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Abstract

We revisit the widely investigated problem of maximizing the centralized sum-rate capacity in a cognitive radio
network. We consider an interference-limited multi-user multi-channel environment, with a transmit sum-power
constraint over all channels as well as an aggregate average interference constraint towards multiple primary users.
Until very recently only sub-optimal algorithms were proposed due to the inherent non-convexity of the problem.
Yet, the problem at hand has been neglected in the large-scale setting (i.e., number of nodes and channels) as usually
encountered in practical scenarios. To tackle this issue, we first propose an exact mathematical adaptation of the
well-known successive convex geometric programming with condensation approximations (SCVX) to better cope
with large systems while keeping the convergence proof intact. Alternatively, we also propose a novel efficient
low-complexity heuristic algorithm, ELCI. ELCI is an iterative approach, where the constraints are handled alternately
based on the special property of the optimal solution, with a particular power update formulation based on the KKT
conditions of the problem. In order to demonstrate ELCI’s efficiency we compare it to two state-of-the-art algorithms,
SCVX, and the recently proposed global optimum approach, MARL. The salient highlight of ELCI is the relatively fast
and very good sub-optimal performance in large-scale CR systems.

1 Introduction
The throughput maximization in multi-user interference-
limited wireless networks has been a long standing major
problem, since it is typically non-convex due to com-
plicated interference coupling among different links. In
particular, we consider a cognitive radio (CR) system com-
posed of secondary users (SUs) and multi-channel. We
aim to maximize the sum-rate capacity of the secondary
system, taking into account the average interference con-
straint at the incumbent primary users (PUs). The cen-
tralized radio resource allocation (RRA) is performed at a
fusion center (FC).
Although, one of the most widely investigated prob-

lems in RRA (see e.g., [1] for an exhaustive review of
related problems), only very recently few theoretically
optimal algorithms were proposed [2-4]. In particular
Qian et al. proposed one of the very first centralized
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algorithm MARL in [2]. Before MARL a significant num-
ber of sub-optimal algorithms were proposed to handle
equivalent problems. In order to circumvent the com-
plexity of solving the initial problems, assumptions have
often been made to create more tractable ones. High
signal-to-interference-noise-ratio (SINR) is one of the
most employed assumptions (e.g., [5,6]). In the under-
lay CR setting [7], in addition to the classical transmit
power constraint, there exists also the interference con-
straint (called also interference temperature) toward the
primary system. To avoid the complexity of having both
constraints, the authors in [8] assume the system to be in
such a state that one of the two constraints becomes loose,
thus can be omitted (i.e., either transmit power-limited
or primary interference-limited system). In [9], the multi-
ple access channel approach using successive interference
cancelation yields an interference-free formulation, thus
the problem becomes convex. In particular, convex prob-
lem formulations are highly desired since the global opti-
mum can be obtained using well-developed technics, e.g.,
the interior-point methods (IPM) [10]. However, those
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assumptions are not always valid. In particular, the oppor-
tunistic approach of the CR paradigm in addition to the
interference constraint imposed by the primary system
can lead to a low-SINR system with heavy interference
among SUs, while some SUs can enjoy a surrounding envi-
ronment free of PUs and other SUs, such that the entire
system is neither in the transmit power-limited or pri-
mary interference-limited state (i.e., in a mix state). In
contrast, other works, e.g., [2,11-15] have directly han-
dled the problems without major assumptions. Some of
the most popular applied approaches are: the iterative
waterfilling (e.g., [16,17]), the sequential quadratic pro-
gramming (e.g., [14]), the Lagrange duality method (e.g.,
[18]). Many other particular iterative algorithms have
been also proposed (e.g., [19]). In particular, the algorithm
proposed in [11] has been considered one of the state-
of-the-art centralized algorithms. The algorithm (referred
here as SCVX) is based on a successive convexification
of the problem using the so-called condensation approx-
imation. While, all the aforementioned algorithms are
only sub-optimal, the centralized optimal algorithm [2]
Monotonic optimization-bAsed poweR controL (MARL),
proposed by Qian et al., is based on recent advances in
global optimization, including monotonic optimization
and fractional programming. Later, they also proposed a
distributed algorithm, aSynchrornous distributEd powEr
contRol (SEER) in [20], based on the theory of Gibbs sam-
pling. Note that the authors also proposed in [12] the
MAPEL algorithm, very similar to MARL, to cope with
the additional minimum rate constraints.
This said, the performance investigations have however

been generally neglected in the large-scale settings as it
is usually encountered in practical scenarios. In partic-
ular, as also stated by the same authors in [20], MARL
and MAPEL already exhibit a very slow convergence for
a problem dimension of less than 8. Thus, large systems
become prohibited in complexity. Alternatively, even the
well-know good sub-optimal SCVX algorithm exhibits
non-negligible complexity (as later detailed), in particu-
lar with multiple channels. Therefore, although theoret-
ically optimal, when it comes to numerical experiments,
even with powerful machines, those approaches become
quickly limited in terms of the problem size.
Motivated by this issue, we aim to propose algorithms

with very good sub-optimal performance while exhibiting
good scalability. Those familiar with real numerical exper-
iments in RRA are likely to immediately recognize that
these two goals are, in general, fairly difficult to achieve
together. We first propose a mathematical adaptation of
the initial SCVX framework to cope with large-scale set-
tings, called LS-SCVX, while preserving the SCVX con-
vergence property [11] intact. As a second alternative,
taking advantage of an important property of the prob-
lem, i.e., the optimal solution lies at the boundary of

the feasible region [2], we propose an heuristic itera-
tive algorithm called Enhanced Low-Complexity Iterative
approach (ELCI). The key idea of ELCI is to handle the
different constraints separately, and further use a specific
formulation for the iterative power updates based on the
Karush–Kuhn–Tucker (KKT) conditions ([10], Section
5.5.3) of the problem. By numerical evaluations we first
show that MARL, although theoretically optimal, exhibits
large complexity even for small systems; Second, very
similar performance to the enhanced LS-SCVX can be
obtained with ELCI but with much lower complexity.
It is well-known that the main practical drawback of

ELCI, as well as SCVX, MARL or MAPEL is the central-
ized setting with full channel state information require-
ment. The current trend is toward distributed approaches
for practical implementation purposes and scalability of
the network. It is however interesting to quantify the
loss of those distributed algorithms compared to the ideal
centralized sum-rate case. We believe that ELCI as well
as the enhanced LS-SCVX can provide in practice good
approximate benchmarks in the case of large-scale prob-
lems as advocated by distributed algorithms. Note that
although stated as an optimal distributed algorithm, the
one proposed in [21] do not cope with multi-channel and
sum-power constraint over all bands. Similarly, in addi-
tion to the fact that the interference constraint is not
considered in [20], the adaptation for multi-channel and
sum-power constraint is not so straightforward, in partic-
ular for large-scale systems (i.e., see ([20], Eq. 13) for the
multi-level integral required in the denominator).
We recently proposed an algorithm in [22] to cope with

the sum-rate problem. The current article builds on those
results while improving the followings; First, the new
algorithm has been improved for the case of multi-band
varying channels. Second, a low-complexity and optimal
method is proposed to solve for the Lagrange multipli-
ers (LGM), required in the ELCI algorithm. The method
being customized for the specific need of the algorithm,
the resolution exhibits much faster performance com-
pared to using a general optimization approach (commer-
cial tool) as in [22]. Third, only the initial SCVX provided
in [11] was used in [22] such that the numerical exper-
iments were handled with less than only 6 optimization
variables. In this article, thanks to LS-SCVX, we simulate
with over 30 users and 128 channel bands (i.e., 3840 vari-
ables). Finally, we also consider the optimal MARL as a
comparison for the small size experiments.
The remainder of this article is organized as follows: In

Section 2, we define the system model. Section 3 briefly
reviews the SCVX approach before describing the LS-
SCVX adaptation. Section 4 describes the ELCI algorithm.
Section 5 reviews the key features of MARL, (LS-)SCVX
and ELCI. Section 6 provides numerical results to evaluate
their performance, before we conclude in Section 7.
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Notation: Bold-face lower-case letters refer to vectors
(x); bold-face capital letters refer to matrices (X); single
variables are referred to by simple lower-case letters (x);
xm,n denotes the variable in the mth row and nth column
of matrix X; a constant is defined by a capital letter (X);
sets are defined using script capital letters (X ).

2 Systemmodel
Consider a CR network composed of a set M =
{1, . . . ,M} of secondary transmitters and a set N =
{1, . . . ,N} of receivers. For the point-to-point ad-hoc net-
work each transmitter communicates with its respective
receiver, i.e., M = N . In a cell-based (CB) uplink sce-
nario (i.e., infrastructure-based), several transmitters send
data to the associated CR base station (BS), i.e., N ≤ M.
The information transmission is assumed over K parallel
channels with equivalent bandwidth but possibly expe-
riencing different gains. Let K = {1, . . . ,K} denote the
channel index set. Inherent to any CR systems, there is
a set L = {1, . . . , L} of primary transceiver pairs, using
the same K channels. We assume an interference-limited
system where each SU experiences interference from any
other SUs transmitting on the same channel, i.e., inter-cell
and intra-cell interferences. The system model is depicted
in Figure 1. The PUs’ transmission also contribute to the
total interference experienced by the SUs. Let us denote
the power matrix by P, where the component pm,k ≥ 0
represents the power allocated to SUm on channel k. The
received SINR at the nth receiver from the mth SU trans-
mitter on the kth channel, denoted by �m,k , can be defined
as

�m,k = pm,kg(k)
m,nm

σ 2
nm,k +∑M

j=1, �=m pj,kg(k)
j,nm

= pm,kg(k)
m,nm

Im,k
, (1)

where g(k)
ij is the channel power from the ith transmit-

ter SU to the jth receiver on the kth channel, nm denotes
the attributed receiver n of the mth SU such that nm ∈
{1, . . . ,N}. For the ad-hoc scenario each transmitter m is
associated to its predefined receiver nm. For the CB sce-
nario each SU transmitter m selects the besta BS nm. The
term σ 2

nm,k denotes the constant noise variance (N0) plus
the aggregate interference generated by the primary trans-
mitters at the nmth receiver on the kth channel. It is rea-
sonable to assume that the primary aggregate interference
at a secondary receiver (i.e., σ 2

nm,k − N0) is known if it can
distinguish between a secondary and primary signal, e.g.,
using different pilots. Thus, integrating over the power
spectrum densities (PSD) of the PUs’ signals, the total
interference from the primary system can be evaluated at
each secondary receiver. The sum term

∑M
j=1, �=m pj,kg(k)

j,nm
represents the aggregate interference generated at themth
user’s receiver on channel k created by all other SUs, i.e.,
from inter-cell as well as intra-cell. Therefore, Im,k =
σ 2
nm,k + ∑M

j=1, �=m pj,kg(k)
j,nm defines the total interference

experienced by userm communication on channel k at its
receiver, nm.
We now define the main assumptions used in this

work. The receiver n can estimate the instantaneous chan-
nel g(k)

m,nm from, its respective (in ad-hoc) or each (in
CB), transmitter m, on each channel k. However, the
exact instantaneous interference created by the secondary
transmitters to the primary receivers cannot be known,
in particular if the primary system does not collaborate.
Instead, based on the information given by a deployed
wireless sensor network (WSN) (as advocated by, e.g., the
SENDORA project [23]), the average interference channel
h(k)
m,l from themth SU to the lth PU can be assumed known

(e.g., based on the approximative location of the receiver,

Figure 1 Systemmodel: cell-based uplink and ad-hoc underlay cognitive radio network. N BS/SU receivers, M SU transmitters, L PU pairs, and
K channels.
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etc.). The maximum aggregate interference power thresh-
old at the PUs, IPUth , should be adopted to the known
sensitivity of the primary system (e.g., linked to the outage
probability of the PUs). As mentioned earlier, the major
drawback, in practice, of this centralized configuration is
the control overhead between the FC and the SUs.
We now formulate the sum-rate problem for the fully

synchronized CR system. Assuming that the noise and the
interference have Gaussian characteristics, the network
utility maximization problem is given as follows:

max
P ∈RMK+

f (P) =
M∑

m=1

K∑
k=1

log2 (1 + �m,k) (2)

s.t. :
M∑

m=1
pm,kh(k)

m,l ≤ IPUth ∀k,∀l ∈ Lk ,

(3)

K∑
k=1

pm,k ≤ PTXmax ∀m, (4)

where the received SINR �m,k is given in (1). The objective
(2) is to allocate the resource (i.e., power and channels)
such that the sum-rate capacity is maximized. Constraint
(3) defines the aggregate average interference power con-
straint (IPUth assumed identical for all PUs for the sake of
notation simplicity) for each sub-channel k at each PU
receiver l using that channel and denoted by Lk . Con-
straint (4) defines the total transmit power per SU over
all channels. The optimization problem (2) is promptly
applicable for the ad-hoc system. Whereas, for the intra-
cell CB uplink case, we need to assume that a base station
is capable of receiving simultaneously the signals from
its associated transmitters interfering each other on non-
contiguous channels. Note that the selection of the chan-
nels (i.e., spectrum allocation) is directly related to the
power levels, i.e., pm,k = 0 implies that userm cannot use
the kth channel. It is well-known that the sum-rate capac-
ity is a theoretical metric not often used in real networks.
However, it provides a useful upper-bound to compare
metrics which account for different realistic constraints
such as fairness issues (e.g., see [24] which considers the
max-min capacity problem for multi-hop CR network
with interference constraint).
This problem is known to be NP-complete [25], even

with one channel and without considering the CR con-
straint in Equation (3). The main problem is the inter-
ference among users. As shown in [26], if the crosstalk
interference is larger than some value (see [26]), the opti-
mal RRA is an FDMA type allocation. In fact, if the
crosstalk exists but is very small (e.g., imagine very far

apart set of transceivers), then the optimal solution could
even be obtained using distributed approach (e.g., itera-
tive waterfilling) to converge to a unique Nash equilibrium
(NE). If the crosstalk is not negligible, multiple NE points
can exist, which can be far from the social optimum.

3 Adapting SCVX for large-scale problem,
LS-SCVX

In this section, we first briefly derive the convex GP form
of our initial problem given by (2–4) to fit the succes-
sive convexification approach as in [11]. We show the
exponential increase in monomial summations compared
to the simplified high-SINR assumption case [6]-[5] and
one frequency band. To overcome this problem, with-
out affecting the convergence property, we combine the
approach of [11] with another convexification approach
described in [27].
We start by deriving the transformation of (2)–(4) into

a formulation following the standard GP form. Like lin-
ear programming (LP) or quadratic programming (QP),
GP is a type of standard optimization problem [10]. The
authors in [11] provide a good understanding about vari-
ations in RRA problems, their relation to GP, and possible
approximations. In [27], different methods are presented
to include fairness constraints. In the literature, GP deals
with two types of functions: monomial and posynomialb.
In the standard GP problem the objective function and
the inequality constraints are posynomial, and the equal-
ity constraints are monomial. In the initial optimization
problem (2)–(4), the inequality constraints (3) and (4) are
already in the right form. However, the initial objective
function (2) requires some modifications. Maximizing (2)
is equivalent to minimize the following [11]

min
P

∏M
m=1

∏K
k=1

(
σ 2
nm,k +∑M

j=1, �=m pj,kg(k)
j,nm

)
∏M

m=1
∏K

k=1

(
σ 2
nm,k +∑M

j=1 pj,kg
(k)
j,nm

)

= ψ(P)∏M
m=1

∏K
k=1 φm,k(P)

, (5)

which is not in a posynomial form due to the denomi-
nator. Directly solving this non-linear, non-convex prob-
lem, and not matching any standard form, is thus dif-
ficult. Instead, [11] proposes an approach by succes-
sively (iteratively) solving a convex approximation prob-
lem obtained using the so-called condensation approxi-
mation method for the denominator in (5). Let us define
φm,k(P) = ∑M

i=0 φ
(i)
m,k(P), where each φ

(i)
m,k corresponds to

one element in the summation σ 2
nm,k +∑M

j=1 pj,kg
(k)
j,nm (i.e.,

φ
(0)
m,k(P) = σ 2

nm,k and φ
(j)
m,k(P) = pj,kg(k)

j,nm , j ∈[ 1, . . . ,M]).



Vijayandran et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:362 Page 5 of 13
http://jwcn.eurasipjournals.com/content/2012/1/362

The condensation approximation is then applied as fol-
lows ([11], Eq. 11):

φm,k(P) ≈ φ̃m,k(P) =
M∏
i=0

(
φ

(i)
m,k(P)

α
(i)
m,k

)α
(i)
m,k

=
(

σ 2
nm,k

α
(0)
m,k

)α
(0)
m,k M∏

i=1

(
pi,kg(k)

i,nm

α
(i)
m,k

)α
(i)
m,k

,

(6)

where α
(0)
m,k = σ 2

nm,k/φm,k(P∗−), and α
(i)
m,k =

φ
(i)
m,k(P

∗−)/φm,k(P∗−),∀i ∈[ 1, . . . ,M]. The power matrix
P∗− is the solution from the previous step sub-problem
(5) in the successive approach. The function φ̃m,k(P∗−)

which is monomial represents the best local mono-
mial approximation to φm,k(P∗−) near P∗− in the sense
of a first order Taylor approximation [11]. The mul-
tiplicative term

∏M
m=1

∏K
k=1 φ̃m,k(P) can be then

written in a monomial form (i.e., b(0)pa
(0)
1

1 pa
(0)
2

2 . . . pa
(0)
MK

MK ).
Now, writing out the MK different multiplications
of (M − 1) + 1 summations of ψ(P) in (5) leads to
a posynomial function composed of MMK mono-

mials (i.e., ψ(P) = ∑MMK
i=1 b(i)pa

(i)
1

1 pa
(i)
2

2 . . . pa
(i)
MK

MK ,
b(i) > 0, a(i)

j ∈ R,∀(i, j)). The minimization (5) can
be finally approximated at every successive step to the
minimization of the following posynomial function

min
p

∑MMK
i=1 b(i)pa

(i)
1

1 pa
(i)
2

2 . . . pa
(i)
MK

MK

b(0)pa
(0)
1

1 pa
(0)
2

2 . . . pa
(0)
MK

MK

=
MMK∑
i=1

b(i)

b(0) p
a(i)
1 −a(0)

1
1 pa

(i)
2 −a(0)

2
2 . . . pa

(i)
MK−a(0)

MK
MK .

(7)

The successive convex approximation simply repeats
the GP formulation (7) and solves it using the con-
straints (3), (4). Let a(i) =[ ai1, . . . , aiMK ]T , A =
[ a(0), a(1), . . . , a(MMK )]T , and b =[ b(0), b(1), . . . , b(MMK )]T .
All elements of A and b remain unchanged at each itera-
tion, except the coefficient a(0) and b(0), updated using the
Condensation method. Although the standard GP form
(7) can be solved, it is not a convex optimization problem.
However, any problem in GP standard form can be further
transformed into a convex problem using log-sum-exp
transformation [10], ([11], Eq. 2). Finally, the convex prob-
lem can be, in general, efficiently solved using IPMc with
at most polynomial complexity [10].
Although the optimization variable vector in (7) has

only MK elements (i.e., P), the posynomial function con-
tains MMK monomials. All the power exponents (e.g.,
a(i)
1 − a(0)

1 ) need to be updated at each iteration which

correspond to
{
MMK ,MK

}
elements. The size expansion

obviously creates a bottleneck. Taking for example the CB
scenario where {N ,M,K} equal to {2, 4, 2} respectively,
requires some matrices with lengthMMK = 65536. Using
simply one additional SU per cell (i.e., M = 6) would
require matrices of length 612. This is obviously not easy
to handle for larger system sizes as used in our numeri-
cal experiments (i.e., {M = 32,K = 128}). In order to
tackle the exponential increase in monomial summations
we next use the convexification approach similar to the
one used in [27].
Instead of applying the log-sum-exp on the GP expres-

sion (7) with the extremely largemonomials summation in
the numerator, we apply it on (7) but using for the numer-
ator the multiplicative form of ψ(P) in (5), instead of the
MMK summations form. Taking X as the new optimiza-
tion variable matrix such that pm,k = eXm,k , we get the
following convex problem

min
X

M∑
m=1

K∑
k=1

⎛
⎝ln

⎛
⎝σ 2

nm ,k +
M∑

j=1,�=m
eXj,k g(k)

j,nm

⎞
⎠

−α
(0)
m,k ln

(
σ 2
nm ,k

α
(0)
m,k

)
−

M∑
j=1

α
(j)
m,k

⎛
⎝Xj,k + ln

⎛
⎝ g(k)

j,nm

α
(j)
m,k

⎞
⎠
⎞
⎠
⎞
⎠

s.t. :
M∑

m=1
eXm,k h(k)

m,l ≤ IPUth ∀k, ∀l ∈ Lk ,

K∑
k=1

eXm,k ≤ PTXmax ∀m.

(8)

The convexity of the objective function in terms of X is
due to the fact that the first element follows the log-sum-
exp type expression which is convex ([10], p. 72), and the
remaining part is linear. Note that in (8), the summations
remain overMK elements. Finally, the exact same succes-
sive approach with updated condensation approximation
is used as previously presented, but the more practical
convex problem (8) is solved instead of (7)–(3), (4). Since
the same condensation method is used, minimization in
(8) is exactly equivalent to the minimization problem of
the convex form of (7) with constraints (3), (4). Hence, the
convergence property does not change, since each sub-
problem obtained from the condensation approach, being
the GP convex formulation based on (7) or our proposed
convex formulation (8), are to be solved optimally. The
optimization problem (8) is solved using IPM, for which
the gradient and Hessian derivations of the Lagrangian
are relegated in the appendix. It is now possible to solve
for (2)–(4) using (8) in the case of large problem, which is
obviously intractable with (7). We call this approach the
LS-SCVX algorithm.
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4 Enhanced low-complexity iterative approach,
ELCI

Further motivated to obtain even lower complexity algo-
rithms, while providing good sub-optimal solutions, we
present hereafter a novel heuristic algorithm, called, ELCI.
ELCI is based on a similar iterative approach proposed
in [28], where the authors deal with the same problem
defined in (2)–(4) but without the interference constraint
(3). The ELCI algorithm is designed to cope with the addi-
tional interference constraint, and also provides a fast and
efficient method for solving for the required Lagrangian
multipliers.

4.1 Mathematical bases
We begin by applying the KKT conditions as defined in,
e.g., ([10], Section 5.5.3). However, we do not apply it to
the complete set of problem given by (2)–(4). Instead, we
apply it to three different problems derived from the ini-
tial problem: first, assume that there are no constraints
(i.e., without both (3) and (4) constraints); second, assume
in addition to the objective function the interference con-
straint (3) is active for a certain set of k channels and some
ls of the corresponding set of Lk PUs (to be defined by the
algorithm); third, assume in addition to the objective func-
tion the sum-power constraint (4) is active for a certain set
ofm users (to be defined by the algorithm). The reason of
this heuristic approach, is to use the important feature of
the optimal solution, i.e., it (or they) lies on the boundary
of the feasible region [2] (i.e., at least one active con-
straint). Note that a constraint is said to become an active
constraint when the power distribution is such that the
inequality (e.g., (3) or (4)) becomes exactly equal. There-
fore, the three settings yield the three following problems
to be solved:

∂f (P)

∂pm,k

∣∣∣∣
P=P(I)∗

= 0, ∀(m, k), (9)

∂f (P)

∂pm,k
− μk,l

∂

∂pm,k

( M∑
m=1

pm,kh(k)
m,l − IPUth

) ∣∣∣∣
P=P(II)∗

= 0

s.t. :
M∑

m=1
p(II)∗
m,k h(k)

m,l = IPUth

for some ′k′s, for some ′l′s ∈ Lk , (10)

∂f (P)

∂pm,k
− λm

∂

∂pm,k

( K∑
k=1

pm,k − PTXmax

) ∣∣∣∣
P=P(III)∗

= 0

s.t. :
K∑

k=1
p(III)∗
m,k = PTXmax, for some ′m′s. (11)

In (9) none of the constraints are taken into account; in
(10) some of the interference constraints of (3) are con-
sidered; and in (11) some of the power constraints of (4)
are considered. Let us define P(I)∗,P(II)∗,P(III)∗, the opti-
mal solutions of (9), (10), and (11), respectively, and μk,l
and λm are the positive LGM. The LGMs are solved in (10)
and (11), such that the respective constraints (3) and (4)
become active (e.g.,

∑K
k=1 p

(III)∗
m,k = PTXmax). Expanding (9)

yields

1
ln(2)

g(k)
m,nm

σ 2
nm,k +∑M

j=1, �=m pj,kg(k)
j,nm

1

1 + pm,kg
(k)
m,nm

σ 2
nm ,k+

∑M
j=1,�=m pj,kg

(k)
j,nm

+ 1
ln(2)

M∑
i=1,i�=m

−pi,kg(k)
i,nig

(k)
m,ni(

σ 2
nik +∑M

j=1, �=i,�=m pj,kg(k)
j,ni + pm,kg(k)

m,ni

)2
1

1 + pi,kg
(k)
i,ni

σ 2
nik

+∑M
j=1,�=i,�=m pj,kg

(k)
j,ni

+pm,kg
(k)
m,ni

∣∣∣∣
P=P(I)∗

= 0,

which can be further written as(
1

pm,k

�m,k
1 + �m,k

)
−

M∑
i=1, �=m

�i,k
1 + �i,k

g(k)
m,ni
Ii,k

∣∣∣∣
P=P(I)∗

= 0,

(12)
where �m,k and Ii,k are defined in (1). It is easy to see that
solving for P(I)∗ in (12) is hard since the power matrix is
included in all the SINR functions, �. To circumvent this
problem, the authors in [28] propose to use an iterative
algorithm such that the power update at the next state is
given by

p(I)
m,k = �m,k

1 + �m,k

⎡
⎣ M∑
i=1, �=m

�i,k
1 + �i,k

g(k)
m,ni
Ii,k

⎤
⎦

−1

, (13)

where the relation with (12) is easy to see. Following the
same approach, the power updates for the two other cases
(10) and (11) are given respectively by:

p(II)
m,k = �m,k

1+�m,k

⎡
⎣ M∑
i=1,�=m

(
�i,k

1+�i,k

g(k)
m,ni
Ii,k

)
+μk,lh(k)

m,l ln(2)

⎤
⎦

−1

,

(14)

p(III)
m,k = �m,k

1 + �m,k

⎡
⎣ M∑
i=1,�=m

(
�i,k

1 + �i,k

g(k)
m,ni
Ii,k

)
+ λm ln(2)

⎤
⎦

−1

.

(15)

The three power update expressions (13–15) form the
mathematical basis of ELCI.
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4.2 Solving the Lagrangian multipliers
In order to compute (14) and (15), it is first required
to evaluate μk,l and λm, respectively. We present here a
simple and efficient method, optimized for the particu-
lar need of ELCI. The solutions are obtained substituting
(14) and (15) into (3) and (4) respectively, with equality
instead of inequality constraint (i.e., becomes an active
constraint).
Let us for example investigate the resolution of μk,l. For

a violated PU l on channel k, μk,l is solved using (14) in (3)
as follows:

M∑
m=1

p(II)
m,kh

(k)
m,l =

M∑
m=1

�m,k
1+�m,k

h(k)
m,l∑M

i=1,�=m

(
�i,k

1+�i,k

g(k)
m,ni
Ii,k

)
+ μk,lh(k)

m,l ln(2)

=
M∑

m=1

am
bm + μk,lcm

= IPUth , (16)

where am = �m,k
1+�m,k

h(k)
m,l, bm = ∑M

i=1, �=m

(
�i,k

1+�i,k

g(k)
m,ni
Ii,k

)
,

and cm = h(k)
m,l ln(2). Let us define the function ζ(μk,l) =∑M

m=1 am/(bm + μk,lcm). We need to solve μk,l such
that ζ(μk,l) − IPUth = 0, i.e., a non-linear equation with
a unique unknown. It is easy to note from (16) that
am, bm, cm,∀m ∈[ 1, . . . ,M] are all non-negatives. More-
over, cm,∀m ∈[ 1, . . . ,M] are also non-zero. Thus, the
function ζ(μk,l) is strictly decreasing and positive for μk,l
positive. If ζ(0) < IPUth , the Equation (16) has no positive
solution. In fact, this case means that PU l on channel k
is not violated (i.e.,

∑K
k=1 pm,k < PTXmax). Thus, this can-

not happen since in the ELCI algorithm (to be described
shortly) the LGMs computations are only required when
the respective constraint is violated (i.e., above the con-
straint). In the other case, if ζ(0) ≥ IPUth , a solution exists
and can be obtained using for example the simple and
fast bisection or golden interval methods [29]. The search
is stopped when

∣∣ζ(μk,l) − IPUth
∣∣ ≤ ε1 (with, e.g., ε1 =

10−20). Note that the number of iterations for the bisec-
tion search increases as the slope of ζ(μk,l)− IPUth in terms
of μk,l tends to 0 (e.g., for very large M or K). Yet, in
practice, the bisection or golden methods are very simple
and extremely fast, as later confirmed through large-scale
experiments. The same approach applies for solving λm.

4.3 Algorithm description
The main iterative loop of the algorithm contains three
blocks A, B, and C related to the updates (13), (14), and
(15), respectively. BlockA updates the power without con-
sidering any of the constraints, i.e., (3) and (4). Block
B updates the power, while only guaranteeing that the
interference constraint (3) is satisfied for all PUs on all

channels. Block C updates the power, while only guaran-
teeing that the transmit power constraint (4) is satisfied
for all SUs.
Algorithm 1 ELCI Algorithm
Initialize: t = 0, pm,k(t) = PTXmax ∀(m, k) [INIT]

repeat
t = t + 1

Update ∀(m, k): [BlockA]

pm,k(t)=

⎧⎪⎪⎨
⎪⎪⎩
PTXmax if

(
pm,k(t − 1) > 0,
pi,k(t − 1) = 0,
∀i �= m)

(13) else
[BlockB]

for k = 1 to K do
Set Bduplicate = OFF; Empty set L(v) (i.e., set
which will contain violated PUs)
repeat

Find l∗k = argmaxl∈Lk

∑M
m=1 pm,k(t)h(k)

m,l
if (
∑M

m=1 pm,k(t)h(k)
m,l∗k

> IPUth ) then
if (l∗k ∈ L(v)) then Bduplicate = ON else
L(v) ← l∗k end if
Compute (∀m): tmpm = (14) with l = l∗k{need to compute μk,l∗k }
Update (∀m): pm,k(t) ={
tmpm if (Bduplicate = OFF)
min

(
tmpm, pm,k(t)

)
else

end if
until interference constraint (3)satisfied

∀l ∈ Lk
end for

[BlockC]
Find setMv :=

{
m|∑K

k=1 pm,k(t) > PTXmax

}
for allm ∈ Mv do

Compute (∀k) tmpk = (15)
{need to compute λm}

Update (∀k):
pm,k(t) =

{
tmpk (in general)
min

(
tmpk , pm,k(t)

)
(if Final-iteration)

end for
until

∣∣f (P(t)) − f (P(t − 1))
∣∣ ≤ ε0, ε0 > 0, (then

apply an additional iteration with Final-iteration
mode)

Further details about the algorithm are given as follows:

Block A: In the special case defined by the if
statement, using (13) would lead to pm,k(t) = ∞.
This stems from the fact that there is no one
competing with user m on that channel k and none
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of the constraints (i.e., (3), (4)) are handled in (13).
Thus, we constrain to pm,k = PTXmax.
Block B: For a given channel k, the repeat loop
handles sequentially and independently the
interference at the current worst interfered PU, l∗k .
The independent handling of the PUs means that the
update to satisfy the current worst PU could cancel
the previously handled worst PU’s interference
constraint. within the repeat loop. Thus, if any given
PU reappears a second time (i.e., already l∗k ∈ L(v)),
all the remaining updates in the current repeat loop
cannot increase the power (i.e., Bduplicate = ON).
Block C: The power update in Block C satisfying the
power constraint (4) is handled independently from
the power update in Block B satisfying the
interference constraint (3). As such, power updates
from Block C can violate the interference constraint
(3). To make the final solution always feasible, after
ELCI’s convergence criteriad is satisfied, i.e.,∣∣f (P(t)) − f (P(t − 1))

∣∣ ≤ ε0, the algorithm performs
an additional Final-iteration. The Final-iteration
assures that all the constraints (i.e., (3) and (4)) are
satisfied when terminating the ELCI algorithm
thanks to Block C (i.e., through
min

(
tmpk , pm,k(t)

)
).

It is interesting to note that the power updates in Blocks
B and C, generally, contract the powers to fulfill the differ-
ent constraints, whereas Block A expand them. Although
ELCI separates the interference-limited update (i.e., (14))
and the sum-power-limited update (i.e., (15)) cases, the
iterative method presented in Algorithm 1 basically aims
to recombine (yet non-optimal) the two independent

updates. Thus, ELCI does not only aim one of the two
system cases, as opposed to, e.g., [8].

5 Performance and complexity
5.1 MARL
Although the problem in (2)–(4) is non-convex, three
important features enable MARL to optimally solve it,
assuming infinite time [2]. One of those important fea-
tures is the monotonically increasing objective function
in terms of SINR. The MARL algorithm constructs a
sequence of polyblocks to approximate the SINR region
boundary with an increasing level of accuracy. By tuning
an error tolerance parameter, a trade-off between per-
formance and convergence time can also be achieved.
However, as explained in [12] the polyblock vertices pro-
jection approach does not exploit the shape of the feasible
region, but shrink from every side in the continuous
R
MK+ domain. The number of iterations and vertices vary

with the problem dimension and the shape of the feasi-
ble region. Consider for example a CB network, where
N ,M,K all equal 2 (see configuration details in Section 6).
Figure 2 compares the three algorithms for 100 random
realizations of the channel gains. The three algorithms
exhibit very similar performances (i.e., sum-rate), but one
can note that at samples 25 and 63, MARL slightly outper-
forms both LS-SCVX and ELCI. In Figure 3, we increase
M and N to 4 investigate the performance of MARL for
one random realization. We obtain the convergence with
MARL near 6×104 iterations (whereas 15 and 9 iterations
for LS-SCVX and ELCI, respectively). With a problem
of dimension 8 (i.e., MK), the number of iterations and
vertices is already large.With larger dimensions, the num-
ber of vertices to accurately define the feasible region can
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Figure 2 Close sum-rate performance illustration betweenMARL, LS-SCVX and ELCI, for a small CB system. Two adjacent cells of 100m
radius with one SU each (i.e.,M = N = 2), two channels (i.e., K = 2), and one PU pair (i.e., L = 1). Cell-based simulation using 100 random channel
gain realizations.
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Figure 3 Illustration of MARL’s slow convergence for one random small scenario realization. Four adjacent cells of 100m radius with one SU
each (i.e.,M = N = 4), two channels (i.e., K = 2), and one PU (i.e., L = 1).

be quite enormous. Thus, unable to perform MARL for
the large-scale settings, we only confront ELCI with LS-
SCVX for the remaining large system simulations. Yet, if
the objective is to be able to approach arbitrarily close to
the optimal (at the expense of an infinite time), the MARL
algorithm can fulfill it as opposed to LS-SCVX and ELCI.

5.2 SCVX/LS-SCVX
Although the convexification approach in [11] has been
generally considered to be quite efficient, it does not nec-
essarily converge to the globally optimal solution(s) due
to the condensation approximations. An improper initial-
ization may also impact its optimality performance [2].
Although not addressed in this current article, [30] pro-
vides some efficient methods for guessing good initial
points. The barrier method (classical IPM), used in this
article to solve the convex optimization (8), has the nice
property that the number of Newton steps grows very
slowly with the problem dimension [10]. However, the
computational effort to carry out one Newton step also
grows with the dimension. As explained in [31], in general,
when exact second derivatives can be computed with rea-
sonable computational effort, it is usually a good idea to
use them, since the IPM normally converges in fewer iter-
ations and is more robust. When the problem has a dense
Hessian or non-sparse Hessian, using the quasi-Newton
approximation might be better, even if the number of
iterations increases, since the computation time per iter-
ation for the search direction using the exact derivative
might be significantly higher. However, since we noticed
some losses with the quasi-Newton (BFGS) compared to
the IPM, we use the latter approach in our simulations
where the Hessian for the Lagrangian of (8) is provided as
appendix.

5.3 ELCI
The sub-optimality of ELCI is mainly due to the fact that
the constraints (3) and (4) are taken into account in alter-
nation instead of simultaneously. In order to circumvent
possible local optima, most of the heuristics algorithms
proposed in the literature can repeat the locally-optimal
algorithm with different random initial values. However,
like MARL, we always initialize pm,k = PTXmax ∀(m, k).
We now characterize the complexity of ELCI for the
worst case behavior. In particular, we focus on the notable
total number of LGM computations denoted by NL and
the total number of updates (13), (14), and (15) denoted
by NU . It is easy to see that only the LGM computa-
tions has non-negligible complexity and vary with the
problem size. We define I as the total number of itera-
tions, where one iteration represents the loop composed
of Blocks A, B, and C. The size of I is influenced by
the number of SUs and channels, as well as the level
of interference interaction in the system. In our vari-
ous simulations I is relatively small (i.e., average range
[10–20]). In the worst case, in Block B, all PUs can be
violated and processed twice (i.e., using Bduplicate in Block
B). Thus, Block B needs at the most K2L LGM compu-
tations per iteration. It easy to see that Block C needs
at the most M LGM computations. Therefore, the ELCI
algorithm yields at worst NL = I × (K2L + M) and
NU = I × (MK + K2LM + MK).
Although ELCI is not proved to necessarily con-

verge, extensive simulations (i.e., some presented in
Section 6) indicate that the algorithm, always converges,
or approximately converges with continuous slight
oscillationd. As later shown, comparing ELCI to LS-SCVX
algorithm no divergence of the former algorithm has been
observed.
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6 Numerical experiments
This section compares through various numerical experi-
ments the performance of ELCI against LS-SCVX.
We define the channel gain such that g(k)

m,nm =
d−α
m,nm10

βm,k/10, where dm,nm is the distance from the mth
SU and the nmth receiver, α is the path loss exponent,
and βm,k is a random variable with Gaussian distribu-
tion N (0, σ 2), σ > 0. The same approach applies for
the interference channel h(k)

m,l characterization. For sim-
plicity we fix L = 12, where each randomly located PU
node simultaneously transmits (at 10 dBm) and receives,
on 2 random channels out of K. The remaining parame-
ters are set such that: α = 2, σ = 7 dB, IPUth = −40 dBm,
PTXmax = 30 dBm, and N0 = −70 dBm. The simulations we
provide are for both CB and ad-hoc networks, separately.
The purpose of this separation is to independently analyze
the ad-hoc environment which exhibits more complicated
interference couplings compared to a CB network. For
the CB case, we set N = 4 adjacent cells, with equal
number of randomly placed SUs (i.e., M/N) within a cell
radius equal to 150m each. For the ad-hoc case, SUs are
randomly placed within a 500m2 square area, with 10
and 50m minimum and maximum distance respectively
for the SUs pair. These small areas are purposely chosen
to create enough complex interference coupling between
different links, while the large variance of βm,k implies
that channel gains can highly fluctuate among different
channels of a given user. Thus, a given user, e.g., the clos-
est to the BS, will not be necessarily allocated all the
channels.
In Figures 4 and 5 we set M = 20 and K = 25 and pro-

vide the PDF (probability density function) of their per-
formance ratio (i.e., sum-rate ELCI

sum-rate LS-SCVX). Each PDF is based
on 500 random simulations. For additional comparison we

also simulate the performance of the cell-based network
for the non-varying channels case (i.e., the channel gain
for a given link does not vary with k). In Figure 4, we com-
pare ELCI against LS-SCVX where the later is performed
using a random initial point, once. In order to overcome,
to some extent, the possible sub-optimality of LS-SCVX
(inherent to SCVX), we compare in Figure 5 ELCI with the
LS-SCVX’s best performance out of 20 simulations with
random different initial values. In both Figures 4 and 5,
LS-SCVX generally performs better than ELCI, in partic-
ular when compared with 20 initial values in Figure 5. Yet,
it is also clear that ELCI’s performance is very close to LS-
SCVX (i.e., the worst ratio of only 0.94), and sometimes
better. It is also interesting to note that for the non-varying
channel case, ELCI performs very well. This stems from
the fact that the channel distributions and interferences
are less random and complex. Figure 6 provides the PDF
for the ELCI number of iterations for both the CB and ad-
hoc scenarios. Since more point to point communications
can exist in the ad-hoc system, compared to the CB sys-
tem with only N BSs, the former scenario yields a higher
number of iterations. Yet, in general the number of itera-
tions are rather small, around 10, for the setting at hand,
i.e.,M = 20 and K = 25.
Figure 7 illustrates the average sum-rate performance of

ELCI and LS-SCVX for various large-scale settings. The
corresponding time consumption is provided in Figure 8.
Each point has been averaged over 50 realizations. While
the performance of ELCI in Figure 7 is equal or very
close to LS-SCVX (i.e., in fact in the log-log scale plot of
Figure 7, the difference is almost not visible), the much
lower complexity of ELCI is clear from Figure 8. Again,
due to more complicated coupling among different links
for the ad-hoc system as K becomes very large ELCI has
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K = 25: 1) cell-based (N = 4), 2) ad-hoc (N = M), and 3) cell-based with non-varying (referred as n. v.) channels (i.e., same channel gain over all K
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Figure 5 PDF of the sum-rate ratio between ELCI and LS-SCVX’s best outcome out of 20 trials. Same setting as in Figure 4.

more loss of performance compared to the CB case, but
again still minor.

7 Conclusion
The problem of interference-limited sum-rate capacity in
wireless network has been one of the most widely inves-
tigated problem, with and without cognitive radio con-
straint. Yet, only very recently centralized algorithms like
MARL have been proposed yielding the optimal solution.
However, in practical numerical experiments MARL can-
not cope with large problems. Motivated by this issue, we
propose two alternatives. First, we propose a clear mathe-
matical adaptation LS-SCVX of the well-known state-of-
the-art sub-optimal algorithm, SCVX, to cope with large
problems, while keeping the initial convergence proof
unchanged. Second, as a further alternative, we propose a
new low-complexity heuristic algorithm, ELCI, based on

the fact that the optimal solution lies on the boundary
of the feasible region. The key idea of ELCI is to han-
dle the different constraints separately, and further use a
specific formulation for the iterative power updates based
on the KKT conditions of the problem. Compared to LS-
SCVX, ELCI was shown to provide an excellent trade-off
for very large-scale system applications where both good
performance and low complexity is required.

Appendix 1
The Lagrangian function for the optimization problem (8)
can be written as

L(X,μ,λ) = �(X) +
M∑
k=1

∑
l∈Lk

μk,l

( M∑
m=1

eXm,k h(k)
m,l − IPUth

)

+
M∑

m=1
λm

( K∑
k=1

eXm,k − PTXmax

)
, (17)
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where �(X) is the objective function (8), and μk,l, λm ≥
0 are the Lagrange multipliers related to the constraints
(3) and (4), respectively. The gradient and Hessian of the
Lagrangian function are given as follows:

∂L
∂Xm,k

=
M∑

t=1, �=m

⎛
⎝ g(k)

m,nt eXm,k

σ 2
nt ,k +∑M

j=1, �=t e
Xj,k g(k)

j,nt

⎞
⎠

−
M∑
j=1

α
(j)
m,k +

∑
l∈Lk

(
μk,lh(k)

m,le
Xm,k
)

+ λmeXm,k ,

(18)

∂2L
∂Xm,k∂Xm,k

=
M∑

t=1, �=m

⎛
⎝ g(k)

m,nt eXm,k

σ 2
ntk +∑M

j=1, �=t e
Xj,k g(k)

j,nt

− g(k)
m,nt

2
e2Xm,k(

σ 2
ntk +∑M

j=1, �=t e
Xj,k g(k)

j,nt

)2
⎞
⎟⎠

+
∑
l∈Lk

(
μk,lh(k)

m,le
Xm,k
)

+ λmeXm,k ,

(19)
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∂2L
∂Xm,k∂Xm′ ,k

= −
M∑

t=1,�=m,�=m′

×
⎛
⎜⎝ g(k)

m,nt eXm,k g(k)
m′ ,nt e

Xm′ ,k(
σ 2
ntk+

∑M
j=1,�=t e

Xj,k g(k)
j,nt

)2
⎞
⎟⎠ ∀m �= m′,

(20)

∂2L
∂Xm,k∂Xm,k′

= ∂2L
∂Xm,k∂Xm′k′

= 0 ∀k �= k′, ∀m, ∀m′. (21)

Endnotes
a Simple attribution in terms of the highest channel power.
In case each sub-channel have different gains, a SU selects
the BS with the best channel averaged over all sub-
channels.
b ∑N

i=1 b(i)pa
(i)
1

1 pa
(i)
2

1 . . . pa
(i)
MK

MK is a posynomial composed of
N monomials; p is the optimization variable, where the
initial matrix optimization variableP of size {M,K} is sim-
ply represented into a vector format p of size {MK , 1};
b(i) > 0 and a(i)

j ∈ R,∀(i, j).
c IPM is one of the most popular generic approach for
solving any convex problems, but one can also use other
generic methods, e.g., cutting-plane method.
d When ε0 is too small, a continuous small oscil-
lation may appear, and the convergence criteria (i.e.,∣∣f (P(t)) − f (P(t − 1))

∣∣ ≤ ε0) cannot be satisfied. In such
a case it suffices to terminate the algorithm and apply the
Final-iteration.
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