Kim et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:369

http://jwcn.eurasipjournals.com/content/2012/1/369

® EURASIP Journal on
Wireless Communications and Networking

a SpringerOpen Journal

RESEARCH Open Access

New delay-efficient TDMA-based distributed
schedule in wireless mesh networks

Jae-Hyun Kim", Jae-Ryong Cha and Han-Joon Park

Abstract

intolerable when the packet interarrival rate is high.

Time division multiple access (TDMA)-based medium access control (MAC) protocols can guarantee quality of service
(QoS) in wireless environments. However, in an environment where multihop packet transmissions are necessary for
real-time communications, each node may experience the well-known queuing delay. This queuing delay increases
multihop packet transmission delay, resulting in not meeting the delay bound of real-time applications in multihop
wireless networks. This article first introduces two kinds of queuing delays that can occur in multihop wireless
networks. Then, this article proposes a new delay-efficient TDMA-based distributed scheduling scheme to eliminate
the secondary queuing delay. For the performance analysis of the proposed scheme, the scheduling overhead is first
evaluated in terms of power consumption. Next, the multihop packet transmission delay of the proposed scheduling
scheme is derived and validated through a simulation, before comparing the result with that of the conventional
minimum length scheduling scheme which employs distance-2 graph coloring. According to the simulation and
analysis results, for a deterministic packet arrival, the proposed scheme works well irrespective of the packet
interarrival rate and outperforms the conventional graph coloring. However, in case of a non-deterministic packet
arrival, the multihop packet transmission delay of the proposed scheme is slightly higher than that of the
conventional graph coloring because the probability that each node has more than two packets increases at the
beginning of the frame. However, the multihop packet transmission delay of the conventional graph coloring is

Keywords: TDMA, Scheduling, Quality of service, Realtime services, Allocation order

1 Introduction

Wireless mesh networks (WMNs) are emerging commu-
nication networks consisting of nodes that automatically
establish an ad-hoc network and maintain mesh connec-
tivity. Because of their advantages over other wireless
networks, WMNs are progressing rapidly and are inspir-
ing numerous applications in commercial and tactical
environments. With the popularity of WMNs, support-
ing quality of service (QoS) over multihop radio links is
becoming an issue because multihop packet transmission
delay increases quickly with the increase in the num-
ber of hops [1]. Previous studies on WMNs have mostly
been studied based on 802.11 wireless local area networks
(WLANSs). One of the major drawbacks of such networks
is that it is difficult for them to support QoS, which is
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essential for supporting real-time applications, particu-
larly in multihop wireless networks. This is because packet
transmission delay is accumulated at each hop on a path.
Meanwhile, scheduling schemes based on time division
multiple access (TDMA) have been proposed for WMN.
Most TDMA scheduling schemes [2-13] for WMNs have
been proposed for determining the minimum length
schedules. However, although such schemes reduce the
frame length, they may bring about queuing delay, which
can increase the multihop packet transmission delay in
WMNs.

Recently, TDMA-based QoS-aware scheduling schemes
[14-19] have been proposed for supporting various appli-
cations such as voice and video calls in WMNs. However,
these schemes necessarily need a centralized base station
for achieving their goals, such as a minimum length sched-
ule considering the scheduling delay, delay-constrained
schedule of flows, and link activation schedule to bound
end-to-end delay [1]. Brief descriptions of these schemes
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are presented in the following section. Therefore, this
article proposes a new delay efficient TDMA-based dis-
tributed scheduling scheme for eliminating secondary
queuing delay, which is defined in subsequent sections,
and for ultimately reducing the multihop packet transmis-
sion delay in WMNs.

2 Related study

This section introduces conventional studies related to the
TDMA-based QoS-aware scheduling scheme. Recently,
various TDMA-based QoS aware-scheduling schemes
have been introduced for WMNs [1].

In [14], the authors schedule different types of flows for
satisfying bandwidth and delay requirements. In the first
phase, the algorithm attempts to allocate interference-free
slots (using multiple channels) to a flow based on the max-
imum bandwidth requirement of the flow. The second
phase is invoked for a flow if the first phase fails to allocate
sufficient slots to satisfy even the minimum bandwidth
requirement.

In the mechanism proposed in [15], first, a given net-
work is transformed into a conflict graph whose vertices
represent links and there is an edge between two vertices
if two links conflict (interfere) with each other. Determin-
ing the order of transmission, in such a conflict graph, for
a conflict-free TDMA schedule with minimum scheduling
delay is NP-complete. Therefore, the authors formulate
this problem as a linear programming optimization prob-
lem. Given the minimum scheduling interval and relative
activation times, the authors show how to determine the
minimum length TDMA schedule (actual assignment of
links to slots) in polynomial time.

To prevent computational complexity of the optimum
solution, the authors in [16] have proposed a ‘bottleneck
first scheduling’(BFS) scheme, where scheduling decisions
at stations having higher traffic loads are made before
those having lower traffic loads. At each station, schedul-
ing decisions for constant bit rate (CBR) packets with
more hops to their destinations are made first. Through
simulations, the authors show that the delay of BES is bet-
ter than ‘earlier deadline first’ (EDF) and ‘first come first
serve’ (FCFS) scheduling.

In the mechanism proposed in [17], the nodes (and
thus links) in the network are first labeled either even
or odd (two-slot scheduling). Then, while determining
paths, only those paths that go through nodes having alter-
nate labeling are considered. Using sub-channelization of
OFDMA, secondary interference between two links in the
same slot is prevented by assigning different channels to
the links. Once the slot requirements and routing paths
are determined, each node employs a local (wireline-type)
scheduling policy. The scheduling policy determines the
order in which packets leave the buffer at each node,
and the authors show that such a mechanism provides
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two-approximation bounds for the end-to-end delay. The
problem of finding feasible routes (to and from gateway
to network nodes) in an even-odd labeled (tree) network
is formulated as a linear program and heuristics using
Dijkstra’s shortest path algorithm have been proposed.

The authors of [18] have proposed a ‘load-balanced
weighted shortest path with a retry’ routing heuristic. In
this heuristic, first, the shortest-hop algorithm is used
to determine a path. If one or more edges on the path
are blocked, those are removed from the graph and the
heuristic is applied again to find a suitable path. Next, a
call admission control (CAC) algorithm is applied which
considers the unsolicited grant service/real-time polling
service in WiMAX. To manage the jitter value of a con-
nection, the path from a source node to a destination node
is partitioned into two segments;one segment is from the
source to the penultimate node (the node just before the
destination), and the other segment is the link between the
penultimate node and the destination. The delay require-
ment is that the total delay on both the segments should
be less than the delay constraint. Because of the split, to
ensure the jitter constraint of the path, the scheduler only
needs to look at the second segment between penultimate
node and destination. This is achieved by fixing an offset
value and scheduling the packets within the limit of the
jitter grant interval.

In [19], an online algorithm that works in three phases
has been proposed. In the first phase, the algorithm con-
structs an auxiliary graph from the given topology graph.
A vertex in the auxiliary graph is a four-parameter tuple
of the form (node, slot, channel, hop). An edge is formed
between two vertices if a set of rules is satisfied. The
rules model the interference and delay constraints. In the
second phase, Dijkstra’s shortest path algorithm is run
to output the delay-constrained schedule while finding a
routing path, assigning a channel, and scheduling links in
the process. In the third phase, an unfavorable schedule
is filtered to incorporate an arbitrary interference graph.
The authors compare this algorithm with an offline opti-
mal solution and show that it accepts around 90% of the
calls with respect to the optimal solution.

3 System model

In this article, we model WMNs with a topology graph
connecting the nodes that are present in each other’s
wireless range. The network can be represented with
a directed connectivity graph G(B,E) , where B =
{b1,...,by} is a set of nodes and E = {ey, ..., ez} is a set
of directed links, and two nodes (# and v) are neighbors if
(u,v) € E . In the network, F is a set of flows, and a flow
f(e F)isspecified byanode set R(f) = {p1,...,pq}, where
Pk is the kth node in a flow (2 < ¢g; kK = 1 : the source
node, 1 < k < g : the intermediate node(s), and k = ¢ :
the destination node).
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4 Queuing delay in multihop wireless networks

In this section, we describe two main factors that cause
an increase in the multihop packet transmission delay in
multihop wireless networks. In previous studies [2-13],
TDMA scheduling is generally used to determine the min-
imum length schedules. However, such schedules may
cause additional queuing delays, which have a negative
influence on delay-sensitive networks. The QoS of real-
time applications in multihop wireless networks may not
be guaranteed if additional queuing delays occur.

Figure 1 shows a simple multihop wireless network in
which queuing delay occurs. In single-hop wireless net-
works, queuing delay occurs when the packet arrival rate
in a source node is higher than the packet transmis-
sion (service) rate. In this article, such a queuing delay
is referred to as the primary queuing delay and primary
queuing points (QPs) in Figure 1 represent the examples
of such a case. On the other hand, in multihop wireless
networks, an additional queuing delay may occur, which is
referred to as the secondary queuing delay in this article.
The secondary queuing delay occurs when multiple flows
pass through an outbound link of a relay node. The sec-
ondary QP shown in Figure 1 represents the point where
the secondary queuing delay occurs.

For example, in Figure 1, multiple flows pass through
the Node R1-to-R2 link. These flows share a slot for trans-
ferring packets. Assume that the network employs the
minimum length schedule. Then, Node R1 allocates only
one slot for transferring packets to node R2. It is also
assumed that Node S1 and Node S2 are supposed to send
a packet to Node R1 in the 1% slot and the 2" slot, respec-
tively. Moreover, Node R1 is scheduled to send a packet
to Node R2 in the 39 slot. It is also assumed that, in each
node, the arrival of a packet from application layer is con-
current with the start of a frame. In the 3™ slot in the
frame, Node R1 has two packets to send:one from Node S1
and another from Node S2. However, Node R1 can trans-
fer the packet received from node S1 in the current frame
and can transfer the packet received from Node S2 in the

secondary queuing points

rimary queuing points
) g

---------- oG
=

Figure 1 Queuing points (QPs) in multihop wireless networks.
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next frame because it can transfer only one packet per link
in a frame as prescribed by the minimum length schedule.
In conclusion, the minimum length schedule may work
well in single-hop wireless networks with high throughput
and short delay. However, in multihop wireless networks,
it may cause secondary queuing delay because only one
common slot is allocated for multiple flows.

Therefore, this article proposes a new distributed
scheduling scheme to eliminate the secondary queuing
delay, thereby ultimately reducing the multihop packet
transmission delay.

5 Proposed scheduling scheme

In this section, the operational procedures for the pro-
posed scheduling scheme are described in detail. The
operational procedures are classified into two phases:
Phase I and Phase IL. In Phase I, each node obtains paths
using the ad-hoc on-demand distance vector (AODV)
routing protocol [20] and gathers the information on its
one-hop neighbors. These two tasks are also performed
in the conventional schemes [9,21] prior to the TDMA
scheduling, although both the routing algorithms and
the approaches for obtaining the neighbor information
are slightly different. Moreover, these tasks are generally
excluded during the overhead analysis in the conventional
tasks, as these tasks are considered as input parameters
for scheduling. Therefore, we also exclude Phase I during
the overhead analysis for performance comparison with
the conventional schemes. However, we have performed
these tasks during the simulation.

On the other hand, Phase II involves three steps for
slot allocation: an initial frame length synchronization
(IFLS) process, a multihop slot allocation (MSA) pro-
cess, and a global frame length synchronization (GFLS).
First, IFLS determines the initial frame length Linit , which
can be used initially for slot allocation in the network.
Second, the MSA process allocates a different slot to
each flow in a link to eliminate the secondary queuing
delay. For example, in Figure 1, two flows exist between
Node R1 and Node R2. Therefore, the proposed scheme
allocates two different slots for two flows in the Node
R1-to-R2 link. Although such a slot allocation can elim-
inate the secondary queuing delay, it results in a large
frame length. In such a case, it is important to consider
the order of the slots allocated on a path. Therefore, we
show the delay effect by an allocation order as well as
demonstrate the manner in which slots should be allo-
cated sequentially in a flow after the routing path is
established.

Meanwhile, the multihop nature of WMNs allows spa-
tial reuse of the TDMA slots. Different nodes can use the
same time slot if they do not interfere with each other [22].
Finally, after the MSA process, we obtain the minimum
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frame length, which can be used globally in the network.
After all three processes are completed, all the nodes in
the network transfer packets in their allocated slots. This
article describes the details of Phase II from the following
section onward. The description of two tasks performed
in Phase I is not included, because it is beyond the scope
of this article as mentioned before.

5.1 Initial frame length synchronization: IFLS

From this section onward, the three steps of Phase II
are described in detail. First, for TDMA scheduling, it
is necessary to determine the initial frame length, which
can be used commonly throughout the TDMA network.
In [21], the authors assume that the initial frame length
is sufficiently large for the allocation of slots to all the
nodes. However, all the nodes carrying out the proposed
MSA process must exchange a frame map with each other,
where the frame map represents the bit-wise expression
of the slot allocation status. A detailed description is pro-
vided in the following section. Thus, our assuming too
large frame length results in the large overhead in the
proposed scheme. Therefore, in this study, each node
obtains information on the initial frame length by broad-
casting hop information. In order to obtain the initial
frame length Lini , each node gathers the hop information
by broadcasting /(i) . 4(i) indicates the hop information
to the destination, which a source node i obtains after
the completion of routing. When a node hears 4(i) , if
the received hop value is higher than the one it currently
knows, it rebroadcasts the new value. After some prede-
termined dissemination time, all nodes obtains the highest
hop value (/imax ) from /(i) . In the proposed MSA process,
each node allocates a different slot to each flow in a link.
Therefore, under the condition that each node manages
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only one flow, the upper bound of the initial frame length
can be determined by

Linit = hmax -N, (1)

where N is the total number of nodes in the network.
Once initial frame length synchronization is completed,
then each node carries out the MSA process using the
same initial frame length Lip;; .

5.2 Multihop slot allocation: MSA

In this section, we describe the proposed MSA process
in detail. First, we assume that each node follows global
slot synchronization. Thus, all nodes know the starting
time of each frame. Before the description of the proposed
MSA process, we first introduce the delay effect caused
by an allocation sequence of TDMA slots and show that
the allocation sequence in a flow is critical for reducing
the multihop packet transmission delay in an environment
where a node allocates a different slot to each flow in a
link.

5.2.1 Delay effect produced by an allocation sequence

In this study, the MSA process allocates a different slot
to each flow in a link in order to eliminate the secondary
queuing delay. In such a slot allocation, we must consider
the sequence of the slots allocated. Figure 2 shows the
delay effect produced by the allocation sequence of the
TDMA slots on a path. In Figure 2, the number of nodes,
g, is 4 and the number of hops, 4, is 3. & represents the
distance between a source node and a destination node. It
is assumed that the source node p; is supposed to trans-
fer a packet z; from the ith frame. If the slot allocation is
randomly carried out (ezejes) , the destination, p4 , will

() —eelp)—e(p)—e{p)

(a) Topology of a four-node network

schedule.

2] 21 ) Z1
I Y I ) A I I O >
| \ez\ \ \el\ \e3\ | \ez \ \el\ \63\ |
i (i+1) (i+2)
(b) Random link schedule
21 2] 21 ) ) 22
I I N O Y .. >
Fle T Tl Tegl T T I T Te I Tl
i (i+1) (i+2)

(C) Sequential link schedule

Figure 2 Example of random/sequential link schedules. (a) Topology of a four-node network. (b) Random link schedule. (c) Sequential link
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receive zj in the (i 4+ 1) th frame (Figure 2b). In this article,
such a link schedule is referred to as a random link sched-
ule. However, as shown in Figure 2c, z; will be transferred
to pa4 in the ith frame because the slots on the path are allo-
cated (e eze3) sequentially. Such a link schedule is referred
to as a sequential link schedule in this article. Therefore,
if the sequential link schedule is not considered, the mul-
tihop packet transmission delay may be quite large as the
number of hops increases.

Now, we derive the multihop packet transmission delay
caused by a random link schedule. We assume that the
traffic flow between all the node pairs in the network is
uniform and that the processes of new packet arrival at
the different nodes are independent. Therefore, we now
concentrate on the characteristics of one node, and thus,
it is assumed that the node transmits a packet in the first
slot of each frame. Consider a typical packet generated
by a node. Because we assume the stop-and-go queuing
system [23], the total packet transmission delay suffered
by a packet, D, , can be obtained by using the follow-
ing three components (Figure 3): (1) the time between its
generation and the end of the current frame; (2) the aver-
age frame delay, which indicates the number of frames
required to transfer a packet from the source to the desti-
nation; and (3) the time between the start of the last frame
and its reception at the destination. Given that all the
frames are of equal length, the average time between the
packet generation time and the end of the current frame
is 0.5T1 , where Ty is the frame length. Next, assum-
ing that the slot for the destination is randomly allocated
in a frame, we observe that the time between the start of
the last frame and packet reception at the destination is
0.5Tx + T . Finally, the average frame delay Fj, (4 > 2) can
be calculated as

h+1
= (]_[ k) Jh! = <h42'1> )

k=3

Proof. Now, we prove the above equation. It is assumed
that a node is supposed to transfer z; from the ith
frame in Figure 2. If the slot allocation is completed
randomly and /~=3, then cases exists as many as
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3!. For each case, the frame delay is Ty (e1eze3),
2Ty (eresen, exeres, exeser,eseren) , and 3Ty (eszezer)
long. Thus, F3 is 12T3;/3!= 2Ty. If we consider each
h(> 2), we obtain

Fy =3Ty/2!, F3 = 12T /3!, Fs = 60T /41, . ...
O

Accordingly, the total multihop packet transmission
delay suffered by a packet, D,, is given by

D, = 05T+ (Fp,— 1) Ty +05Ty+T (3)
=FTy+T.

Figure 4 shows the frame delay (number of frames)
with an increase in the number of hops. In Figure 4,
Lower bound and Upper bound indicate that the links are
scheduled sequentially in the order ofe; — e — -+ —
e, and e, — ey — — ey, respectively. From
this result, it can be found that the allocation sequence
of the TDMA slots on a path may be an important fac-
tor in multihop wireless networks if the delay bound must
be considered. Therefore, the objective of this study is
to sequentially allocate the slots, such that the allocated
link sequence becomes e; — ey — — ey on a
path within one frame, resulting in reducing the multihop
packet transmission delay.

5.2.2 MSA process

To efficiently describe the proposed MSA process, we
show two types of examples using an algorithm and a
figure. To carry out the proposed MSA process, three
packets are used: a map request (MAPrrq) packet, a map
response (MAPRrep) packet, and a slot allocation (SA)
packet. The MAPreq and MAPRrgp packets are used by
a node to request the frame map of its neighbors and
to respond to the request, respectively. The SA packet
is employed for transferring the information on the allo-
cated slot index to the next node. The followings are some
terminologies used for describing the proposed MSA pro-
cess.

e forward/reverse path: path to the destination/source
node.

(Fp-D Ty

Y Y
e 4

Figure 3 Delay components of a random link schedule.
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Figure 4 Delay effect by an allocation sequence.

e TN/RN: a transmitting node and a corresponding
receiving node in an allocated slot.
Allocated Slot Index: the slot index allocated.
next node: a neighbor peer node to the destination
node in a forward path.

o MACNexT: medium access control (MAC) address of
a next node.
MACsource: MAC address of a source node.
MACpEestinaTiON: MAC address of a destination
node.

Some of the above terms are shown with regard to for-
ward and reverse paths in Figure 5. During the proposed
MSA process, all the nodes related to a flow (except the
destination node) always have two tasks to perform. One
is to obtain frame maps from all their one-hop neigh-
bors, and the other is to transfer an SA packet to the
next node on the path after allocating the slot(s) on the
basis of the obtained frame maps. Each node knows which
node it transfers the SA packet because the routing pro-
cess has already been completed in Phase I. A MAPRreq
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Table 1 Field size of packets used for the proposed MSA
process

Fields Size (bits)
MAPgeq 1D 8

MAPgep ID 8

SAID 8
MACNExT 48
Allocated Slot Index 16

packet includes the forwarding information on an identi-
fication (ID) field, a MAPrgp packet on an ID field and a
frame map field, and an SA packet on the MACyngxT field
and the Allocated Slot Index field. Table 1 lists the size of
each field. The field size for an ID and an address is based
on the values in [20]. As explained before, a frame map
represents the bitwise expression of the slot allocation sta-
tus in a node. The length of the frame map is equal to
the frame length Lip. Initially, the frame maps of all the
nodes are set as zeros. During the proposed MSA process,
a node sets the part allocated as TN or RN in its frame
map to ‘1’ A node’s frame map is updated each time a node
receives an SA packet. If a source node is ready for the slot
allocation in a flow, then it unicasts the SA packet after
allocating the slot(s) on the basis of the obtained frame
maps.

Algorithm 1 shows the proposed MSA process initiated
by a source node. Further, Algorithm 2 shows the pro-
posed MSA process when either an intermediate node or
a destination node receives an SA packet from node pi
(1 <k < g,qg = 2) in a forward path. An intermediate
node or a destination node invokes Algorithm 2 when-
ever it receives an SA packet wherein MACNEgxT is equal
to its MAC address. In Algorithm 2, when an intermedi-
ate node allocates the slot(s) as a TN, it is very important
for the intermediate node to reserve the right-hand side
slot for comparison with the Allocated Slot Index within
the SA packet received, such that multihop links can be
scheduled sequentially on a path.

forward path

>

Source

node, p;

Intermediate
node, p,

Intermediate

node, py.|

Destination
Node, p,

reverse path

<

Figure 5 Information on some terminologies used in the MSA process.
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Algorithm 1. MSA in a source node

1: if k = 1 then

2:  pi first obtains frame maps of its one-hop
neighbors by exchanging MAPrgq and MAPRgp
packets.
3:  p; allocates the commonly available slot(s) for

both p; and py as a TN.
4:  pj transfers the SA packet with

Allocated Slot Index to p;.
5: end if

Algorithm 2. MSA in an intermediate/a destination
node

1: if1 < k < g then
2:  Based on the received Allocated Slot Index, py

allocates the slot(s) for both pg_1 and py as an

RN.
3:  Then, py obtains the frame map of its one-hop

neighbors by exchanging MAPreq and MAPRgp

packets.
4:  py allocates the commonly available slot(s) for

both pg and pr41 asa TN.
5. py transfers the SA packet with

Allocated Slot Index to py1.
6: elseif k = q then
7:  Based on the received Allocated Slot Index, p,

allocates the slot(s) for both p, 1 and p; as an

RN.
8: end if

This article presents another example of the proposed
MSA process for eliminating any ambiguity regarding the
process. Figure 6 shows an example of the proposed MSA
process. In Figure 6, p1 and p4 represent the source node
and destination node in a flow, respectively, and p, and p3
represent the relay nodes. In this example, it is assumed
that each node has five (1 to 5) slots.
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In each frame in Figure 6, the gray slots are those
that have already been allocated by other flows. First, p;
obtains the map information of its neighbors by exchang-
ing MAPRreq and MAPRrgp. Then, p; assigns the 21d glot as
a TN and then sends SA {MACngxT, Allocated Slot Index}
to pa. When py receives SA {p3,2} from p;, it assigns
the same 2" slot as an RN. Second, for communication
between py and p3, p assigns the 3' slot as a TN after it
obtains the map information from its one-hop neighbors.
Then, py sends SA {p3,3} to p3. Next, for communica-
tion between p3 and pa, p3 first assigns the 5th slot as a
TN after it obtains the map information from its one-hop
neighbors. After finishing the slot allocation, p3 sends SA
{p4,5} to ps. Finally, the destination node p4 assigns the
5th slot as an RN. After the proposed MSA process is com-
pleted, the map status of p1, p2, p3, and pg beomes ‘11000,
‘01100; ‘00111, and ‘00001, respectively.

5.3 Global frame length synchronization: GFLS

In this study, all the nodes undergoing the proposed MSA
process employ the initial frame length Lipjt. Linit is calcu-
lated as the upper bound of the affordable frame length.
After the proposed MSA process is completed, the frame
length of all the nodes may be less than Liyir because of
slot reuse in the TDMA system [22]. Therefore, Liyit needs
to be reduced for efficiency. In the proposed MSA pro-
cess, the slots are always allocated from each source-node
side in a flow. Therefore, the slot index allocated by the
destination node is the highest one in the flow. After the
proposed MSA process is completed, all the destination
nodes broadcast that slot index. If a destination node is
related to multiple flows, the highest slot index among the
slot indices allocated by the destination is broadcast. If a
node hears a higher slot index than the one it currently
knows, it rebroadcasts the new index. After some prede-
termined dissemination time, all the nodes calculate the

me I0L [ 1] Ol T[] Ol [ [ ) el [ [ ]
dne LD ] DIl [ ] [lfesl [ ] [ Jelesl [
[ I Y 75 55 O O I 5 O
ﬁ';iic\H\\HHWH LA LT

Figure 6 Example of the proposed MSA process.
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global frame length on the basis of the highest slot index
they learns, i.e., the global frame length L oposed = the
highest slot index. Subsequently, all the nodes adjust their
frame length to Lyroposed-

6 Performance analysis

6.1 Overhead analysis

In this section, we evaluate the overhead of the proposed
MSA process in terms of the power consumed for the
scheduling by all the nodes in the network. The pro-
posed scheme gets the map information of its one-hop
neighbors in each hop on the path before transferring the
SA packet to the next node. Considering all the possible
combinations, we find that the total power consumed for
scheduling, Pioa1, consists of the following two compo-
nents.

e DPyap: power consumed for exchanging map
information by all the nodes.

® Pga: power consumed for transferring SA packets by
all the nodes.

First, Ppap can be represented as

Priap = PMAP-REQ + PMADP-REP, (4)
where Pyiap—req and Pyap—rep denote the sum of both
the transmitting power in transmitting nodes and the
receiving power in receiving nodes when transferring the
MAPRreq and MAPrep packets, respectively. In Figure 6,
assuming that all the nodes in the network are evenly dis-
tributed, we find that § = 8(p1) = §(p2) = 6(p3) = (pa).
Therefore, Pmap—reqQ can be calculated as

N kG 8 ltotaFREQ  Px
Priap REQ _Z Z k=1 +ltotaFREQ *Prx * 8
- - §
i=1j=1| + Y (Iack - Px + Iack - Prx - 8)
k=1

(5)

In Equation (5), N denotes the total number of nodes;
h(i), the total number of hops obtained by the ith source

node to transfer its packet to its destination node; §,
the one-hop degree in a node which means the number
of one-hop neighbors; lreq, the length of the MAPRreq
packet; Imac+pHY, the sum of the overhead in MAC and
physical (PHY) layers; lioral—rEQ, the sum of /req and
Imac + PHY; and /ack, the length of the acknowledge-
ment (ACK) packet. Further, pix denotes the energy spent
in transmitting a bit over a distance of 1-meter, and px
denotes the energy spent in receiving a bit.

We can also obtain the value of Pyap—rep by simply
replacing [ioral—REQ With /ioral—RrEP as follows.

) l .

N | Y (—’tj)ltal—REP 17.tx .5)
k=1 total-REP * Prx

Pyvap-rep =ZZ 5 ,

i=1j=1 | 4 3 (IacK - Pex + IacK - Pex - 8)
k=1

(6)

where [rpp denotes the length of the MAPRrgp packet and

liotal—RrEp is the sum of lrgp and lyiac + PHY.
Similar to the calculation of Pyiap—req and PmaAp—REP,
Pgp can be represented as

N k()
ltotalfsA ‘Pix + ltotalfsA *Prx * 8 :|
Psp = s 7
SA ;jzzl[‘f'lACI('ptx‘FlACK‘prx's @
where [sa is the length of the SA packet and Jioq1—s4 is the
sum of Isa and Ivac+pHy. Accordingly, the total power
consumed for scheduling by all the nodes is given by

Piotal = Pyviap + Psa. (8)

6.2 Analysis of multihop packet transmission delay
In this section, we derive the average multihop packet
transmission delay of the proposed scheduling scheme.
Similar to the analysis in the random link schedule, the
delay suffered by a packet, Dy, can be obtained using the
following four components (refer to Figure 7): (1) the time
between its generation and the end of the current frame,
(2) the primary queuing delay to allow all the packets

- primary queuing delay
Ar
(i-1) th frame i-th frame

- T e I
© )|

packet arrival 05— «—T _ g F time

: Dy 5-D "
deléy cofnponenfs
Figure 7 Delay components of a sequential link schedule.
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already queued to be transmitted in a source node, (3) the
distance between the first slot and the slot allocated for the
destination node, and (4) packet transmission time in both
the source and destination nodes. The first component
is identical to that in case of the random link schedule,
whose value is 0.57;, and the fourth component, which
is the packet transmission time in both the source and
destination nodes, is 27.

To compute the second component, i.e., primary queu-
ing delay, (once the end of the current frame is reached),
we observe that the queue behaves exactly like the one
with a deterministic service time of Tj;. If we assume a
Poisson arrival process of A packets/s for a user and that
the number of packets that can be stored in a queue is not
bounded, then the primary queuing delay is identical to
the queuing time in an M/D/1 queuing system in which
the deterministic service time is Tj;. Thus, the expected
primary queuing time of a packet, Wy, is given by [24,25]

o P
1T 20—-p M 200—p)

where p = A - Ty;. If we consider a deterministic packet
arrival and a deterministic service time, then W, is equal
to zero [15,23].

On the other hand, the third component, which is the
distance between the first slot and the slot allocated for the
destination node, T's_p, can be calculated by averaging all
the possible combinations. Figure 8 shows an example of
the calculation of Ts_p when & = 3. First, if there is no
vacant slot (4¢p) among all the allocated slots on the path,
then Ts_p is T and one case (3_2C3_2) exists, where Cg
denotes the combination of « things taken § at a time.

Lproposed - T, )
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Second, when there is one vacant slot (A1), Ts—p is 2T
and two cases (3_2C3_») exist. Next, when there are two
vacant slots(A;), Ts_p is 3T and three cases (5_2Cs_2)
exist. Therefore, for all N, Ts_p can be given by

e )

where N = T);/T. Accordingly, the total multihop packet
transmission delay suffered by a packet, D, is given by

Ds = 05Ty + Wy + Ts—p +2T. (11)
7 Performance evaluation

In this study, we compare the delay performance of the
proposed scheme with that of the conventional scheme
that uses distance-2 graph coloring. Distance-1 graph col-
oring causes the well-known hidden node problem [9,21].
Therefore, it is excluded in this article.

7.1 Simulation scenarios

For the performance evaluation, two scenarios are con-
sidered. In Scenario #1, we simulate five grid networks to
evaluate the delay effect produced by the secondary queu-
ing delay. In Scenario #2, a grid network and a random
network are simulated for the performance comparison
of both the proposed scheduling scheme and the conven-
tional graph coloring. In Scenario #2, as a consideration
of primary queuing delay, we also consider both a deter-
ministic packet arrival (DPA) and a non-deterministic
packet arrival (NON-DPA) having exponential distribu-
tion. These two cases are considered for observing the

N slots
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behavior for both non-constant and constant packet inter-
arrival characteristics.

7.1.1 Scenario #1

This article simulates X by X grid networks, where X is
set to 3, 4, 5, 6, and 7 to observe the queuing behavior of
distance-2 graph coloring when only one packet is trans-
ferred from each source node. In this network, the vertical
and horizontal distances between two adjacent nodes are
30 m, and the communication range of each node is 30
m. After each node allocates slots by distance-2 graph
coloring, each source node transfers one packet in its allo-
cated slot. If any intermediate nodes receive packets from
the previous node on the path, they transmit the received
packet in the allocated slot. This study considers ten dif-
ferent seeds for this scenario, and their simulation results
are averaged.

7.1.2  Scenario #2
To compare the performance of the proposed schedul-
ing scheme with that of the conventional scheme using
distance-2 graph coloring as carried out in [15], this study
simulates two TDMA networks with different topologies.
One is the X by X grid network, where X is set as 7.
In the grid network, the vertical and horizontal distances
between two adjacent nodes are 30 m. The other is the
network with 100 nodes randomly distributed in a square
area of 200 x 200 m. In both networks, the communi-
cation range of each node is 30m. As soon as all the
source nodes complete the proposed MSA process suc-
cessfully, they generate packets before transmitting them
in the allocated slot. If intermediate nodes receive pack-
ets from the previous node on the path, they transmit the
received packets in the allocated slot for each flow. For the
grid network, this study considers five different seeds. In
case of random topologies, this study considers ten dif-
ferent random topologies and their simulation results are
averaged.

Table 2 summarizes some preliminary results obtained
from the simulation. In Table 2, Lcoloring denotes the

Table 2 Some preliminary results

Random network
(N =100) 0.001s

Grid network

unit slot time (N =49) 0.001s

Leoloring 21 88
Linit 196 440
Lproposed 75 200
one-hop degree 335 75
two-hop degree 5.67 1.9
h 4 44
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Table 3 Parameter for overhead calculation

Parameters Value (bits)

Imac + PHY 496

Iack 496

lkea 8

Irep 8 + Lproposed

Isa 844848

hotat — REQ Imac + PHY 4 lreq
hotal — REP Ivmac + PHY + [pep
lotal — SA Imac + PHY +sa

frame length of the conventional schedule using distance-
2 graph coloring and Lproposed denotes the frame length of
the proposed scheduling scheme.

7.2 Numerical and simulation results and discussions

In this section, we first discuss the results of overhead
analysis. Next, the simulation results from Scenario #1 are
discussed. Finally, the simulation results from Scenario #2
and the related analysis results are discussed.

7.2.1 Results from the overhead evaluation

Table 3 lists the parameters used for calculating the MSA
overhead. As same in [9,26,27], pi and p;x are set as
0.1 nJ/bit-m? and 50 nJ/bit, respectively. Table 4 shows the
total energy spent by all the nodes for the proposed MSA
process. Typically, a distributed network having 100 nodes
needs a couple of joules of energy for scheduling [26,27].
In the proposed MSA process, all nodes exchange their
table maps for each hop in a flow. Therefore, the energy
consumed is slightly more than that consumed in the con-
ventional schemes. In particular, if the overhead for the
frame length synchronization in Phase II is included, the
energy consumed may be slightly greater than that in the
results shown in Table 4. However, it is believed that these
results are within the acceptable range.

7.2.2 Results from scenario #1
Table 5 summarizes some results from the simulation of
Scenario #1, where each source node transfers only one

Table 4 MSA overhead: power consumption
100 nodes (Joules)

49 nodes (Joules)

Pmap — REQ 0.1120 1.2474
Pmap — REP 0.1203 1.4967
Psa 0.0356 0.1769
Protal 0.2679 2.9210
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Table 5 Some preliminary results in graph coloring

# of nodes 9 16 25 36 49
Leoloring 6 7 18 21 22
h 1.44 2.13 2.72 3.22 4.10
frame delay 2.2 35 5.7 7.5 94

packet in the first frame. In Table 5, Lcoloring denotes the
number of slots allocated by distance-2 graph coloring,
h denotes the average number of hops, and frame delay
denotes the number of frames elapsed for all the destina-
tion nodes to receive one packet from each source node. In
conventional minimum length schedules where one com-
mon slot is allocated to multiple flows in a link, the factors
that may influence frame delay are primary and secondary
queuing delays. In this scenario, no primary queuing delay

0.5 T z
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7 0.45H 4 Graph coloring (seed 2) b
e P> Graph coloring (seed 3)| & :
g 04 + Graph coloring (seed 4) H 1
2 X7 Graph coloring (seed 5) :
: 0.35[1 4 Proposed (seed 1) : il
& + Proposed (seed 2) : :
% 031 + Proposed (seed 3) ]
= + Proposed (seed 4) : H
g 0.2511 4 Proposed (seed 5) 1
vl
‘g 02 : i ]
2 ; i
g o1s) : A 1
oS HE 9HE 1B SHE - G0 S
%Mfi’fi’fi**q-
<
A~ 0.05F :
0 . . . .
0 0.2 0.4 0.6 0.8 1
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(a) DPA with different seed values (49 nodes)
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0.2} & |
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®
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Figure 9 Packet transmission delay (seconds). (a) DPA with
different seed values (49 nodes). (b) NON-DPA with different seed

values (49 nodes).
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occurs because each node generates only one packet. Intu-
itively, it is said that if the number of hops from a source
node to a destination is /, the frame delay is 4. However,
in Table 5, each network (when X is 3, 4, 5, 6, and 7) needs
2.2, 3.5,5.7, 7.5, and 9.4 frames on an average when / is
1.44, 2.13, 2.72, 3.22, and 4.10, respectively. Accordingly,
the increase of the frame delay in Scenario #1 is all caused
by the secondary queuing delay.

7.2.3 Results from scenario #2

Figure 9 shows the multihop packet transmission delay
with different seed values with an increase of the value of
w. In Figure 9, the symbols indicate the simulation results.
The packet interarrival time is set as (unit slot time x
Lproposed)/®, where o increases from 0.1 to 1 in steps of
0.1. (t X Lproposed) means a frame length in terms of time
and is the fixed value. If the value of w is 0.5, then each

e
W

=B~ Proposed(analysis, 49 nodes)
+ Proposed(simulation, 49 nodes) 8
Proposed(analysis, 100 nodes)

0.4}| % Proposed(simulation, 100 nodes) 1

0.45[

O

0.35F 8

0.3F 8

Average packet transmission delay (seconds)
j=}
S
n
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(0]
(a) pra

=B Proposed (analysis, 49 nodes)

4+ Proposed (simulation, 49 nodes)
0.6 | A Proposed (analysis, 100 nodes)
¥ Proposed (simulation, 100 nodes)

Average packet transmission delay (seconds)

(b) NON-DPA

Figure 10 Average packet transmission delay (seconds). (a) DPA.

(b) NON-DPA.
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node generates one packet per two-frame. On the other
hand, if the value of w is 1, then each node generates one
packet per one frame. Therefore, increasing the value of
o is the same as the increase of packet interarrival rate.
For both DPA and NON-DPA cases, graph coloring shows
intolerable delay for some values of w at different seed
values. For example, for seed 1, the multihop packet trans-
mission delay is stable until w is 0.6. In case of seed 4, the
delay is stable until w is 0.7. This is because the network
using graph coloring is overloaded in the intermediate
nodes. Therefore, the result graph has been drawn with
different seed values.

In case of DPA, both scheduling schemes show a sta-
ble performance except in the intolerable cases. How-
ever, the proposed scheduling scheme shows a shorter
multihop packet transmission delay, even though it
starts the packet transmission with slightly greater frame
length than that in case of graph coloring. As men-
tioned before, graph coloring shares slots (resources)
for multiple flows in a link [9]. Therefore, an increase
in the frame delay caused by the secondary queu-
ing delay causes an increase in the multihop packet
transmission delay. For the NON-DPA case, the pro-
posed scheme shows slightly longer multihop packet
transmission delay. The proposed scheduling scheme
is more efficient when there is only one packet wait-
ing for the packet transmission at the beginning of
each frame. If there are more than two packets at
the beginning of each frame, then all packets but one
packet to be transferred in the current frame experi-
ence a long delay because of long frame length. When
considering the NON-DPA case in the source node,
each source node has the chance to see more than
two packets; that is, the primary queuing delay may
occur. Therefore, the proposed scheduling scheme shows
a slightly lower delay performance for the NON-DPA
case. However, the proposed scheme is more toler-
able for a high packet interarrival rate than graph
coloring.

Figure 10 shows the average multihop packet transmis-
sion delay of the proposed scheme with an increase of the
packet interarrival rate. In Figure 10, the lines indicate the
numerical results and the symbols indicate the simulation
results. In this case, we average the results from ten differ-
ent seeds. It can be observed that the analytic results are
similar to the simulation ones for both cases.

8 Conclusions

This article proposed a new delay-efficient TDMA-based
distributed scheduling scheme to eliminate the secondary
queuing delay, which may occur in the conventional min-
imum length scheduling schemes. We derived the multi-
hop packet transmission delay of the proposed scheduling
scheme and validated it through a simulation. Finally,
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we compared the performance of the proposed scheme
with that of the conventional minimum length scheduling
scheme that employs distance-2 graph coloring. The
important contributions of this study are as follows:

e An intuitive method for eliminating the secondary
queuing delay.

e Analysis of the delay effect caused by an allocation
sequence of the TDMA slots.

e A distributed method to sequentially allocate slots on
a path.

e Analysis of the proposed scheme and its simulation.

According to the simulation and analysis results, for the
DPA case, the proposed scheme works well irrespective
of the packet interarrival rate and outperforms the con-
ventional graph coloring. However, in case of NON-DPA,
the multihop packet transmission delay of the proposed
scheme is slightly longer than that of the conventional
graph coloring because the probability that each node has
more than two packets increases at the beginning of the
frame. However, the proposed scheduling scheme is more
tolerant for a high packet interarrival rate.

9 Future study

In the future studies, first, we intent to extend the pro-
posed scheduling scheme to an autonomous environment
where either new nodes can efficiently assign time slots or
existing nodes can release their slots on a path in a dis-
tributed manner. Second, the proposed scheme has the
characteristics that each node allocates a different slot to
each flow in a link. Therefore, it needs lots of slots; how-
ever, the distance-2 coloring leads to slightly smaller frame
length because each node allocates one common slot for
multiple flows in a link. This study have considered a sit-
uation wherein each node has only one flow. However, it
is somewhat unrealistic. If two flows are considered per
node, the frame length of the proposed scheme is up to
two times greater than that when considering one flow per
node. Accordingly, we are also interested in reducing the
frame size and in concurrently reducing the network load
by using conventional network coding (NC) schemes.
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