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Abstract

Decentralized optimization has attracted much research interest for resource-limited networked multi-agent systems
in recent years. Decentralized consensus optimization, which is one of the decentralized optimization problems of
great practical importance, minimizes an objective function that is the sum of the terms from individual agents over a
set of variables on which all the agents should reach a consensus. This problem can be reformulated into an
equivalent model with two blocks of variables, which can then be solved by the alternating direction method (ADM)
with only communications between neighbor nodes. Motivated by a recently emerged class of so-calledmulti-block
ADMs, this article demonstrates that it is more natural to reformulate a decentralized consensus optimization problem
to one with multiple blocks of variables and solve it by a multi-block ADM. In particular, we focus on the multi-block
ADM with parallel splitting, which has easy decentralized implementation. Convergence rate is analyzed in the setting
of average consensus, and the relation between two-block and multi-block ADMs are studied. Numerical experiments
demonstrate the effectiveness of the multi-block ADM with parallel splitting in terms of speed and communication
cost and show that it has better network scalability.

Introduction
In recent years, the communication, signal processing,
control, and optimization communities have witnessed
considerable research efforts on decentralized optimiza-
tion for networked multi-agent systems [1-3]. A net-
worked multi-agent system, such as a wireless sensor
network (WSN) or a networked control system (NCS),
is composed of multiple geographically distributed but
interconnected agents which have sensing, computation,
communication, and actuating abilities. This system gen-
erally has limited resources for communication, since
battery power is limited and recharging is difficult, while
communication between two agents is energy-consuming.
Furthermore, the communication link is often vulnera-
ble and bandwidth-limited. In this situation, decentralized
optimization emerges as an effective approach to improve
network scalability. In decentralized optimization, data
and computation are decentralized. Each agent exchanges
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information with its neighbors and accomplishes an oth-
erwise centralized optimization task.
This article focuses on the decentralized consensus opti-

mization problem. We consider a network of L agents
which cooperatively optimize a separable objective func-
tion [3-8]:

min
L∑

i=1
fi(x), (1)

where fi(x) : RN → R is a convex function known to
agent i only. The goal is to minimize the objective subject
to consensus on x.

Related study
The decentralized consensus optimization formulation (1)
arises in many practical applications, such as averaging
[9-11], estimation [12-17], learning [18-21], etc. The form
of fi(x) can be least squares [11-13], �1-regularized least
squares [14-17], or more general ones [18-21]. Note that
this model can be extended to account for those with
separable constraints, such as the network utility maxi-
mization (NUM) problem [22-24].
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Existing approaches to solving (1) include: i) belief prop-
agation based on graphical models and Markovian ran-
dom fields [18-20]; ii) incremental optimization which
minimizes the overall objective function along a pre-
defined path on the network [7,8]; iii) stochastic opti-
mization with information exchange between neighboring
agents [4-6]; and iv) optimization with explicit consen-
sus constraints which can be handled with the alternating
direction method (ADM) [3,12-17]. The ADM approach
is fully decentralized, does not make any assumptions on
network infrastructure such as free of loop or with a pre-
defined path, and generally has satisfactory convergence
performance. In this article, wemainly discuss the applica-
tion of ADMs in the decentralized consensus optimization
problem.
Our research is along the line of information-driven

signal processing and control of WSNs and NCSs
[24-26]. Accompanied with the unprecedented data col-
lection abilities offered by large-scale networked multi-
agent systems, a new challenge also arises: how should we
process such a large amount of data to make estimates and
produce control strategies given limited network resources?
Instead of processing the data in a fusion center, our solu-
tion is letting each agent autonomously make decisions
aided by limited communication with its neighbors. From
this perspective, each individual objective function fi(x)
in (1) is constructed from the data collected by agent
i, and x is the global information common to all agents
(e.g., estimates or control strategies) obtained based on
the data collected by the whole network. Though this
framework can be generalized to various signal processing
and control problems, this article focuses on those can be
formulated as (1). For problems such as dynamic control
and Kalman filtering of networked multi-agent systems,
interested readers are referred to [1,2,27,28], respectively.

Our contribution
Motivated by a series of recent articles on multi-block
ADMs and their convergence analysis [29-31], this article
describes their applications to the decentralized consen-
sus optimization problem. The multi-block ADM with
parallel spliting is reviewed in Section 3. Unlike the clas-
sical ADM (see textbooks [32,33]), this multi-block ADM
splits the optimization variables into multiple blocks and
sequentially updates just one of them while fixing the
others. The classical ADM, on the other hand, only has
two blocks of variables. Hence in this article we refer
to it by the two-block ADM. Our problem (1) does
not naturally have two distinct blocks of variables, and
to apply the two-block ADM one needs to introduce
extra variables (see e.g., [15,16,32]). We review this in
Section 2. On the other hand, it is simpler to apply the
multi-block ADM to (1) and the resulting algorithm is
readily decentralized.

In this article also analyzes the convergence rate of the
multi-block ADM applied to the average consensus prob-
lem, which is a special case of (1) where fi(x) = 1

2‖x−bi‖22
for all i. In this setting, if the parameters of the multi-
block ADM satisfy a certain formula, it is equivalent to
the two-block ADM. Therefore, the two-block ADM can
be considered as a special case of the multi-block ADM
on average consensus problems. This relation also gives
a guideline to select the parameters of the multi-block
ADM so that it is not equivalent to and runs faster than
the two-block ADM on all the tested decentralized con-
sensus optimization problems, including the tested aver-
age consensus problems. The simulation results demon-
strate that the multi-block ADM accelerates convergence,
reduces communication cost, and thus improves network
scalability.

Paper organization
The rest of this article is organized as follows. Section
2 reviews a reformulation of the decentralized consensus
optimization problem (1), to which the two-block ADM
is applied. Section 3 reviews the multi-block ADM and
applies a parallel-splitting version of it to (1). Section
4 elaborates on the convergence rate analysis on the
average consensus problem, and shows that the two-
block ADM is a special case of the multi-block ADM
in this case. Section 5 presents numerical simulations of
the two-block and multi-block ADMs. Finally, Section 6
concludes the article. Appendix 1 is placed in the last
section.

Problem formulation and the two-block ADM
In this section, we describe an equivalent formulation
of the decentralized consensus optimization problem (1)
and outline the algorithm design based on the two-block
ADM.

Problem formulation
We consider a networked multi-agent system described
by an undirected connected communication graph G =
(L, E), where L is the set of L vertexes (distributed agents)
and E is the set of edges (communication links). There
exists an edge (i, j) ∈ E between agents i and j if they
can directly communicate with each other. The two agents
are also called one-hop neighbors, or simply neighbors.
The set of one-hop neighbors of agent i is denoted by Ni,
whose cardinality is denoted by |Ni|.
Our objective is to solve (1) with only information

exchange between neighbors. To this end, define x(i) as
agent i’s local copy of x and impose consensus constraints
x(i) = x(j) for all pairs of neighbors i and j. With these
and given that the communication graph G is connected,
we obtain the following equivalent formulation of (1)
(see e.g., [13]):
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min
L∑

i=1
fi(x(i)),

s.t. x(i) = x(j), ∀j ∈ Ni,∀i.
(2)

The two-block ADM
Let us consider the following convex program with sepa-
rable equality constraints:

min g1(θ1) + g2(θ2),

s.t. D1θ1 + D2θ2 = e.
(3)

Here for i = 1 and 2, gi : RN ′
i → R is convex, Di ∈

RM′×N ′
i , e ∈ RM′ . The two-block ADM constructs the

augmented Lagrangian function as:

La (θ1, θ2, λ) = g1 (θ1) + g2 (θ2) + λT (D1θ1 + D2θ2 − e)

+ c
2
||D1θ1 + D2θ2 − e||22.

Here λ ∈ RM′ is a Lagrange multiplier and c is a positive
constant. At the tth iteration, the two-block ADMupdates
the optimization variables θ1(t + 1) and θ2(t + 1) as:

θ1(t + 1) = argmin
θ1

La(θ1, θ2(t), λ(t)),

θ2(t + 1) = argmin
θ2

La(θ1(t + 1), θ2, λ(t)),

and updates the Lagrange multiplier λ(t + 1) as:

λ(t + 1) = λ(t) + c(D1θ1(t + 1) + D2θ2(t + 1) − e).

The two-block ADM guarantees global convergence for
any c > 0 [32]. More precisely, when each gi is convex
for i = 1 and 2, the dual sequence {λ(t)} converges to an
optimal dual solution of (5); if further the primal sequence{[

θ1(t)T , θ2(t)T
]T}

is bounded, the sequence converges to
an optimal primal solution of (5).

The two-block ADM for decentralized consensus
optimization
The two-block ADM cannot be directly applied to prob-
lem (2) because its constraints interconnect all the vari-
ables pair by pair. There are no obvious two blocks. To
overcome this, [32] describes a new block of auxiliary
variables, and reformulates (2) as:

min
{x(i)},{zij}

L∑
i=1

fi(x(i)),

s.t. x(i) = zij, x(j) = zij,∀j ∈ Ni,∀i.
(4)

Here zij is an auxiliary variable attached to x(i) and x(j).
Treating {x(i)} and {zij} as two blocks of variables, the

two-block ADM is applied to problem (4). This technique
has been adopted in [15,16] to solve the decentralized con-
sensus optimization problem with neighboring consen-
sus constraints. After eliminating {zij} from the iterative

updates and further simplifications, the two-block ADM
for (4) is given below as algorithm TB-ADM.

Initialization: Each agent i initializes x(i)(0) = 0
and αi(0) = 0.
Step 1: At time t, each agent i updates its local copy
x(i) as: x(i)(t + 1) = argmin

x(i)
fi(x(i)) + αT

i (t)x(i) +
c

∑
j∈Ni

||x(i) − 1
2

(
x(i)(t) + x(j)(t)

) ||22, where αi is the

Lagrange multiplier and c is a positive constant.
Step 2: At time t, each agent i updates its Lagrange
multiplier αi as:
αi(t+ 1) = αi(t) + c|Ni|x(i)(t+ 1) − c

∑
j∈Ni

x(j)(t+ 1).

Step 3: Repeat Step 1 and Step 2 until convergence.

TB-ADM is well suited for decentralized computation
since the updates require only communication between
agents i and j, who are one-hop neighbors. Detailed
derivation of TB-ADM can be found in [15,16,32].

Themulti-block ADM
The fact that many practical optimization problems nat-
urally have multiple blocks of variables motivates the
development of a class of multi-block ADMs, such as the
one with parallel splitting [29], with prediction-correction
[30], and with Gaussian back substitution [31]. Due to the
nature of the decentralized consensus optimization prob-
lem (2) and the need of parallelization, we choose the
multi-block ADM with parallel splitting in [29].

Themulti-block ADMwith parallel splitting
Consider an equality constrained convex program which
can be separated to L parts:

min
L∑

i=1
gi(θi),

s.t.
L∑

i=1
Diθi = e.

(5)

Here for all i, gi : RN ′
i → R is convex, Di ∈ RM′×N ′

i ,
e ∈ RM′ . At the tth iteration, the multi-block ADM with
parallel splitting works as follows:

Step 1: Updating an auxiliary variable q:

q(t + 1) = λ(t) + β

( L∑
i=1

Diθi(t) − e
)
,

where q is an auxiliary variable, λ is a Lagrange multiplier,
and β is a positive constant.
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Step 2: Updating optimization variables {θi}:

θi(t + 1) = argmin
θi

gi(θi) + q(t + 1)TDiθi

+ μ

2
||Diθi − Diθi(t)||22, ∀i,

where μ is a positive constant.
Step 3: Updating the Lagrange multiplier λ:

λ(t + 1) = λ(t) + β

( L∑
i=1

Diθi(t + 1) − e
)
.

The multi-block ADM guarantees global convergence if
the two positive constants β and μ are properly chosen.
For the convergence proof and the settings of β and μ, the
interested reader is referred to [29].

Themulti-block ADM for decentralized consensus
optimization
Applying the multi-block ADM in (2) directly gets a
decentralized algorithm, and does not need to introduce
a new block of auxiliary variables and eliminate them, as
we have done in the two-block ADM. We provide the
algorithm to solve (2) based on the multi-block ADM
with parallel splitting, denoted as MB-ADM. Detailed
derivation of MB-ADM is given in Appendix 1.

Initialization: Each agent i initializes qi(0) = 0,
x(i)(0) = 0, and λi(0) = 0.
Step 1: At time t, each agent i updates its auxiliary
variable qi as:
qi(t + 1) = λi(t) + β|Ni|x(i)(t) − β

∑
j∈Ni

x(j)(t), where

β is a positive constant.
Step 2: At time t, each agent i updates its local copy
x(i) as: x(i)(t+1) = argmin

x(i)
fi(x(i))+2qTi (t+1)x(i)+

μ|Ni|||x(i) − x(i)(t)||22, where μ is a positive constant.
Step 3: At time t, each agent i updates its Lagrange
multiplier λi as:
λi(t+1) = λi(t)+β|Ni|x(i)(t+1)−β

∑
j∈Ni

x(j)(t+1).

Step 4: Repeat Step 1 to Step 3 until convergence.

In each iteration, to update qi(t + 1) and λi(t), agent
i needs x(j)(t) with the size of N × 1 from all neighbors
j ∈ Ni; to optimize x(i)(t + 1), agent i only needs local
information qi(t + 1) and x(i)(t). In all, each agent only
needs to broadcast an N × 1 vector of its local copy (i.e.,
x(i)(t)) to its neighbors per iteration. MB-ADM and TB-
ADM have the same per-iteration communication cost.
At the tth iteration, agent i needs to update x(i)(t), qi(t),
and λi(t) in its memory for MB-ADM. Hence the memory
requirement is slightly higher than that of TB-ADM, for
which only x(i)(t) and αi(t) need to be updated.

Convergence rate analysis
Convergence rate is an significant issue for decentralized
algorithms, since it directly influences the overall com-
munication cost. With respect to general separable con-
vex programs, [29,34] proves the sublinear convergence
rates of ∼ 1

t for the multi-block and two-block ADMs,
respectively. However, when they are applied to the aver-
age consensus problems, much faster convergence can be
observed. For this reason, we improve the convergence
rate in this section.
The average consensus problem gives rise to problem (2)

with fi(x(i)) = 1
2 ||x(i) −bi||22,∀i [9-11]; namely, agents aims

at averaging their original measurements {bi} via one-hop
communication. Without loss of generality, we assume
that x(i) and bi are both scalars since their dimensions have
no effect on the convergence rate.

Convergence rate of MB-ADM
In analyzing the convergence rate of MB-ADM for the
average consensus problem, we first rewrite MB-ADM as
a state transition equation form and then use the spectral
analysis tools to provide a bound of convergence rate. Our
train of thought is similar to that in [35] for the two-block
ADM.
According to the derivation in Appendix 1, we can

rewrite MB-ADM in a state transition equation form. Let
us define a state vector sM(t+1) =[ x(1)(t+1), . . . , x(L)(t+
1), x(1)(t), . . . , x(L)(t)]T and the corresponding state tran-
sition equation of MB-ADM is:

sM(t + 1) = �MsM(t). (6)

Here the state transition matrix �M is defined as:

�M =
(

�M 	M

IL×L 0L×L

)

with �M being an L × L matrix whose (i, i)th entry
is 1−4β|Ni|+4μ|Ni|

1+2μ|Ni| and (i, j)th entry is 4β
1+2μ|Ni| if i

and j are neighbors, and 	T being an L × L matrix
whose (i, i)th entry is 2β|Ni|−2μ|Ni|

1+2μ|Ni| and (i, j)th entry
is − 2β

1+2μ|Ni| if i and j are neighbors. We can see
that summation of each row of �M is 1. The initial
state is sM(1) =[ b1

1+2μ|N1| , . . . ,
bL

1+2μ|NL| , 0, . . . , 0] when
each agent i initializes qi(0) = 0, x(i)(0) = 0, and
λi(0) = 0.

Proposition 1. (convergence and convergence rate of
MB-ADM on average consensus) The state transition
equation (6) defined above has the following properties:



Ling et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:338 Page 5 of 12
http://jwcn.eurasipjournals.com/content/2012/1/338

Property 1. The matrix �M has an eigenvalue ρM1 = 1
with multiplicity 1, and its corresponding left and right
eigenvectors are:

lM1 = [1 + 2μ|N1|, . . . , 1 + 2μ|NL|,−2μ|N1|, . . . ,
− 2μ|NL|]

and

rM1 =
[
1
L
, . . . ,

1
L
,
1
L
, . . . ,

1
L

]T
,

respectively. Note that lM1 and rM1 are chosen subject to
lM1rM1 = 1.

Property 2. Define:

ρM = max
i�=1

|ρMi|,

where ρMi is the ith eigenvalue of �M. If ρM < 1, then the
limit property of sM(t) is:

lim
t→∞ sM(t + 1) = lim

t→∞ �t
MsM(1) = rM1lM1sM(1)

= 1
L

L∑
i=1

bi [1, . . . , 1, 1, . . . , 1]T .

Further, denoting that κM is the size of the largest Jordan
block of �M, the convergence rate is:

||sM(t + 1) − sM(∞)||2 ∼ t(κM−1)ρt
M.

Proof of Property 1 is given in Appendix 1. Property
2 comes from the classical convergence rate analysis of
state transition equations. If ρM1 = 1 and ρM < 1, then
there exists a unique sM(∞) and the convergence rate
is ||sM(t + 1) − sM(∞)||2 ∼ t(κM−1)ρt

M (see [36], Fact
3). Next we try to find one possible (and hence unique)
sM(∞). By definition, �MrM1 = ρM1rM1 = rM1. Hence
limt→∞ �t

MrM1 = rM1. Similarly, limt→∞ lM1�M = lM1.
These two facts mean that rM1lM1 is a possible limit point
of limt→∞ �t

M. Therefore, rM1lM1sM(1) is a possible (and
hence unique) limit point of sM(∞).

Remark 1. Note that the ∼ t(κM−1)ρt
M rate, though still

loose, is tighter than the ∼ 1
t rate of the multi-block ADM

for general separable convex programs [29]. Indeed, from
numerical experiments, we find that κM, the size of the
largest Jordan block of �M, is often equal to 1 (it means
that �M is diagonalizable). In this case, the convergence
rate can be as fast as ∼ ρt

M.
In Property 2, there is a condition that ρM < 1. It is not

necessarily for true any choices of μ and β . Next we show
two nontrivial special cases where the condition in Prop-
erty 2 satisfy. The first special case connects MB-ADM
with TB-ADM. Analysis of these two special cases as well
as numerical simulations provide guidelines for parameter
selection in MB-ADM.

Proposition 2. (two nontrivial special cases) We have
ρm < 1 in either one of the following two cases:

Case 1: The parameters μ and β are chosen such that
μ = 2β > 0; further, 2β|Nj|

1+2μ|Nj| < 1
4 and 2μ|Nj|

1+2μ|Nj| < 1
2 for

all j = 1, 2, . . . , L.
Case 2: The parameters μ and β are chosen such that

μ = β > 0; further, 2β|Nj|
1+2μ|Nj| < 1

2 and 2μ|Nj|
1+2μ|Nj| < 1

2 for all
j = 1, 2, . . . , L.

Remark 2. The proof of Proposition 2 is given in
Appendix 1. In case 1, we set μ = 2β > 0, which
indeed leads to the equivalence between MB-ADM and
TB-ADM, as we will show in the next subsection. In case
2, we set μ = β > 0, which brings faster convergence
for the average consensus problem according to numer-
ical simulations (see Section 5.2). Hence we recommend
to set β = τμ with a fixed ratio 1

2 ≤ τ ≤ 1, and
just tune the value of μ. This setting also works well for
the general decentralized consensus optimization prob-
lem (1). Tuning μ for MB-ADM is similar to tuning c for
TB-ADM; both algorithms have 1 parameter subject to
the user choice. Note that the conditions in Proposition 2
are merely sufficient; 2β|Nj|

1+2μ|Nj| and
2μ|Nj|

1+2μ|Nj| can be larger
than their upper bounds given above.

Connection between MB-ADM and TB-ADM
To show the connection between MB-ADM and TB-
ADM, we also write TB-ADM as a state transition
equation form. Note that [35] considers another kind
of two-block ADM for the average consensus problem,
where consensus constraints are quadratically penalized
by different weights in the augmented Lagrangian func-
tion. In TB-ADM, the consensus constraints are quadrat-
ically penalized by the same weight c.
We define a state vector sT (t + 1) =[ x(1)(t +

1), . . . , x(L)(t + 1), x(1)(t), . . . , x(L)(t)]T and the corre-
sponding state transition equation, according to the
derivation in Appendix 1:

sT (t + 1) = �TsT (t). (7)

Here the state transition matrix �T is defined as:

�T =
(

�T 	T

IL×L 0L×L

)

with IL×L being the L × L identity matrix, 0L×L being
the L × L zero matrix, �T being an L × L matrix whose
(i, i)th entry is 1 and (i, j)th entry is 2c

1+2c|Ni| if i and
j are neighbors, and 	T being an L × L matrix whose
(i, i)th entry is − c|Ni|

1+2c|Ni| and (i, j)th entry is − c
1+2c|Ni|

if i and j are neighbors. The initial state is sT (1) =
[ b1
1+2c|N1| , . . . ,

bL
1+2c|NL| , 0, . . . , 0] when each agent i initial-

izes x(i)(0) = 0 and αi(0) = 0.
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Comparing the state transition equations of MB-ADM
and TB-ADM, we can find that TB-ADM is indeed a spe-
cial case ofMB-ADMwhen c = μ = 2β > 0. In this sense,
MB-ADM provides more flexibility in parameter selection
than TB-ADM. According to our simulations in Section
5.2, setting β = τμ with 1

2 ≤ τ ≤ 1 makes MB-ADM
faster than TB-ADM.
Let ρTi be the ith eigenvalue of �T . Apparently ρT1 = 1.

Defining:

ρT = max
i�=1

|ρTi|,

and denoting κT as the size of the largest Jordan block of
�T , we can prove that TB-ADM has a similar ∼ t(κT−1)ρt

T
convergence rate to the optimal solution given the condi-
tions in Case 1 of Proposition 2. Interestingly, the upper
bounds of 2c|Nj|

1+2c|Nj| < 1
2 for all j = 1, 2, . . . , L are no longer

needed since TB-ADM guarantees global convergence for
any c > 0.

Numerical Experiments
In this section, we present numerical simulations and
demonstrate the performance of MB-ADM on the decen-
tralized consensus optimization problems. Particularly,
we are interested in how the communication cost scales to
the network size.

Simulation Settings
In the numerical experiments, we consider the case that
the agents cooperatively solve a least-squares problem.
Each agent i has a measurement matrix Ai ∈ RM×N and
a measurement vector bi ∈ RM. The objective function
in (1) is thus f (x) = ∑L

i=1 fi(x) = 1
2

∑L
i=1 ||Aix − bi||22.

The elements of the true signal vector x0 and the entries of
the measurement matrices {Ai} follow the normal distri-
bution N (0, 1). The measurement vector bi = Aix0 + ηi;
the elements of the noise vector ηi follow the normal
distribution N (0, 0.1). In the tests of average consen-
sus, {Ai} reduce to identity matrices and are no longer
random.
In the simulation, we assume that L agents are uni-

formly randomly deployed in a 100 × 100 area. All agents
have a common communication range rC , which is chosen
such that the networked multi-agent system is connected.
Given rC , the average node degree d can be calculated.We
consider the following three scenarios: #1) L = 50,M = 1,
N = 1, {Ai = 1}, rC = 30, d � 12; #2) L = 50, M = 10,
N = 5, rC = 30, d � 12; #3) L = 200, M = 10, N = 5,
rC = 15, d � 12. Scenario #1 is the average consensus test.
Throughout the simulations, we set β = τμ in MB-ADM
with τ = 0.9.

Convergence rate for average consensus
Under different choices of c, μ, and β , the values of ρT for
TB-ADM and the values of ρM for MB-ADMwith respect
to scenario #1 are shown in Figure 1. For TB-ADM, ρT
sharply reduces when c increases from 0; after a certain
turning point (at c∗ � 0.17) which corresponds to the
fastest convergence rate, ρT steadily increases. The curve
of ρM for MB-ADM shows to be more complicated due
to the existence of two parameters, μ and β . For each μ,
ρM steadily reduces when β increases from 0, then sharply
goes to be larger than 1 which corresponds to divergence.
The larger μ, the wider convergence range for β ; but the
side-effect is the relatively slower convergence rate. The
curve of particular interest to us is μ = c∗ � 0.17. In this
curve, 2β = c∗ � 0.17 corresponds to Case 1 in Propo-
sition 2; namely, when MB-ADM reduces to TB-ADM.
Increasing β from c∗, ρM still decreases until reaching
a turning point 2β = 2c∗ � 0.34, which corresponds
to Case 2 in Proposition 2. This simulation validates our
analysis in Section 5.2, as well as the proposed parameter
selection rule (namely, setting a ratio τ , 1

2 ≤ τ ≤ 1, such
that β = τμ).
Simulation results about the actual convergence prop-

erties are shown in Figure 2. By absolute error we denote
the �2-norm of the distance between the current solution
and the centralized optimal solution. Though the conver-
gence rates of MB-ADM and TB-ADM are at the same
magnitude, MB-ADM shows to be slightly superior to
TB-ADM.
According to the theoretical analysis in Sections 4.1 and

4.2, the estimated convergence rates of MB-ADM and TB-
ADM are ∼ t(κM−1)ρt

M and ∼ t(κT−1)ρt
T , respectively.

However, numerical simulations show that they are loose
bounds; the actual convergence rate, as we can observe
from Figure 2, are linear.

0 0.5 1 1.5
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0.95

1

c or 2β

ρ T
 o

r 
ρ M

μ=0.1

μ=0.3

μ=0.5
μ=0.7

Figure 1 Curves of ρT and ρM for TB-ADMMB-ADM in scenario
#1. The dash line is for TB-ADM and its turning point corresponds to
c∗ � 0.17; the solid line is for MB-ADM with μ = 2c∗ � 0.34; the four
dot lines are for MB-ADM with μ = 0.1, 0.3, 0.5, and 0.7.
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Figure 2 Convergence of the decentralized consensus
optimization algorithms for scenario #1. Here β = τμ with
τ = 0.9.

Performance Comparison
Figures 3 and 4 depict the convergence properties of the
two decentralized consensus optimization algorithms for
scenarios #2 and #3, respectively. The parameters μ and
c are tune to be near the best ones with. Here we still
have β = τμ with τ = 0.9. For either the medium net-
work in scenario #2 or the large network in scenario #3,
both algorithms linearly converge to the optimal solution.
Comparing the two decentralized algorithms, MB-ADM
outperforms TB-ADM in each scenario regarding conver-
gence rate.
What of particular interest to us is whether the decen-

tralized algorithms are scalable to network size. Observing
Figure 3 with L = 50 agents and d � 12, and Figure 4 with
L = 200 agents and d � 12, we can find that the conver-
gence rates of the two algorithm are more dependent on
the average node degree other than on the network size.
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Figure 3 Convergence of the decentralized consensus
optimization algorithms for scenario #2. The parameters c and μ

are tuned to near the best, and β = τμ with τ = 0.9.
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Figure 4 Convergence of the decentralized consensus
optimization algorithms for scenario #3. The parameters c and μ

are tuned to near the best, and β = τμ with τ = 0.9.

These numerical experiments verify the well-recognized
claim that decentralized optimization may improve the
performance of a networked multi-agent system with
respect to network scalability.

Communication cost
Communication cost, in terms of energy consumption
and bandwidth, is the major design consideration of a
resource-limited networked multi-agent system, and can
be approximately evaluated by the volume of information
exchange during the decentralized consensus optimiza-
tion process. Ignoring the extra burden of coordinating
the network, for each agent, the communication cost is
proportional to the number of iterations multiplied by the
volume of information exchange per iteration. Therefore,
reducing the information exchange per iteration is of crit-
ical importance to the design of lightweight algorithms.
Comparing the two decentralized consensus optimiza-

tion algorithms, the information exchange per iteration is
decided by the communication mode of agents, namely,
broadcast or unicast. In the broadcast mode, one agent
can send one piece of information to all of its neighbors
with one transmission; contrarily, in the unicast mode,
the agent needs multiple transmissions to do so. The two
modes both have their pros and cons. The broadcast mode
utilizes the characteristic of wireless communication, but
may brings difficulties in coordinating the network, such
as avoiding collisions. Though the unicast mode con-
sumes much more transmissions, the randomized-gossip-
like scheme is very useful in communication for the sake
of robustness [37]. The average volume of information
exchange per iteration of the four decentralized consensus
optimization algorithms are outlined in Table 1, for both
the broadcast and unicast modes.
In summary, the decentralized consensus optimization

algorithms, nomatter with the broadcast or unicast mode,
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Table 1 Average volume of information exchange per
iteration

TB-ADM MB-ADM

Broadcast mode N N

Unicast mode dN dN

are scalable to the network size. Since the number of
iterations is proportional to the average node degree d,
the overall average volume of information exchange is
∼ Nd for the broadcast mode and ∼ Nd2 for the unicast
mode. As a comparison, consider a centralized networked
multi-agent system uniformly randomly deployed in a
two-dimensional area with a fusion center which collects
measurement vectors from all agents. The average volume
of information exchange is ∼ M

√
L while the worst one is

∼ ML for agents near the fusion center.When the network
size L increases, the communication cost caused by the
centralized network infrastructure is unaffordable and the
decentralized network infrastructure is hence superior.

Conclusion
This article considers solving the decentralized consensus
optimization problem with the parallel version multi-
block ADM in a networkedmulti-agent system. The tradi-
tional ADM can be used but it requires the introduction of
a second block of auxiliary variables whereas our method
takes advantages of the problem’s nature of having multi-
ple blocks of variables.We analyze the rate of convergence
of our method applied to the average consensus prob-
lem. Analysis results that the two-block ADM is a spe-
cial case of the multi-block ADM on average consensus.
With extensive numerical experiments, we demonstrate
the effectiveness of the proposed algorithm.
In the implementation of a networked multi-agent sys-

tem, practical issues such as packet loss, asynchronization,
and quantization are inevitable. This article assumes that
the communication links are reliable, the network time is
slotted and well synchronized, and the exchanged infor-
mation is not quantized. We would like to address these
issues in future research.

Appendix 1
This section provides some theoretical results in the
article.

Development of MB-ADM
The decentralized consensus optimization problem (2)
with neighboring consensus constraints can be rewritten
as the form of (5). Apparently, gi = fi, θi = x(i), and e is an
L2N×1 zero vector. EachDi is an L2N×N matrix with L2
blocks ofN ×N matrices. Each block of Di can be defined
as follows. Consider an L × L matrix U(i), whose (i′, j′)th
entry U(i)

i′j′ = 1 if j′ = i and i′ ∈ Ni, U(i)
i′j′ = −1 if i′ = i and

j′ ∈ Ni, and U(i)
i′j′ = 0 otherwise. The (i′ + Lj′ − L)th block

of Di isU(i)
i′j′ IN , where IN is an N ×N identity matrix. Sub-

stituting them to the multi-block ADM, we can find that
in optimizing x(i), agent i only needs its local information
as well as part of q; on the other hand, to update its corre-
sponding part of q and λ, each agent only needs based on
the information from itself and its neighbors. The result-
ing algorithm is hence fully decentralized due to the nice
structure of {Di}.
At time t, the multi-block ADM works as follows:

Step 1: Updating the auxiliary variables {qij}:

qij(t + 1) = λij(t) + β
(
x(i)(t) − x(j)(t)

)
, ∀i,∀j ∈ Ni.

(8)

Step 2: Optimizing the local copies {x(i)}:
x(i)(t + 1) = argmin

x(i)
fi(x(i)) +

∑
j∈Ni

(qij(t + 1)

− qji(t + 1))Tx(i) + μ|Ni|||x(i)

− x(i)(t)||22, ∀i.

(9)

Step 3: Updating the Lagrange multipliers {λij}:

λij(t + 1) = λij(t) + β
(
x(i)(t + 1) − x(j)(t + 1)

)
, ∀i,

∀j ∈ Ni.
(10)

Note that β andμ are positive constant parameters used
by the multi-block ADM.
The updating rules (8), (9), and (10) can also be fur-

ther simplified. Since we often set {λij(0)} as 0, (8) and
(10) imply that qij(t + 1) = −qji(t + 1) and λij(t + 1) =
−λji(t + 1). Summing up the two sides of (8) and (10) and
defining a new auxiliary variable qi = ∑

j∈Ni qij as well as
a new Lagrange multiplier λi = ∑

j∈Ni λij, their updating
rules are:

qi(t + 1) = λi(t) + β|Ni|x(i)(t) − β
∑
j∈Ni

x(j)(t),

(11)

λi(t + 1) = λi(t) + β|Ni|x(i)(t + 1) − β
∑
j∈Ni

x(j)(t + 1).

(12)

Hence (9) simplifies to:

x(i)(t + 1) = argmin
x(i)

fi(x(i))+2qTi (t + 1)x(i)+μ|Ni|||x(i)

− x(i)(t)||22.
(13)
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State transition equation of MB-ADM
Combining the updating rules of qi(t+1) and qi(t) in (11)
and the updating rule of λi(t) in (12), we get:

qi(t + 1) − qi(t) = 2β|Ni|x(i)(t) − 2β
∑
j∈Ni

x(j)(t)

− β|Ni|x(i)(t − 1) + β
∑
j∈Ni

x(j)(t − 1).

(14)

Substituting fi(x(i)) = 1
2 ||x(i) − bi||22 into (13), the

optimality condition for x(i)(t + 1) is:

x(i)(t + 1) + 2qi(t + 1)+2μ|Ni|x(i)(t + 1)−2μ|Ni|x(i)(t)

− bi = 0.
(15)

Combining the optimality conditions of x(i)(t + 1) and
x(i)(t) and (14) leads to:

x(i)(t + 1) = 1 − 4β|Ni| + 4μ|Ni|
1 + 2μ|Ni| x(i)(t) + 4β

1 + 2μ|Ni|∑
j∈Ni

x(j)(t) + 2β|Ni| − 2μ|Ni|
1 + 2μ|Ni| x(i)(t − 1)

− 2β
1 + 2μ|Ni|

∑
j∈Ni

x(j)(t − 1).

(16)

The initial state is sM(1) =
[

b1
1+2μ|N1| , . . . ,

bL
1+2μ|NL| ,

0, . . . , 0
]
when each agent i initializes qi(0) = 0, x(i)(0) =

0, and λi(0) = 0.

Proof of Property 1 in Proposition 1
It is straightforward to show that ρM1 = 1 is an
eigenvalue of �M, as well as lM1 and rM1 are its cor-
responding left and right eigenvectors. Next we prove
that ρM1 = 1 is with multiplicity 1 by contradiction.
If ρM1 = 1 belongs to a larger Jordan block, there
exists a vector [wT , w̄T ]T , such that �M[wT , w̄T ]T =
[wT , w̄T ]T +[ 1, . . . , 1, 1, . . . , 1]T . Here w and w̄ are both
L × 1 vectors (see [36], Fact 2). Observing the lower
half of �M, apparently w̄ = w−[ 1, . . . , 1]T . Sup-
pose that wk has the largest real part among all ele-

ments of w. Picking up the kth row of �M[wT , w̄T ]T =
[wT , w̄T ]T +[ 1, . . . , 1, 1, . . . , 1]T , we have:(

1 − 4β|Nk| + 4μ|Nk|
1 + 2μ|Nk| wk+ 2β|Nk| − 2μ|Nk|

1 + 2μ|Nk| (wk−1)
)

+
∑
j∈Nk

(
4β

1 + 2μ|Nk|wj − 2β
1 + 2μ|Nk| (wj − 1)

)

= wk + 1,
(17)

or equivalent to:

2μ|Nk|
1 + 2μ|Nk| +

∑
j∈Nk

2β
1 + 2μ|Nk|wj = 1 + 2β|Nk|

1 + 2μ|Nk|wi.

(18)

Denote the real part of wk and wj as Re(wk) and Re(wj),
respectively. Recalling that Re(wk) ≥ Re(wj) and picking
up the real part of (18), we have:

1 + 2β|Nk|
1 + 2μ|Nk|Re(wi) = 2μ|Nk|

1 + 2μ|Nk|

+
∑
j∈Nk

2β
1 + 2μ|Nk|Re(wj)

≤ 2μ|Nk|
1 + 2μ|Nk|

+
∑
j∈Nk

2β
1 + 2μ|Nk|Re(wk)

= 2μ|Nk|
1 + 2μ|Nk| +

∑
j∈Nk

2β|Nk|
1 + 2μ|Nk| .

(19)

This leads to contradiction. Hence ρM1 = 1 is an
eigenvalue of �M with multiplicity 1.

Proof of Proposition 2
Denote the ith eigenvalue of �i as ρMi. Apparently, its
eigenvectors should have the form of [ ρMivT , vT ]T where
vT =[ v1, . . . , vL]T is a nonzero vector, since the lower half
of�M is [ IL×L, 0L×L]. Suppose that vk has the largest norm
(here we use | · | to denote the norm of a complex number)
among all elements of v. Then picking up the kth row of
�M[ ρMivT , vT ]T = ρMi[ ρMivT , vT ]T , we have:(

1 − 4β|Nk| + 4μ|Nk|
1 + 2μ|Nk| ρMi + 2β|Nk| − 2μ|Nk|

1 + 2μ|Nk|
)
vk

+
∑
j∈Nk

(
4β

1 + 2μ|Nk|ρMi − 2β
1 + 2μ|Nk|

)
vj = ρ2

Mivk ,

(20)
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or equivalently:
(
ρ2
Mi−

1 − 4β|Nk| + 4μ|Nk|
1 + 2μ|Nk| ρMi − 2β|Nk| − 2μ|Nk|

1 + 2μ|Nk|
)
vk

=
∑
j∈Nk

(
4β

1 + 2μ|Nk|ρMi − 2β
1 + 2μ|Nk|

)
vj.

(21)

Since vk has the largest norm among all elements of v,
taking norms for the both sides of (21) leads to:

∣∣∣∣
(

ρ2
Mi −

1 − 4β|Nk | + 4μ|Nk |
1 + 2μ|Nk | ρMi − 2β|Nk | − 2μ|Nk |

1 + 2μ|Nk |
)∣∣∣∣ |vk |

=
∣∣∣∣∣∣
∑
j∈Nk

(
4β

1 + 2μ|Nk |ρMi − 2β
1 + 2μ|Nk |

)
vj

∣∣∣∣∣∣
≤

∑
j∈Nk

∣∣∣∣
(

4β
1 + 2μ|Nk |ρMi − 2β

1 + 2μ|Nk |
)
vj

∣∣∣∣
≤

∑
j∈Nk

∣∣∣∣ 4β
1 + 2μ|Nk |ρMi − 2β

1 + 2μ|Nk |
∣∣∣∣ |vj|

≤
∣∣∣∣ 4β|Nk |
1 + 2μ|Nk |ρMi − 2β|Nk |

1 + 2μ|Nk |
∣∣∣∣ |vk |.

(22)

Notice that the inequalities turn to equalities when and
only when vj = vk ,∀j ∈ Nk . As vk has the largest norm
among all elements of v, any vj with j ∈ Nk also has
such inequalities, and the inequalities turn to equalities
when and only when vj′ = vj,∀j′ ∈ Nj. Because the net-
work is connected, we can deduce that these inequalities
turn to equalities when and only when {vi} are all equal.
This corresponds to the eigenvalue ρM1 = 1. Canceling
|vk| from the both sides and defining d1 = 2β|Nk |

1+2μ|Nk | and
d2 = 2μ|Nk |

1+2μ|Nk | , (22) is equivalent to:

|ρ2
Mi − ρMi + 2d1ρMi − d2ρMi − d1 + d2| ≤ |2d1ρMi − d1|.

(23)

Let us consider the two nontrivial special cases.

Case 1. The parameters μ and β are chosen such that
μ = 2β > 0; further, 2β|Nj|

1+2μ|Nj| < 1
4 and 2μ|Nj|

1+2μ|Nj| < 1
2 for

all j = 1, 2, . . . , L.
In this case, d1 = 2β|Nk |

1+2μ|Nk | < 1
4 and d2 = 2μ|Nk |

1+2μ|Nk | < 1
2 .

Let us choose d = d1 = d2
2 ,

1
4 > d > 0. Hence, (23)

simplifies to:

|ρ2
Mi − ρMi + d| ≤ |2dρMi − d|. (24)

Define w = ρMi − 1
2 , we have:

|w2 + d − 1
4
| ≤ 2d|w|

⇒|w|2 + d − 1
4

≤ 2d|w|

⇒|w|2 − 2d|w| + d2 ≤ d2 − d + 1
4

⇒(|w| − d)2 ≤ (d − 1
2
)2

⇒|w| ≤ 1
2

(25)

Recall that |w| = 1
2 only for ρM1 = 1. For any other

eigenvalues, |w| < 1
2 , and hence |ρMi| < 1 for i �= 1.

Case 2. The parameters μ and β are chosen such that
μ = β > 0; further, 2β|Nj|

1+2μ|Nj| < 1
2 and 2μ|Nj|

1+2μ|Nj| < 1
2 for all

j = 1, 2, . . . , L.
In this case, d1 = 2β|Nk |

1+2μ|Nk | < 1
2 and d2 = 2μ|Nk |

1+2μ|Nk | < 1
2 .

Let us choose d = d1 = d2, 1
2 > d > 0. Hence, (23)

simplifies to:

|ρ2
Mi − ρMi + dρMi| ≤ |2dρMi − d|. (26)

Let us prove the conclusion by contradiction. Suppose
that there exists a ρMi with |ρMi| ≥ 1 satisfies (26), then:

|ρ2
Mi − ρMi + dρMi| ≤ |2dρMi − d|

⇒|ρMi − 1 + d| ≤ |2dρMi − d|

⇒|ρMi − 1
2
| − 1

2
+ d ≤ 2d|ρMi − 1

2
|

⇒|ρMi − 1
2
| ≤ 1

2

⇒|ρMi| ≤ 1

(27)

Again, the inequalities turns to equalities only for
ρM1 = 1. For any other eigenvalue ρMi, we have |ρMi| < 1
which contradicts with |ρMi| ≥ 1. Therefore, |ρMi| < 1 for
i �= 1.

State transition equation of TB-ADM
Substituting fi(x(i)) = 1

2 ||x(i) − bi||22 into:

x(i)(t + 1) = argmin
x(i)

fi(x(i)) + αT
i (t)x(i) + c

∑
j∈Ni

||x(i)

− 1
2

(
x(i)(t) + x(j)(t)

)
||22,
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the optimality condition for x(i)(t + 1) is:

(1 + 2c|Ni|) x(i)(t + 1) − c|Ni|x(i)(t) −
∑
j∈Ni

x(j)(t)

+ αi(t) − bi = 0.

(28)

Considering x(i)(t), the optimality condition is corre-
spondingly:

(1 + 2c|Ni|) x(i)(t) − c|Ni|x(i)(t − 1) − c
∑
j∈Ni

x(j)(t − 1)

+ αi(t − 1) − bi = 0.
(29)

Combining (28) and (29) with:

αi(t + 1) = αi(t) + c|Ni|x(i)(t + 1) − c
∑
j∈Ni

x(j)(t + 1),

the state transition equation for agent i is:

x(i)(t + 1) = x(i)(t) + 2c
1 + 2c|Ni|

∑
j∈Ni

x(j)(t)

− c|Ni|
1 + 2c|Ni|x

(i)(t − 1) − c
1 + 2c|Ni|∑

j∈Ni

x(j)(t − 1).

(30)
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