading equivalent channel
given by (13) and for L = 1 we got the channel capac-
ity of the Nakagami fading channel (one path) shown in
[6]. In order to justify the limit of three fingers in Rake
receiver, we present in both Figure 6a,b, for a given value
ofm, the normalized capacities of Nakagami-mmultipath
fading channel obtained analytically from (25).
It’s clear that for m ≥ 1 (Figures 2a and 6a,b), L = 4

appears to be sufficient to approach the AWGN channel.
In other ways, Figure 7a shows the effect of Nakagami

fading parameter m on the maximal spectral efficiency
for the given value of L. The greater is m, the better
is the spectral efficiency and approaches to the AWGN
one. The Figure 7b depict the average capacity computed
by Monte-Carlo simulation generating 2500 Nakagami-
m distributed random values to validate the analytical
expression as presented above in (25).
Practically, for 3-path channel and m = 3, the fading

channel behaves like an AWGN channel.
In Figure 8, the PDF of the normalized fading amplitude

given by (24) in the case of m = 1.5 and both L = 4
and L = 3, is plotted as a function as fading ampli-
tude. The multipath fading in this case is equivalent of
Nakagami fading channel (one path) with parameter mL
(6 and 4.5, respectively). As mL increases, the fading
amplitude approaches to 1 and then the channel is approx-
imatively equivalent to the AWGN one.

Case 2: received average energies are not equal
Let (Ni)i�L be L independent Nakagami-m RVs of aver-
age energies 2σ 2

i , and the same fading parameter m.
The square of the RV Ni is a gamma distribution

�

(
m,βi = 2σ 2

i
m

)
. Furthermore, the PDF of the sum

L∑
i=1

N2
i

of gamma RVs is given by [25]

p(r) = rLm−1

L∏
i=1

βm
i

e−
r
β

+∞∑
k=0

εkrk , r � 0, (26)

where β = 2σ 2

m = min
1�i�L

βi, εk = δk
βk�(Lm+k) and δk is

computed recursively by this formulas:

δk =

⎧⎪⎨
⎪⎩

1, si k = 0
m
k

k∑
i=1

δk−i
L∑
j=1

(
1 −
(

σ
σj

)2)i (27)

Thus, the PDF of the normalized fading amplitude Z =
1
ξ

√
L∑

i=1
N2
i , where ξ =

√
2

L∑
i=1

σ 2
i is given by:

p(z) = 2ξ2Lm
L∏

i=1
βm
i

z2Lm−1e−
z2ξ2

β

+∞∑
k=0

ξ2kεkz2k (28)

The Shannon capacity of the Nakagami-m multipath
fading channel in the case of unequal average energies is
then:

C = W
ξ2Lm

L∏
i=1

βm
i

+∞∑
k=0

Ck , (29)

where Ck = ξ2kεk
γ̄ k+Lm

∫ +∞
0 log2 (1 + γ ) γ k+Lm−1e−

γ ξ2
βγ̄ dγ .

Using the transformation formulas (10), (11), and (12), we
obtain:

Ck = ξ2kεk
γ̄ k+Lm ln(2)

G3,1
2,3

[
ξ2

βγ̄

∣∣∣∣−k − mL, 1 − k − mL
0,−k − mL,−k − mL

]
(30)

(a) (b)
Figure 6 Normalized average channel capacity versus average received SNR in Nakagami-m L-path fading channel. (a)m = 1.5. (b)m = 3.



El Bouanani et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:336 Page 8 of 12
http://jwcn.eurasipjournals.com/content/2012/1/336

2 4 6 8 10 12 14
dB

2

3

4

5

C

W

L 3, m 1

L 3, m 3

AWGN

(a) Analytical expression

 L=2, m=3

 L=4, m=3

 Monte-Carlo Simulation

Exact expression

5.2 5.4 5.6 5.8 6.0 6.2 6.4
dB

2.0

2.1

2.2

2.3

2.4

C

W

(b) Simulation and analytical expressions

Figure 7 Normalized average channel capacity versus average received SNR in Nakagami-m L-path fading channel. (a) Analytical
expression. (b) Simulation and analytical expressions.

Thus:

C = WφLm

ln(2)

L∏
i=1

(
σ

σi

)2m +∞∑
k=0

φkδk
� (Lm + k)

× G3,1
2,3

[
φ

∣∣∣∣−k − mL, 1 − k − mL
0,−k − mL,−k − mL

]
(31)

where:

φ = ξ2

β .γ̄
=

m
L∑

i=1
σ 2
i

γ̄ σ 2 (32)

This expression generalizes (25). Indeed, in the case of
the same average energies (σi = σ), φ = mL

γ̄
and δk = 0

(k > 0).
The Figure 9a compares the normalized Shannon capac-

ity, computed analytically from (31), for the Nakagami-3

3-path fading channel and average energies 2σ 2
i = 1

4 ,
1
4 ,

1
2 .

The capacity will converge after the K = 15th first terms
of the infinite series presented above in (31), and is upper
bounded by AWGN capacity. Figure 9b shows the con-
vergence of capacity based on infinite series (31) to the
simulated one computed from (5).
The Figure 10 depicts the PDFs of the normalized 3-path

fading amplitude in both constants and various average
energies (2σ 2

i = 1
4 ,

1
4 ,

1
2 ). The curves have been plotted

form = 3, respectively, from (24) and (28). By simulation,
the PDF (28) will converge after the 15th first terms of the
series. Furthermore, in the two cases, the fading amplitude
of the multipath channel approaches to 1.

Weibull multipath fading channel
Weibull fading, based on the Weibull distribution, is a
simple statistical model of fading both in indoor and
outdoor wireless communications.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

r

f(
r)

L=4, m=1.5

L=3, m=1.5

Figure 8 PDFs of the normalized fading amplitude in Nakagami-m L-path fading channel (m = 1.5).
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(a) (b)
Figure 9 The Shannon capacity per bandwidth of the Nakagami-3 multipath fading channel (L = 3). (a) Analytical expression
(2σ 2

i = 1
4 ,

1
4 ,

1
2 ). (b) Analytical and simulation expressions (2σ 2

i = 1
8 ,

1
8 ,

3
4 ).

A Weibull distribution Wβ with shape parameter β can
be transformed to a Rayleigh distribution R and vice versa:

Wβ = R
2
β (33)

Let λ be the scale parameter of Wβ . The PDF of the
Weibull distributed RV of parameter β with mean E[R]=
λ�
(
1 + 1

β

)
and average energy E[R2]= λ2�

(
1 + 2

β

)
is

given by:

p(ω) = β

λ

(ω

λ

)β−1
e−( ω

λ )
β

, ω � 0 (34)

Furthermore, the square of a Weibull distribution � =
W 2 is a Weibull distribution of shape parameter β

2 and
mean E[�]= λ2�

(
1 + 2

β

)
. Thus, the normalized A2

L dis-
tribution in the case of Weibull L-path fading channel is
a sum of L i.i.d Weibull distribution of the same param-
eters. Its PDF is generally unknown excepted some easy
cases [26]. In [27], it has been shown that the sum of
Weibull RV can be closely approximated by the α-μ distri-
bution where (α = β

2 and μ = L) where the PDF is given
by:

p(ω) = β

2λ� (L)

(ω

λ

) Lβ
2 −1

e−( ω
λ )

β
2 , ω � 0, (35)

0.4 1 1.6 2
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0.5
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2σ 2
i
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2σ 2
i
 =1/4, 1/4, 1/2

2σ 2
i
 =1/8, 1/8, 3/4

Figure 10 PDF of the Normalized fading amplitude in Nakagami 3-path fading channel.
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where

E
[
A2
L
] = λ

�
(
L + 2

β

)
� (L)

(36)

Furthermore:

λ = � (L)

�
(
L + 2

β

) (37)

The PDF of the approximated normalized fading AL is
then:

p(ω) = β√
λ� (L)

(
ω√
λ

)Lβ−1
e−
(

ω√
λ

)β
, ω � 0 (38)

By replacing (38) into (5) and using the same change
of variable γ = γ̄ ω2, the approximated average Shan-
non capacity for theWeibull L-path fading channel can be
approximated by:

C =W
β

2 ln(2)� (L) λγ̄

∫ +∞

0
e−
(

γ
λ.γ̄

) β
2

× G1,2
2,2

[
γ

∣∣∣∣ 1, 11, 0

]
G1,0
0,1

[(
γ

λγ̄

) β
2 |0
]
dγ (39)

This integral can be solved in closed-form ([23], /Hyper-
geometricFunctions/MeijerG/21/02/03/01/), [28]:

C =W
β (λγ̄ )−

Lβ
2

√
k

2� (L) ln(2)l(2π)l+ k
2− 3

2

× Gk+2l,l
2l,k+2l

[(
k (λγ̄ )

β
2
)−k
∣∣∣∣�
(
k,−Lβ

2
, l
)]

, (40)

Table 2 The parameters of Figure 11

β 1.5 2 2.8

l 3 1 7

k 4 1 5

where

� (k, p, l) =
[

�(p, l) ,�(1 + p, l)
� (0, k) ,�(p, l) ,�(p, l)

]

and � (p, l) = p
l ,

p+1
l , . . . , p+l−1

l and l, k are the two small
positive integers co-prime such that l

k = β
2 .

This formulas generalizes the capacity obtained for
Rayleigh multipath fading channel (13) by setting β =
2(k = l = 1, λ = 1

L ), and the Shannon capacity of Weibull
fading channel (one path) given by Sagias et al. for L = 1
[6].
The Figure 11a shows the effect of the Weibull fading

parameter β on the Shannon capacity of Weibull 4-path
fading channel, plotted for the values of l and k given by
the Table 2 from the expression (40).
As the number β increases, as the fading disappears

(expression (33)), and the capacity (40) becomes closer
to that of the AWGN for four Rake receiver fingers and
β � 2.8.
The Figure 11b depict the comparison between the

analytical and simulation expressions by generating 2000
Weibull-distributed random numbers. It is shown that
the approximated Shannon capacity given in (40) is very
closed to the exact one.
The Figure 12 shows the approximated PDFs of the nor-

malized 4-path fading amplitude for the values of β given

(a) Analytical expression L = 4 (b) Analytical and simulation expressions (L = 4)

Figure 11 Normalized Shannon capacity of the Weibull-β multipath fading channel. (a) Analytical expression L = 4. (b) Analytical and
simulation expressions (L = 4).
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Figure 12 PDF of the approximated fading amplitude in Weibull 4-path fading channel.

by the Table 2. The curves have been plotted from (38) and
show that the multipath fading amplitude is close to 1 for
large values of the shape parameter.

Conclusion
In this article, we have derived the closed-form expres-
sion of the channel capacity over Nakagami-m, Rician
and Rayleigh multipath flat fading channel with L-branch
MRC receiver and an tight approximation forWeibull case
in terms of Meijer G-functions. The DS-CDMA cellular
system case was also considered. The results were val-
idated using Monte-Carlo Simulations for all multipath
fading channels studied. The plotted curves show that as
L increases, the capacity approaches the AWGN channel
capacity. Furthermore, four branches are sufficient, in all
cases, to eliminate the fading effect and then to achieve
the maximum capacity.

Appendix 1
It is convenient to recall notations and definitions
concerning Meijer G-function (see [21,23,28-30]). Let
a1, . . . , an, . . . , ap and b1, . . . , bm, . . . , bq be complex num-
bers which we designate by (ap) and (bq), respectively, for
0 ≤ m ≤ q, 0 ≤ n ≤ p. The G-function of a complex
variable z is given by a Mellin-Barnes type integral:

Gm,n
p,q (z) = G

[
z
∣∣∣∣ a1, . . . , an, . . . , apb1, . . . , bm, . . . , bq

]

= G
[
z
∣∣∣∣ (ap)(bq)

]
= 1

2π i

∫
L
g(s)z−sds, (41)

where

g(s) =
∏m

j=1 �(bj + s)
∏n

j=1 �(1 − aj − s)∏p
j=n+1 �(aj + s)

∏q
j=1+m �(1 − bj − s)

We require the conditions that aj − bk is not zero or a
positive integer for j = 1, . . . , n, k = 1, . . . ,m. In the inte-
grand, an empty product is interpreted as unity. The path
of integration L if one of the following:

(i) Left loop beginning at −∞ + λi and ending at
−∞ + δi for λ < δ encircling once all the poles
−bj− l (for j = 1 . . . ,m, l = 0, 1, . . .) leaving the poles
1 − aj + l (for j = 1 . . . , n, l = 0, 1, . . .) to the right.

(ii) Right loop beginning at ∞ + λi and ending at ∞ + δi
for λ > δ encircling once all the poles 1 − aj + l (for
j = 1 . . . ,m, l = 0, 1, . . .) leaving the poles bj − l (for
j = 1 . . . , n, l = 0, 1, . . .) to the left.

(iii) A line with indentation beginning at λ − i∞ ending
at λ + i∞ (for some real λ) separating the poles of
the integrand g like the cases (i) and (ii). We refer to
[29,30] for the existence of G(z).

• For any x ([23], /07.34.03.0228.01),

e−x = G1,0
0,1

[
x
∣∣∣∣ 0
]

(42)

• For any x ([23], /07.34.03.0456.01),

ln (1 + x) = G1,2
2,2

[
x
∣∣∣∣ 1, 11, 0

]
(43)

• For−π < argx ≤ 0 the modified Bessel function
of the first kind ([23], /07.34.03.0230.01),

In(x) = i−nG1,0
0,2

[
−x2

4

∣∣∣∣ n/2,−n/2

]
(44)

• The Mellin transform of a G-function is ([23],
/07.34.21.0009.01),

∞∫
0

xs−1Gm,n
p,q

[
yx
∣∣∣∣ (ap)(bq)

]
dx = y−sg(s) (45)
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• The Mellin transform of a product of two
G-functions is ([23], /07.34.21.0011.01), [28],

∞∫
0

xα−1Gs,t
u,v

[
σx
∣∣∣∣ (cu)(dv)

]
Gm,n
p,q

[
ωx
∣∣∣∣ (ap)(bq)

]
dx

= σ−αGm+t,n+s
p+v,q+u

[
ω

σ

∣∣∣∣ (an), 1 − α − d1, . . . , 1 − α − dv, an+1, . . . , ap
(bm), 1 − α − c1, . . . , 1 − α − cv, bm+1, . . . , bq

]
(46)
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