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Abstract

In order to increase the reliability of data transmission, using multiple antennas in radio frequency identification (RFID)
systems has been investigated by researchers, mainly through measurements and simulations. The multiple-input
multiple-output (MIMO) RFID backscattering channel exhibits a special type of cascaded structure rather than that of
other better-studied cascaded channels such as the keyhole fading and the double scattering fading. In this article, we
analytically study the bit error rate performances of the MIMO RFID channel under two transmission schemes, the
identical signaling transmission scheme and the orthogonal space–time coding scheme (OSTBC). We show that the
diversity order of the MIMO RFID channel is min(N, L) under the identical transmission scheme, and the diversity order
is L under the OSTBC scheme, where L is the number of tag antennas and N is the number of reader receiving
antennas. A performance bottleneck is also observed in the MIMO RFID channel. Our results can provide useful
guidance on designing an RFID system with multiple antennas.
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Introduction
Radio frequency identification (RFID) is a wireless com-
munication technology that allows an object to be iden-
tified remotely, which has many applications including
inventory checking, access control, transport payment,
electronic vehicle registration, product tracking, and
secure automobile keys [1]. A typical RFID system
includes major components such as readers (also known
as interrogators) and tags (also known as labels), as well
as RFID software or RFID middleware [2]. An RFID tag
is a small electronic device which has a unique ID. The
tags can be categorized into active and passive tags. An
active tag has an RF transmitter and utilizes its internal
battery to continuously power its RF communication cir-
cuitry, while a passive tag does not have an RF transmitter
and it modulates a carrier signal received from an inter-
rogator by its antenna load impedance. Usually, a passive
tag does not have its own battery and powers its circuitry
by using the carrier signal energy, but it can be battery
assisted. For passive RF tags, the range increase caused by
multiple RF tag antennas will be limited by the RF tag chip
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sensitivity [3]. The sensitivity is strongly dependent upon
the design of the tag’s RF circuitry [4]. During the last
couples of years, it was shown that the improved circuitry
design [3,5,6] can decrease this limitation.
Most RFID applications deployed today use passive tags

because they usually do not require internal batteries
and have longer life expectancy. Measurements in [7,8]
showed that the RFID channel in passive systems could
be modeled as a cascaded channel with a forward channel
and a backscattering channel, and both the sub-channels
are Rayleigh distributed in rich scattering environments
[9]. This cascaded channel fades deeper than the Rayleigh
channel and hence can reduce the data transmission reli-
ability.
To allow reliable data transmission, researchers [7,9-11]

investigated multiple-input multiple-output (MIMO) set-
tings in the RFID backscattering channel and both bit
error rate (BER) and reading range improvements were
observed. The advantages of the MIMO RFID technol-
ogy over the single-antenna RFID allow many potential
applications in the areas of accurate tracking, identifica-
tions, since it can significantly increase the reliability and
throughput. For instance, in [12], a tracking problem was
investigated for RF tags with multiple antennas and exper-
imental results showed improved accuracy. To achieve
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good performance, a sufficient separation between tag
antennas is needed and hence a very high-frequency band
is required for operations of RF tags with multiple anten-
nas due to the small size of an RF tag. Fortunately, the unli-
censed frequency band 5.8GHz is available for backscatter
radio applications. This above ultra-high frequency band
has several potential advantages for backscatter radio
systems such as increased antenna gain, reduced object
attachment losses [13]. It has already been used in a
passive backscatter radio system for monitoring [14]. To
the best of the authors’ knowledge, the current studies
about the performances of the MIMO RFID channel were
mostly based on the measurements and/or Monte Carlo
simulations. The main purpose of this study is to pro-
vide a fundamental, analytical study of the behavior of
theMIMO RFID channel, and to provide useful guidances
on the design of potential RFID systems with multiple
antennas.

Channel model
Passive tag signaling model
In a passive RFID system, a tag antenna simply reflects
the unmodulated wave sent from the reader transmitter,
as illustrated in Figure 1. The ID information of the RF
tag depends on the reflection coefficient �(t) of the tag
antenna load. The general M × L × N dyadic backscat-
tering channel for representing a MIMO passive channel
was first described in [9]. This channel consists of M
reader transmitter antennas (from which a query is sent
and the energy is transmitted), L RF tag antennas, and N
reader receiver antennas. The baseband representation of
the received signals at time t can be expressed in a matrix
form as [9]

( )t

Figure 1 To read a passive RF tag, the RF reader transmitter
broadcasts an unmodulated carrier signal, and then the RF tag
conveys its information (e.g., the ID of the tag) to the reader by
reflecting the unmodulated carrier signal back to the reader
receiver using loadmodulation. The reflection coefficient �(t) of
the tag antenna load, which actually represents the tag information,
can be changed by switching the RF tag antenna load between
different states [9].

r(t) = 1
2

∫ ∞

−∞

∫ ∞

−∞
Hb (τb; t) S(t)Hf (τf ; t) x (t − τb − τf

)
×dτbdτf + w(t), (1)

where the M × 1 vector x(t) represents unmodulated
waves (carrier signals) sent out from the reader transmit-
ters, r(t) is an N × 1 vector of received signals at the
reader receivers, and theN×1 vectorw(t) represents cor-
responding noises at the reader receivers. The matrices
Hf (τf ; t) of size L×M andHb(τb; t) of sizeN×L represent
the impulse responses of the forward and backscattering
links, respectively. The signaling matrix of the tag, S(t)
with size L × L, describes the time-varying modulation
and coding of the carrier signals by the L-antenna RF tag.
Based on the different tag circuit designs, S(t) can have
several forms: One form is the identical signaling matrix
[9]

S(t) = �(t)I, (2)

where �(t) means the reflection coefficient of the RF tag
load, and Imeans the L×L identitymatrix. In this identical
case, all antennas of the RF tag have the same reflection
coefficient �(t). Another form is the diagonal signaling
matrix [9]

S(t) =
⎛
⎜⎝

�1(t)
. . .

�L(t)

⎞
⎟⎠ , (3)

where �l(t) means the load reflection coefficient of the
lth tag antenna at time t. In this case, the RF tag anten-
nas have different load reflection coefficients. A diagonal
signaling matrix with unequal load reflection coefficients
may result from space–time-coded tag circuit designs,
where the reflection coefficients of different tag antennas
are pre-designed according to a certain space–time code.
We consider a generalMIMORFID channel [9] in which

the tag is equipped with L antennas, and the reader is
equipped with M transmitting antennas that send query
signal to the tag and N receiving antennas that receive
the signals from the tag, as shown in Figure 2. Since in
a passive RFID system, the coding and modulation are
done by the tag circuits and the reader transmitting anten-
nas actually act as charging devices by sending (identical)
unmodulated waves to the tag, also since the channel gains
from reader transmitting antennas to a tag antenna are
complex Gaussian distributed, by normalizing the trans-
mitting energy to unity, the statistical property of using
a single and multiple reader transmitting antennas are
exactly the same. Therefore, we focus on the 1 × N × L
channel in the rest part of the article and we call it the
N × L channel for simplicity. For simplicity of presenta-
tion, we also ignore the time index t in the model from
now on. Now, considering that x are unmodulated waves,
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Figure 2 An illustration of the MIMO RFID channel signaling scheme. In a passive RFID system, the coding and modulation are done by the tag
circuits at the tag side and the reader transmitting antennas actually act as charging devices. The modulation and coding in the middle way of a
cascaded channels make the RFID channel different from other forms of cascaded channels.

let s = (s1, . . . , sL)T = (�1, . . . ,�L)T denote the L trans-
mission symbols simultaneously transmitted from L tag
antennas, we can simply express the received signal vector
at a particular time point as

r = Hs + w, (4)

where the vector r = (r1, . . . , rN )T are the received
signals, and each entry of the noise vector w =
(w1, . . . ,wN )T is assumed to be independent and identical
distributed (i.i.d.) Gaussian with zero mean and unit vari-
ance. The channel matrix H of the N × L channel, which
is with size N × L, can be expressed as

H =

⎛
⎜⎜⎝

hf1h
b
1,1, h

f
2h

b
2,1, · · · , hfLh

b
L,1

...
. . .

...
hf1h

b
1,N , h

f
2h

b
2,N , · · · , hfLhbL,N

⎞
⎟⎟⎠ (5)

where hfl ’s (l = 1, . . . , L) represent forward channels of the
N ×L channel, hbl,n’s (l = 1, . . . , L, n = 1, . . . ,N) represent
backscattering channels, and hfl ’s and hbl,n’s are indepen-
dent complex Gaussian random variables. The total chan-
nel gain at the nth receiving antenna is hn = ∑L

l=1 h
f
l h

b
l,n.

Note that the channel gains hn’s, for n = 1, 2, . . . ,N ,
contain the common terms hf1, . . . , h

f
L. It implies that the

channel gains at different receiving branches at the reader
are not statistically independent with each other.

Difference between the RFID channel and Other types of
cascaded channels
The cascaded Rayleigh channel is also found in the propa-
gation scenarios such as the keyhole propagation [15-17],

the double scattering propagation [18] and the amplify-
and-forward (AF) relay cooperative communication sys-
tems. As shown in Figure 2 we would like to emphasize
that the MIMO RFID channel exhibits a different type of
cascaded structure rather than that of the keyhole, dou-
ble scattering, and AF channels due to the modulation
and coding that are done at the tag side (middle way of
a cascaded channel) rather than the reader transmission
side.
For the keyhole channel, the channel matrix is given by

[15,16] as

Hkeyhole =

⎛
⎜⎜⎜⎝

y1z1, y2z1, · · · , yLz1
...

. . .
...

y1zN , y2zN , · · · , yLzN

⎞
⎟⎟⎟⎠ . (6)

It is clear that here the rank of the above matrix
Hkeyhole is 1. Comparing with the RFID channel matrix in
Equation (5) which is generally full rank, we clearly note
that the two channels are different in structure, although
for both channels each entry of the matrices is double
Rayleigh distributed. Their different channel statistics lead
to different performances and diversity gains. The struc-
ture of the MIMO RFID channel is also different from
that of the double scattering channel in [18], and we will
see later in the result part that their performances and
diversity gains are different.
Another type of cascaded channel is the AF cooperative

channel. For only identical signaling scheme, theoretically
it may be possible for an AF model to be reduced to the
MIMO RFID model if the AF channel contains L relays
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and has N receiving antennas. A recently published work
in [17] discusses the performance of an AF channel with
such antenna setting, which is the most similar model to
the MIMO RFID channel by far. However, we cannot gen-
eralize their results to infer the performance of theMIMO
RFID channel. Because in [17], the model is based on a
specific transmission scheme in which the relays inten-
tionally forward messages to the destination at different
time slots, and the forwarded messages are buffered at the
destination, matched filtered, and then combined using
maximal ratio combining (MRC). In the MIMO RFID
channel, whatever the signaling schemes are used, the sig-
nals from the tag antennas (analogy to the relays) arrive
at the reader (analogy to the destination) at the same
time slot, and this makes the two models significantly
different. We will also see differences of these two mod-
els from their performances and diversity orders. Other
existing references about AF channels either do not con-
sider multiple relays or do not consider multiple receiving
antennas and thus cannot be a generalized version of
the MIMO RFID channel. Some previous articles con-
sider a single relay with multiple antennas and the model
looks similar. However, the model is indeed different (e.g.,
the relay uses different antennas for transmitting and
receiving).
The intention of this study is to analytically derive the

performances of the MIMO RFID channel, a specific type
of cascaded channel which exists in passive MIMO RFID
systems.

Performance analysis of MIMO RFID channel under
identical signaling scheme
In this section, we analytically study BER performances
and diversity gains of the N × L RFID channel when the
identical signaling scheme is employed.
Under the identical signaling scheme, the system

employs the identical signaling matrix in Equation (2) in
which each tag antenna transmits the same symbol at time
t. From the channel matrix in Equation (5), the chan-
nel power at the nth receiving branch, also referred as
the instantaneous signal-to-noise ratio (SNR) at the nth
receiving antenna, can be given by

γn = γ̄ |
L∑

l=1
hfl h

b
l,n|2, (7)

where γ̄ means the average SNR. Each of these instanta-
neous SNRs follows the following distribution [9]

fγn(γn) = 2γ (L−1)/2
n

(L − 1)! γ̄ (L+1)/2KL−1

(
2
√

γn
γ̄

)
, (8)

where KL−1(·) denotes the modified Bessel function of the
second kind. Using the asymptotic approximations of the
Bessel function [19], one can obtain the approximation of
the PDF for high SNR (e.g., as γ̄ → ∞) as,

fγn(γn)
.=

⎧⎪⎪⎨
⎪⎪⎩

− 1
γ̄
ln
(

γn
γ̄

)
, if L = 1;

1
(L−1)γ̄ , if L > 1.

(9)

To derive the BER performance of the N × L MIMO
RFID channel where N > 1, since the N receiving
branches at the reader are not statistically independent
as we mentioned earlier, we cannot use the above dis-
tribution and its approximation to directly evaluate the
performance of the MIMO channel by applying a widely
usedmethod as in [20,21] which assumes independency of
receiving branches. Alternatively, we consider evaluating
the BER using the conditional probability approach. We
will see later, to analytically study the BER performance,
we first need to investigate the properties of GN ,L(·), a
function defined by a multi-variate integration. The func-
tion GN ,L(·) is defined as

GN ,L( ¯̄γ ) =
∫ ∞

αL=0
· · ·
∫ ∞

α1=0

1(
1 + ¯̄γ ∑L

l=1 αl
)N

× exp
(

−
L∑

l=1
αl

)
dα1 · · · dαL. (10)

Here αl is the squared magnitude of the channel gain of
the lth receiving branch, N and L are the index of the
function GN ,L( ¯̄γ ), and we define ¯̄γ = gγ̄

sin2 θ
, where γ̄

is the average SNR and g is a constant which is mod-
ulation dependent. For the coherent transmission case,
the function GN ,L( ¯̄γ ) is the moment generating function
(MGF) of the MIMO RFID channel with L tag antennas
and N receiving antennas. For the non-coherent trans-
mission case, the form of GN ,L(·) is required in deriving
the BER performance. The function GN ,L(·) defined in
Equation (10) has the following recursive and asymptotic
properties

Proposition 1.

G1,L( ¯̄γ ) = e
1
¯̄γ

¯̄γ EL
(
1
¯̄γ
)

.=

⎧⎪⎪⎨
⎪⎪⎩

ln( ¯̄γ )
¯̄γ , if L = 1;

1
(L−1) ¯̄γ , if L > 1.

(11)
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Proposition 2.

GN ,1( ¯̄γ ) = e
1
¯̄γ

¯̄γ EN
(
1
¯̄γ
)

.=

⎧⎪⎪⎨
⎪⎪⎩

ln( ¯̄γ )
¯̄γ , if N = 1;

1
(L−1) ¯̄γ , if N > 1.

(12)

Proposition 3.

GN ,L( ¯̄γ ) = 1
(− ¯̄γ )N−1(N−1)!

G1,L( ¯̄γ )−
N−1∑
k=1

(k−1)!
(− ¯̄γ )N−k(N−1)!

× Gk,(L−1)( ¯̄γ ).
(13)

Proposition 4.

GN ,L( ¯̄γ )
.=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
(L−1)···(L−N) ¯̄γN , if N < L;

ln( ¯̄γ )

(N−1)! ¯̄γN , if N = L;

1
(N−1)···(N−L) ¯̄γ L , if N > L.

(14)

In the above propositions, EN (·) and EL(·) are the expo-
nential integrals defined as EN (x) = ∫∞

t=1
exp(−tx)

tN dx and
EL(x) = ∫∞

t=1
exp(−tx)

tL dx [22], where N and L are positive
integers. The proofs of these propositions can be found in
Appendix. With the above properties, we are now ready
to derive the exact and asymptotic BER performances
and study how the MIMO RFID backscattering channel
behaves.

Non-coherent Case
We first investigate the non-coherent transmission case,
which applies non-coherent equal gain combining (EGC)
at the reader receiver side.
The channel gain at the nth receiving branch of the

reader is given by hn = ∑L
l=1 h

f
l h

b
l,n. When fixing the

forward channel gains hfl ’s, the channel gain hn is a lin-
ear combination of i.i.d. complex Gaussian random vari-
ables, hence the conditional distribution of hn on hfl ’s is a
complex Gaussian distribution with variance

∑L
l=1 |hfl |2.

Therefore, by fixing hfl ’s, the N × L channel can be
viewed as a single-input multiple-output (SIMO) channel
in which each receiving branch is Rayleigh distributed and
has power (or variance)

∑L
l=1 |hfl |2. Consequently using

the result of the SIMO Rayleigh channel [23], we can have
the conditional (on hfl ’s) BER for the N × L RFID channel
using non-coherent EGC as

PN ,L(γ̄ |hfl ) = 1
22N−1(N − 1)! (1 + gγ̄

∑L
l=1 |hfl |2)N

N−1∑
k=0

bk(N − 1 + k)!
(

gγ̄
∑L

l=1 |hfl |2
1 + gγ̄ (

∑L
l=1 |hfl |2)

)k

,

(15)

where bk = 1
k!
∑N−1−k

n=0 (2N−1
n ) and g is a constant

which is modulation dependent [24]. Note that(
gγ̄
∑L

l=1 |hfl |2
1+gγ̄

∑L
l=1 |hfl |2

)k
=
(
1 − 1

1+gγ̄
∑L

l=1 |hfl |2

)k
= ∑k

i=0(−1)i(k
i
) 1

(1+gγ̄
∑L

l=1 |hfl |2)i
, then we have

PN ,L(γ̄ |hfl ) = 1
22N−1(N − 1)!

N−1∑
k=0

bk(N − 1 + k)!
k∑

i=0
(−1)i

×
(
k
i

) 1
(1 + gγ̄

∑L
l=1 |hfl |2)N+i

. (16)

Averaging the conditional BER over αl ’s (where |hfl |2 =
αl) yields the BER for the N × L RFID channel as

PN ,L(γ̄ ) =
∫ ∞

αL=0
· · ·
∫ ∞

α1=0
PN ,L(γ̄ |αl)

× exp
(

−
L∑

l=1
αl

)
dα1 · · ·αL

= 1
22N−1(N − 1)!

N−1∑
k=0

bk(N−1 + k)!
k∑

i=0
(−1)i

×
(
k
i

)
G(N+i),L(γ̄ ). (17)

The closed-form of the above exact BER can be com-
puted recursively using Proposition 3 with the initial

knowledge G1,L(γ̄ ) = e
1
γ̄

γ̄
EL(γ̄ ) and GN ,1(γ̄ ) = e

1
γ̄

γ̄
EN (γ̄ ).

Table 1 shows a few examples under some antenna set-
tings.
While the closed-form BER can be obtained, it involves

complicated recursive forms and the behavior of the stud-
iedN×L RFID channel is not easy to analyze, and we need
to investigate an asymptotic form. Using Proposition 4, we
can obtain an asymptotic BER of Equation (17) as
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PN ,L(γ̄ )
.=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑N−1
k=0 bk(N−1+k)!
22N−1(N−1)! GN ,L(gγ̄ )

.=
∑N−1

k=0 bk(N−1+k)!
22N−1(N−1)!(L−1)···(L−N)(gγ̄ )N

, if N < L;
∑N−1

k=0 bk(N−1+k)!
22N−1(N−1)! GN ,L(γ̄ )

.=
∑N−1

k=0 bk(N−1+k)!ln(gγ̄ )

22N−1(N−1)!(N−1)!(gγ̄ )N
, if N = L;

1
22N−1(N−1)!

∑N−1
k=0 bk(N − 1 + k)!

∑k
i=0(−1)i

(
k
i

)
1

(N+i−1)···(N+i−L)(gγ̄ )L
, if N > L.

(18)

We can see that the above asymptotic BER form
depends on the relation of the values of L and N. Figure 3
shows the BER performances of the N × L RFID channels
when employing the binary frequency-shift keying (FSK)
with EGC.
The asymptotic diversity order da can be obtained as

da = lim
γ̄→∞

(
− logPN ,L(γ̄ )

log(γ̄ )

)
= min(N , L). (19)

It means that the asymptotic diversity order of theN×L
RFID channel under non-coherent transmission schemes
is determined by the smaller value ofN and L. For the case
of L = N , compared with the case of L �= N , it requires
a higher SNR to achieve the diversity order N, because of
the logarithm function in the numerator in Equation (18)
when N = L. This property means that even the diversity
orders are the same the BER performances of the settings
with N = L + 1 or L = N + 1 are remarkably better than
the performance of the setting with N = L. The BER per-
formance improvements from N = L + 1 to N = L + 2,
or from L = N + 1 to L = N + 2, is not significant. These
observations generalize the findings about the MISO case
in [25].

Coherent case
We now look at the coherent detection case. We assume
that the reader knows the channel state information (CSI)
and MRC is applied at the reader receiver side.
Similar to our previous derivation, if we fix the forward

gains hfl ’s, the MIMO RFID channel can be viewed as a
SIMO Rayleigh channel in which the receiving branches
are independent and have power (or variance)

∑L
l=1 |hfl |2.

Recall that the MGF for a Rayleigh fading channel is given
by
(
1 + gγ̄

sin2 θ

)−1
[20]; therefore, the conditional MGF of

the N × L RFID backscattering channel is

MN ,L
(
g, γ̄ , θ |hfl

)
=
(
1 + gγ̄

∑L
l=1 |hfl |2

sin2 θ

)−N

. (20)

Integrating MN ,L
(
g, γ̄ , θ |hfl

)
over αl ’s (where αl = |hfl |2)

leads to the MGF for non-independent N receiving
branches as

MN ,L(g, θ , γ̄ ) =
∫ ∞

αL=0
· · ·
∫ ∞

α1=0
MN ,L(g, θ , γ̄ |αl)

× exp
(

−
L∑

l=1
αl

)
dα1 · · · dαL

=
∫ ∞

αL=0
· · ·
∫ ∞

α1=0

(
1 + gγ̄

∑L
l=1 αl

sin2 θ

)−N

× exp
(

−
L∑

l=1
αi

)
dα1 · · · dαL=GN ,L

( ¯̄γ ) ,
(21)

where ¯̄γ = gγ̄
sin2 θ

andGN ,L(·) is defined as in Equation (10).
Using the moment generating approach in [20], the BER
of the N × L RFID channel for the coherent case can be
expressed as

PN ,L(γ̄ ) = 1
π

∫ π/2

θ=0
GN ,L( ¯̄γ )dθ . (22)

Table 2 shows a few examples of the closed form of the
MGF of the channel with coherent transmission scheme.
Since the closed form of GN ,L( ¯̄γ ) can be obtained recur-
sively using Propositions 1 to 4, the BER PN ,L(γ̄ ) can be
computed through the single integration in Equation (22)
respective to θ . To have more insights on how the BER of
theN×L RFID channel behaves, we also derive an asymp-
totic form of this BER expression. Using Proposition 4, the
asymptotic BER for Equation (22) can be expressed as

PN ,L(γ̄ )
.=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
π

∫ π/2
θ=0

1
(L−1)···(L−N)(g ¯̄γ )N

dθ = CN
(L−1)···(L−N)(gγ̄ )N

, if N < L;

1
π

∫ π/2
θ=0

ln(g ¯̄γ )

(N−1)!(g ¯̄γ )N
dθ

.= CN ln(gγ̄ )

(N−1)!(gγ̄ )N
, if N = L;

1
π

∫ π/2
θ=0

1
(N−1)···(N−L)(g ¯̄γ )L

dθ = CL
(N−1)···(N−L)(gγ̄ )L

, if N ≥ L,

(23)

where CN = ∫ π/2
θ=0 sin

2N θdθ = �(1/2+N)

2
√

π�(1+N)
and

CL = �(1/2+L)

2
√

π�(1+L)
. Here �(·) means the Gamma function.

Figure 4 plots the BER curves of the N × L RFID channels
when employing BPSK with MRC at the reader receiver
antennas.
For the N × L RFID channel under the coherent case,

the asymptotic diversity order can be given by

da = lim
γ̄→∞

(
− logPN ,L(γ̄ )

log(γ̄ )

)
= min(N , L). (24)
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Table 1 Non-coherent case of the identical signaling scheme: closed-form BER expressions for the N × L RFID channel
(Equation 17)

L = 1 L = 2

N = 1 e
1
gγ̄

E1( 1
gγ̄ )

2gγ̄ e
1
gγ̄

E2( 1
gγ̄ )

2gγ̄

N = 2
2e

1
gγ̄ E2( 1

gγ̄ )

gγ̄ + 2(−gγ̄+e
1
gγ̄ E1( 1

gγ̄ )+gγ̄ )

gγ̄ +
(gγ̄ )2−2gγ̄ e

1
gγ̄ E1( 1

gγ̄ )+gγ̄−e
1
gγ̄ E1( 1

gγ̄ )

4(gγ̄ )3

e
1
gγ̄ E1( 1

gγ̄ )−3(gγ̄ )2+2(gγ̄ )2e
1
gγ̄ E1( 1

gγ̄ )−gγ̄+4gγ̄ e
1
gγ̄ E1( 1

gγ̄ )

4(gγ̄ )3

As we can see that the asymptotic diversity order is
still min(N , L) in the coherent transmission case, and
the BER behavior is similar to that of the non-coherent
case.

Performance analysis of MIMO RFID channel under
OSTBC scheme
In this section, we analytically study BER performances
and diversity gains of the N × L RFID channel when
the orthogonal space-time coding scheme (OSTBC) is
employed. OSTBC is one of the most attractive MIMO
schemes with a very simple decoding process based on
linear combining at the receiver. Because of its orthogo-
nality, OSTBC achieves full diversity LN for L transmis-
sion antennas and N receiving antennas in i.i.d. MIMO
Rayleigh fading channels [26,27]. In this section, we inves-
tigate the error rate performance of the MIMO RFID
channel using the OSTBC scheme. For MIMO RFID sys-
tems, OSTBC can be implemented by applying the sig-
naling matrix in Equation (3) for the tag antennas. We
assume that CSI is known by the reader and the channel is
quasi-static.

Because of its orthogonality property, OSTBC can
transform from the MIMO fading channel

r = Hs + w, (25)

to the following parallel SISO channels [28]

r′ =
√

||H||2
L

s′ + w′, (26)

where

||H|| =
√√√√ N∑

n=1

L∑
l=1

|hfl hbl,n|2 (27)

is the Frobenius norm of H, s = (s′1, . . . , s′Q)T is
the Q incoming symbols and the entries of w′ =
(w′

1, . . . ,w′
Q)T are i.i.d. Complex Gaussian random vari-

ables with zero mean and unit variance. Similarly, the
entries of r′ = (r′1, . . . , r′Q)T are the receiving symbols and
can be detected based on a simple maximum likelihood
method. The channel gain is divided by L because the
transmission power should be normalized to unity. Since
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Figure 3 BER performances (in Equations 17 and 18) of the MIMO RFID channel using non-coherent identical signaling (BPSK with EGC).
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Table 2 Coherent case of the identical signaling scheme:
MGFs GN,L(θ) for the N × L RFID channel (Equation 21)

L = 1 L = 2

N=1 e
sin2 θ
gγ̄

E1( sin
2 θ
gγ̄ )

gγ̄

e
sin2 θ
gγ̄ E2( sin

2 θ
gγ̄ ) sin2 θ

gγ̄

N=2
e
sin2 θ
gγ̄ E2( sin

2 θ
gγ̄ ) sin2 θ

gγ̄

−γ̄ sin4 θ+e
sin2 θ
gγ̄ E1( sin

2 θ
gγ̄ ) sin6 θ+γ̄ e

sin2 θ
gγ̄ E1( sin

2 θ
gγ̄ ) sin4 θ

(gγ̄ )3

in real passive RFID signal transmissions, the transmis-
sion energy is from the reader and is proportional to the
number of tag antennas when the reader querying energy
is fixed, we instead use the following model

r′ =
√

||H||2s′ + w′ (28)

in which the transmission power is not normalized to
unity. Let Eb denote the average energy per bit and Es
denote the average energy per symbol then Es = Eb log2 K
where K is the size of the signal constellation. The instan-
taneous SNR per symbol is therefore given by

γ = ||H||2 log2 K
R

Eb
N0

= ||H||2 log2 K
R

γ̄ = ||H||2gγ̄
(29)

where Rmeans the symbol rate and we define g = log2 K
R .

Since evaluating the density of ||H||2 directly is dif-
ficult, we consider the conditional probability approach
as in previous derivations. Define |Hl|2 = ∑N

n=1 αlβl,n,
where αl = |hfl |2 and βl,n = |hbl,n|2. It is easy to check
that |Hl|’s are i.i.d. random variables. Because ||H||2 =

∑L
l=1 |Hl|2, for the SER analysis we can view the N × L

RFID channel which uses OSTBC as a virtual SIMO sys-
tem with L receiving branches in which MRC is applied
at the receiver side. For the lth receiving branch of this
SIMO system, the squared magnitude of the channel gain
is |Hl|2 = ∑N

n=1 αlβl,n, where αl is the channel power at
the lth receiving branch. We define the MGF of |Hl|2 as
Gl( ¯̄γ ), where ¯̄γ = gγ̄

sin2 θ
, then the BER can be evaluated via

P(γ̄ )N ,L = 1
π

∫ π/2

θ=0

L∏
l=1

Gl( ¯̄γ )dθ . (30)

Now we need to derive Gl( ¯̄γ ). Since the conditional
channel gain |Hl|2 = ∑N

n=1 αlβl,n given αl can be viewed
as the channel gain of another virtual SIMO system (i.e.,N
Rayleigh distributed receiving branches with gains hbl,n’s,
n = 1, . . . ,N) in whichMRC is applied at the receiver side,
consequently theMGF of |Hl| can be derived by averaging
the conditional MGF Gl( ¯̄γ |αl) over αl, with Gl( ¯̄γ |αl) =(
1 + αl ¯̄γ

)−N being the MGF of an N-branches Rayleigh
channel [20]

Gl( ¯̄γ ) =
∫ ∞

αl=0
Gl( ¯̄γ |αl)fαl(αl)dαl

=
∫ ∞

αl=0

(
1 + αl ¯̄γ

)−N exp(−αl)dαl

= e
1
¯̄γ

¯̄γ EN
(
1
¯̄γ
)

.=
⎧⎨
⎩

ln( ¯̄γ )
¯̄γ , if N = 1;
1

(N−1) ¯̄γ , if N > 1.
(31)
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Figure 4 BER performances (in Equations 22 and 23) of the MIMO RFID channel using coherent identical signaling (BPSK with MRC) under
perfect channel estimation.
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Substituting Gl( ¯̄γ ) into Equation (30) yields the BER
expression of the N × L RFID channel for the OSTBC
scheme

PN ,L(γ̄ ) = 1
π

∫ π
2

θ=0

⎛
⎝e

gγ̄
sin2 θ sin2 θ

EN
(
sin2 θ
gγ̄

)
gγ̄

⎞
⎠

L

dθ

(32)

.=

⎧⎪⎨
⎪⎩
CL
(
ln(gγ̄ )
gγ̄

)L
if N = 1;

CL
(

1
(N−1)gγ̄

)L
, if N > 1.

(33)

Figure 5 shows the SER/BER curves of Alamouti’s code
with BPSK modulation in theN ×LMIMO RFID channel
(the SER and BER are exactly same for Alamouti’s code
using BPSK).
Accordingly, for the N × L RFID channel with the

OSTBC scheme, the asymptotic diversity order can be
derived as

da = lim
γ̄→∞

(
− logPN ,L(γ̄ )

log(γ̄ )

)
= L. (34)

From Equation (34) we can see that here the achievable
diversity order is L (the number of tag antennas), and N
(the number of reader receiving antennas) does not affect
the diversity gain. However, we note that there is a signif-
icant BER improvement from N = 1 to N > 1 due to

the logarithm function in Equation (33) whenN = 1. This
property is very different from that of traditional one-way
channels in [27,29] and even very different from inde-
pendent double Rayleigh channels [30], as we will see in
comparisons in Table 3.

Results and discussions
In this section, we compare the error rate performances
of the MIMO RFID backscattering channel with other
forms of cascaded channels: the keyhole channel, the
double scattering channel, and the independent double
Rayleigh channel. We also compare the identical signal-
ing scheme and the OSTBC scheme in the MIMO RFID
channel and discuss how much improvement can be
achieved by the OSTBC scheme under different antennas
settings.
The pair-wise error probability for another cascaded

channel which has independent receiving branches and
the channel matrix of the following form

Hindep =
⎛
⎜⎝

y1,1z1,1, y2,2z2,2, · · · , yL,LzL,L
...

. . .
...

yN ,1zN ,1, yN ,2zN ,2, · · · , yN ,LzN ,L

⎞
⎟⎠ (35)

was discussed in [30] for space–time trellis code; how-
ever, the performance of the identical signal scheme of this
channel has not been studied yet. In this section, we give
out its BER performance for comparison purposes. For
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Figure 5 The SER/BER performances (in Equations 32 and 33) of the Alamouti’s code with BPSKmodulation andMRC in the MIMO RFID
channel under perfect channel estimation.
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Table 3 Diversity order comparisons between different cascaded structures

Channel and coding scheme Diversity order Performance bottleneck

RFID (identical) min(L,N) |L − N| > 1

RFID (OSTBC) L N > 2

Keyhole channel (OSTBC) min(L,N) [16] |L − N| > 1

Double scattering channel (OSTBC) MLN/max(M, L,N) [18] −
Independent Double Rayleigh (identical) N L > 2

Independent Double Rayleigh (OSTBC) NL [30] No bottleneck

non-coherent identical signaling transmission with EGC,
the exact BER is given by

PN ,L(γ̄ ) = 1
22N−1

N−1∑
k=0

bk
∑

m∈Mk

(
k
m

) N∏
n=1

�(L+mn)�(1+mn)

�(L)gγ̄

× U
(
L + mn, L;

1
gγ̄

)
, (36)

whereU(a, b, x) is the confluent hypergeometric function,
and the corresponding asymptotic BER expression

PN ,L(γ̄ )
.=

⎧⎪⎨
⎪⎩

1
22N−1

∑N−1
k=0 bk

∑
m∈Mk

(k
m
)∏N

n=1
�(m+1)

�(L)

ln(gγ̄ )

gγ̄ , if L = 1;

1
22N−1

∑N−1
k=0 bk

∑
m∈Mk

(k
m
)∏N

n=1
�(m+1)
(L−1)gγ̄ , if L > 1.

(37)

For coherent identical signaling transmission with MRC
under perfect channel estimation, the exact and asymp-
totic BERs are given by

PN ,L(γ̄ ) = 1
π

∫ π/2

θ=0

(
G1,L( ¯̄γ )

)N dθ = 1
π

∫ π/2

θ=0

×
⎛
⎝e

1
¯̄γ

¯̄γ EL
(
1
¯̄γ
)⎞⎠

N

dθ (38)

.=
⎧⎨
⎩

1
π

∫ π/2
θ=0

(
ln( ¯̄γ )

¯̄γ
)N

dθ = CN
(
ln(γ̄ )

γ̄

)N
, if L = 1;

1
π

∫ π/2
θ=0

(
1

(L−1) ¯̄γ
)N

dθ = CN
(

1
(L−1)γ̄

)N
, if L > 1.

(39)
The derivations of the above results are given in

Appendix.
Accordingly, we can show that the diversity order under

both transmission schemes is

da = lim
γ̄→∞

(
− logPN ,L(γ̄ )

log(γ̄ )

)
= N . (40)

Figure 6 and Figure 7 show the BER curve for the inde-
pendent double Rayleigh channel with non-coherent and
coherent transmission schemes, respectively. An interest-
ing finding is that, for the coherent transmission scheme,
the result of the identical signaling scheme for the MIMO
double Rayleigh channel with independent branches is
similar to that of the MIMO RFID channel under the

OSTBC scheme, except the roles of N and L are switched.
The diversity order is given as N regardless of L, but a sig-
nificant BER performance improvement is observed from
L = 1 to L = 2.

Diversity comparison and performance bottleneck
Under the identical signaling scheme, one interesting
observation is that the diversity order of the stud-
ied MIMO RFID channel is min(N , L), as shown in
Equation (24). Equation (23) implies that if N − L > 1,
solely increasing the number of receiving antennasN does
not enhance the BER performance significantly. Similarly,
if L − N > 1, solely increasing the number of tag anten-
nas L does not enhance the BER performance significantly
either. Here, we refer to this observation as the perfor-
mance bottleneck. In contrast, for both the Rayleigh chan-
nel with independent receiving branches and the double
Rayleigh channel with independent receiving branches,
the diversity order is N, which means solely increasing the
number of receiving antennas can significantly enhance
the BER performance. Also there is a significant BER
improvement from L = 1 to L = 2 for the double Rayleigh
channel with independent receiving branches, as shown
in Equation (39). It is worth mentioning that, for the AF
cooperative channel in Equation (17), the diversity order
is (L + N) [17].
Under the OSTBC scheme, the diversity order of the

studied MIMO RFID backscattering channel is the num-
ber of tag antennas L, regardless of the number of the
reader receiving antennas N, as shown in Equation (34).
In contrast, for both the Rayleigh channel with indepen-
dent receiving branches and the double Rayleigh channel
with independent receiving branches, the diversity order
is NL. The performance of the MIMO RFID channel is
also significantly different from keyhole fading and double
scattering fading. For the keyhole channel, the diversity
order is min(N , L), and for the double scattering channel
the diversity order isMLN/max(M, L,N).
Although the diversity order is always L for the MIMO

RFID channel with OSTBC, a significant BER improve-
ment can still be observed from N = 1 to N = 2,
because of the logarithm function in the numerator of
the BER expression in Equation (33) when N = 1. From
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Figure 6 BER performances (in Equations 36 and 37) of the MIMO independent double Rayleigh channel using non-coherent identical
signaling (FSK with EGC).

N = 2 to N > 2, the BER improvement is not signif-
icant, meaning that increasing the number of receiving
antennas helps little when N > 2. We consider this the
performance bottleneck for the MIMO RFID backscatter-
ing channel under the OSTBC scheme. While for both
Rayleigh channel with independent receiving branches
and double Rayleigh channel with independent receiving

branches, solely increasing the number of receiving or
transmitting antennas can yield a higher diversity order
and a significant BER performance improvement.
The above different behaviors of the MIMO RFID chan-

nel are due to the special structure of the MIMO RFID
backscattering channel. All the above discussions are
summarized in Table 3.
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Figure 7 BER performances (in Equations 38 and 39) of the MIMO independent double Rayleigh channel using non-coherent identical
signaling (BPSK with MRC) under perfect channel estimation.
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Figure 8 The BER performance comparison between Alamouti’s coding scheme and identical signaling scheme. A significant BER
improvement by Alamouti’s code is observed for N = 1, while the improvement is much smaller when N ≥ 2. These properties can be explained by
our analysis of the MIMO RFID channel under the OSTBC and identical signaling schemes .

Performance improvement by employing OSTBC in RFID
backscattering channel
In this section, we investigate how much performance
enhancement can be brought by employing OSTBC in the
studied MIMO RFID channel. Figure 8 compares the BER
performances of Alamouti’s coding scheme and the iden-
tical signaling scheme in the N × L RFID channel, where
the RF tag is equipped with 2 antennas (i.e., L = 2) and
the number of reader receiving antennas varies from 1 to
3. A significant performance improvement (about 10 dB)
is observed by Alamouti’s coding scheme for the setting
N = 1. However, for the settings N = 2 and N = 3,
the improvements by Alamouti’s scheme are not signifi-
cant (i.e., 3 dB for N = 2 and 1.5 dB for N = 3). This
observation can be explained by the derived asymptotic
BER expressions in Equations (24) and (34): Our analysis
for the OSTBC scheme implies that for Alamouti’s code
the achievable diversity gain is L (L = 2 in this example)
for any N in the N × L RFID channel. Consequently for
the settings with N ≥ L, Alamouti’s code yields the same
diversity order as that of the identical signaling scheme
in the N × L RFID channel, and the BER performance
improvement is limited. In other words, when N ≥ L
in a MIMO RFID system, OSTBC does not yield signif-
icant performance improvement over simpler signaling
schemes.

Conclusion
In this article, we analyzed the performance of the MIMO
RFID backscattering channel, a cascaded channel that has

a special kind of structure. We observe several interesting
properties of the channel from our analytical results. First,
the diversity order is min(N , L) when employing the iden-
tical signaling scheme and the diversity order is L for the
OSTBC signaling scheme. Second, the analytical results
reveal that there is a performance bottleneck for the chan-
nel. More specifically, with the identical signaling scheme,
when |N − L| > 1 the BER performance enhancement
is not significant by increasing the number of tag anten-
nas or the number of receiving antennas alone. With the
OSTBC signaling scheme, the SER performance enhance-
ment is not significant when N > L. These properties of
the MIMO RFID channel are significantly different from
that of other types of cascaded channels such as keyhole
and double scattering. The analytical results and obser-
vations presented in this article could provide a useful
guidance for the design of RFID systems using multiple
antennas.

Appendix
Proof of Proposition 1. Let A = 1 + ¯̄γ ∑L

l=2 αl, then

∫ ∞

α1=0

exp(−α1)

A + ¯̄γα1
dα1=

∫ ∞

α1=0

exp
(
−α1− A

¯̄γ
)

¯̄γ
(
α1+ A

¯̄γ
) e

A
¯̄γd
(
α1+A

¯̄γ
)

= e
A
¯̄γ

¯̄γ
∫ ∞

α′
1= A

¯̄γ

exp(−α′
1)

α′
1

dα′
1 = e

A
¯̄γ

¯̄γ E1
(
A
¯̄γ
)
.

(41)
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where α′
1 = α1 + A

¯̄γ and E1(x) = ∫∞
t=x e

−t/tdt are the spe-
cial functions called the exponential integral [22]. Now we
have

∫ ∞

α2=0
· · ·
∫ ∞

αL=0

e
1
¯̄γ

¯̄γ E1

(
1 + ¯̄γ ∑L

l=2 αl
¯̄γ

)
dαL · · · dα2

= e
1
¯̄γ

¯̄γ
∫ ∞

α2=0
· · ·
∫ ∞

αL=0

∫ ∞

t=1

exp
(

t
− ¯̄γ −t

∑L
l=2 αl

)
t

dtdαL· · · dα2

= e
1
¯̄γ

¯̄γ
∫ ∞

t=1

e−
t
γ

t

( L∏
l=2

∫ ∞

αl=0
exp (−αlt) dαl

)
dt

= e
1
¯̄γ

¯̄γ
∫ ∞

t=1

e−
t
¯̄γ

tL
dt = e

1
¯̄γ

¯̄γ EL
(
1
¯̄γ
)

.=
⎧⎨
⎩

ln( ¯̄γ )
¯̄γ , if L = 1;
1

(L−1) ¯̄γ , if L > 1.

(42)

The last step is obtained by the asymptotic property of the
generalized exponential integral EL(·) [22].
Proof of Proposition 2.

∫ ∞

α=0

(
1

1 + ¯̄γα

)N
exp(−α)dα=

∫ ∞

x=1

exp
(
− x

¯̄γ
)
exp

(
1
γ

)(
1
¯̄γN

)
(
x
γ

)N dx
¯̄γ

=
∫ ∞

x′= 1
¯̄γ

1
x′N exp(−x′) exp

(
1
¯̄γ
)

1
¯̄γN dx′ =

EN
(
1
¯̄γ
)

¯̄γ exp
(
1
¯̄γ
)

(43)

where x = 1+ ¯̄γα, and x′ = x
¯̄γ . The asymptotic expression

is just like that in Proposition 2.
Proof for Proposition 3. Let A = 1 + ¯̄γ ∑L

l=2 αl and

exp
(

−
L∑

l=2
αl

)∫ ∞

α1=0

1
(A + ¯̄γα1)N

exp(−α1)dα1

= exp
(

−
L∑

l=2
αl

) EN
(
A
¯̄γ
)

AN−1 ¯̄γ exp
(
A
¯̄γ
)

=exp
(
1
¯̄γ
) EN

(
A
¯̄γ
)

AN−1 ¯̄γ ,

(44)

where EN (z) = ∫∞
t=1

e−zt

tN dt is the generalized exponen-
tial integral. Using the relation that EN (z) = 1

N−1 (e
−z −

zEN−1(z)) [22] we can prove that

EN (z) = (−1)N−1zN−1E1(z)
(N − 1)!

+
N−1∑
i=1

(−1)i−1(N − 1 − i)! zi−1e−z

(N − 1)!
(45)

then

GN ,L( ¯̄γ ) =
∫ ∞

αL=0
· · ·
∫ ∞

α2=0
e
1
¯̄γ
EN (A¯̄γ )

AN−1 ¯̄γ dα2 · · ·αL

=
∫ ∞

αL=0
· · ·
∫ ∞

α2=0
e
1
¯̄γ
(−1)N−1(A¯̄γ )N−1E1(A¯̄γ )

AN−1 ¯̄γ (N − 1)!

+ e
1
¯̄γ
N−1∑
i=1

(−1)i−1(N − 1 − i)! (A¯̄γ )i−1e−
A
¯̄γ

(N − 1)!

× dα2 · · · dαL = e
1
¯̄γ

¯̄γN

∫ ∞

αL
· · ·
∫ ∞

α2

×
(−1)N−1E1(A¯̄γ )

(N − 1)!
dα2 · · · dαL +

∫ ∞

αL
· · ·
∫ ∞

α2

N−1∑
i=1

(−1)i−1(N − 1 − i)! e−
∑L

l=2 αl

(N − 1)! ¯̄γ i(1 + ¯̄γ ∑L
l=2 αl)N−i

dα2 · · · dαL

= 1
(− ¯̄γ )N−1(N − 1)!

G1,L( ¯̄γ )

+
N−1∑
i=1

(−1)i−1(N − 1 − i)!
(N − 1)! ¯̄γ i G(N−i)(L−1)( ¯̄γ )

= 1
(− ¯̄γ )N−1(N − 1)!

G1,L( ¯̄γ )

−
N−1∑
k=1

(k − 1)!
(− ¯̄γ )N−k(N − 1)!

Gk(L−1)( ¯̄γ ). (46)

The last step is obtained by changing the index, i.e., k =
N − i.
Proof of Proposition 4. Case 1: N > L

We apply mathematical induction to prove this property.
It is easy to show that GN ,1 is valid for Equation (14), sup-
pose for L = j the argument is valid and our goal is to
show for L = j + 1 < N it is still valid. We have

GN ,(j+1)( ¯̄γ ) = 1
(− ¯̄γ )N−1(N − 1)!

G1(j+1)( ¯̄γ )

−
N−1∑
k=1

(k − 1)!
(− ¯̄γ )N−k(N − 1)!

Gkj( ¯̄γ )

.= − 1
(− ¯̄γ )N (N − 1)! (j + 1)

−
N−1∑
k=1

(k − 1)!
(− ¯̄γ )N−k(N − 1)!

Gkj( ¯̄γ )
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.= − 1
(− ¯̄γ )N (N − 1)! (j + 1)

− (N − 2)!
(− ¯̄γ )1(N − 1)!

× G(N−1)j( ¯̄γ )
.= − 1

(− ¯̄γ )N (N − 1)! (j + 1)

+ (N − 2)!
¯̄γ (N − 1)!

× 1
(N − 2) · · · (N − 1 − j) ¯̄γ j

.= − 1
(− ¯̄γ )N (N − 1)! (j + 1)

+ 1
(N − 1) · · · (N − 1 − j) ¯̄γ j+1

.= 1
(N − 1) · · · (N − 1 − j) ¯̄γ j+1 . (47)

Therefore, Equation (14) is valid for N > L.
Case 2: N = L

For N = 1 and L = 1 it is easy to show Equation (14) is
valid for N > L. Now we need to show that Equation (14)
is still valid for N = L = j + 1.

G(j+1),(j+1)( ¯̄γ )
.= 1

(− ¯̄γ )jj!
G1(j+1)( ¯̄γ )−

j∑
k=1

(k−1)!
(− ¯̄γ )j+1−kj!

Gkj(¯̄γ)

.=− 1
(− ¯̄γ )j+1j! j

−
j∑

k=1

(k − 1)!
(− ¯̄γ )j+1−kj!

Gkj( ¯̄γ ).

(48)

Since for k < j, Gkj( ¯̄γ ) ∝ 1
¯̄γ k and for k = j Gk,j( ¯̄γ ) ∝ ln( ¯̄γ )

¯̄γ j ,
we have

G(j+1),(j+1)( ¯̄γ )
.= − 1

(− ¯̄γ )j+1j! j
− (j − 1)!

(− ¯̄γ )j+1−jj!
Gjj( ¯̄γ )

.= ln( ¯̄γ )

j! ¯̄γ j+1 . (49)

Case 3: N < L
A similar approach as that of Case 1 can be obtained for
this case; therefore, we omit the details here.
Proof for independent double Rayleigh. For the non-

coherent transmission scheme, assuming that the instan-
taneous SNRs for N independent receiving branches are
γ1, . . . , γN , its BER expression with respective to the
instantaneous SNRs can be expressed as

PN ,L(γt) = 1
22N−1 e

−gγt
N−1∑
k=0

bk(gγt)k (50)

where γt = ∑N
n=1 γn and bk = 1

k!
∑N−1−k

n=0 (2N−1
n ). Note

that γ k
t = (γ1 + · · · + γN )k = ∑

m∈Mk

(k
m
)
γ
m1
1 · · · γmN

1 ,

wherem �[m1, . . . ,mN ], andMk � {m|m1 +· · ·+mN =
k}; therefore, we have

PN ,L(γt) = 1
22N−1

N−1∑
k=0

bkgk
∑

m∈Mk

(
k
m

) N∏
n=1

e−gγnγmn
n

(51)

Averaging the densities of γn according to Equation
(8), we have the BER expression for the non-coherent
transmission scheme as

PN ,L(γ̄ ) = 1
22N−1

N−1∑
k=0

bkgk
∑

m∈Mk

(
k
m

) N∏
n=1

∫ ∞

γn=0

× e−gγnγmn
n fγn(γn)dγn

= 1
22N−1

N−1∑
k=0

bk
∑
m∈Mk

(
k
m

) N∏
n=1

�(L+mn)�(1+mn)

�(L)gγ̄

× U
(
L + mn, L;

1
gγ̄

)
, (52)

where evaluation of the integral can be found in [22] and
U(a, b, x) is the confluent hypergeometric function. For
small values of x, the asymptotic expressions of U(a, b, x)
are given by [19]

U(a, b, x) .=
{− 1

�(a) ln(x), if b = 1
�(b−1)
�(a) x1−b if b > 1.

(53)

Therefore, for large value of γ̄ , we can derive the follow-
ing asymptotic BER expression

PN ,L(γ̄ )
.=

⎧⎪⎨
⎪⎩

1
22N−1

∑N−1
k=0 bk

∑
m∈Mk

(k
m
)∏N

n=1
�(m+1)

�(L)

ln(gγ̄ )

gγ̄ , if L = 1;

1
22N−1

∑N−1
k=0 bk

∑
m∈Mk

(k
m
)∏N

n=1
�(m+1)
(L−1)gγ̄ , if L > 1.

(54)

For the coherent transmission scheme, we apply the
method introduced in [20]. For N independent receiv-
ing branches, the BER for coherent transmission can be
expressed as

PN ,L(γ̄ ) = 1
π

∫ π/2

θ=0
I(θ , γ̄ )Ndθ . (55)

Here I(θ , γ̄ ) = ∫∞
γ=0 fγ (γ ) exp

(
− gγ̄ γ

sin(θ)

)
dγ , where γ =∑N

n=1 γn and fγ (·) means its density function. With ¯̄γ =
gγ̄
sin θ

, we have I(θ , γ̄ ) = G1,L( ¯̄γ ). The BER for the identical
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signaling MIMO setting of L transmitting antennas and N
receiving antennas is expressed as

PN ,L(γ̄ ) = 1
π

∫ π/2

θ=0

(
G1,L( ¯̄γ )

)N dθ = 1
π

∫ π/2

θ=0

×
⎛
⎝e

1
¯̄γ

¯̄γ EL
(
1
¯̄γ
)⎞⎠

N

dθ

.=

⎧⎪⎨
⎪⎩

1
π

∫ π/2
θ=0

(
ln( ¯̄γ )

¯̄γ
)N

dθ = CN
(
ln(γ̄ )

γ̄

)N
, if L = 1;

1
π

∫ π/2
θ=0

(
1

(L−1) ¯̄γ
)N

dθ = CN
(

1
(L−1)γ̄

)N
, if L > 1.

(56)
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