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Abstract

Femtocell networks offer a series of advantages with respect to conventional cellular networks. However, a potential
massive deployment of femto-access points (FAPs) poses a big challenge in terms of interference management,
which requires proper radio resource allocation techniques. In this article, we propose alternative optimal power/bit
allocation strategies over a time-frequency frame based on a statistical modeling of the interference activity. Given the
lack of knowledge of the interference activity, we assume a Bayesian approach that provides the optimal allocation,
conditioned to periodic spectrum sensing, and estimation of the interference activity statistical parameters. We
consider first a single FAP accessing the radio channel in the presence of a dynamical interference environment. Then,
we extend the formulation to a multi-FAP scenario, where nearby FAP’s react to the strategies of the other FAP’s, still
within a dynamical interference scenario. The multi-user case is first approached using a strategic non-cooperative
game formulation. Then, we propose a coordination game based on the introduction of a pricing mechanism that
exploits the backhaul link to enable the exchange of parameters (prices) among FAP’s.

Introduction
Femtocell networks are composed of cells having a cov-
erage radius in the order of tens of meters, providing
enhanced indoor coverage through the use of femto-
access points (FAPs) or home-enhanced node B (HeNB),
in the long-term evolution (LTE) terminology [1,2]. A
typical scenario is sketched in Figure 1, where we can
notice the wireless links among femto user equipments
(FUE), macro user equipments (MUE), macro base sta-
tions (MBSs) and FAPs. More specifically, the wireless
links are classified as useful or interfering depending
on whether they refer, respectively, to the useful link
between a transmitter and its intended receiver or to other
receivers falling within its coverage area. Being installed
in residential areas, e.g., home, offices, etc., the FAP’s
are typically interconnected with each other through a
wired link, usually an ADSL subscriber line which allows
the access to a broadband Internet network, as depicted
in Figure 1. One of the ideas proposed in this article is
to exploit the backhaul to set up a local coordination
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among nearby FAPs to improve the efficiency of the radio
resource management (RRM), without the presence of a
centralized control.
Femtocells are becoming more and more attractive

due to their benefits to both cellular operators and sub-
scribers. On the one hand, operators see femtocells as
a way to improve indoor coverage and to off-load wire-
less traffic from the macro cellular network to the wired
network, thus releasing wireless channels to additional
mobile users. On the other hand, subscribers see femto-
cells as a way to get higher quality services, either higher
data throughput or better voice quality, thanks to a better
indoor coverage, and seamless connectivity.
Following the current evolution of cellular standardiza-

tion process, in this study we assume an LTE framework
and we focus on the downlink channel, which assumes an
OFDMA strategy. In this context, femtocell networks offer
advantages with respect to Wi-Fi, as they avoid vertical
hand-off and offer better QoS.
In view of a potential massive deployment of FAP’s,

a special attention has to be devoted to RRM. In fact,
different from MBSs, FAPs are typically installed by the
subscribers and maintained without global planning, with
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Figure 1 Femtocell network scenario.

no special consideration about traffic demands or interfer-
ence with other cells, either femto or macro cells. Hence,
a dense deployment of FAPs might induce an intolerable
interference from FUE’s to MUE’s or to other FUE’s. Inter-
ference management is then arguably one of the major
challenges to be faced in femtocell networks.
The goal of this study is to propose an algorithm

for optimizing power/bit allocation over a joint time–
frequency domain, incorporating a statistical model
of the macro-users activity. Since the interference is
unknown, the proposed algorithm follows a Bayesian
approach, which allocates power/bits over successive
time/frequency slots depending on a preliminary sens-
ing and estimation of the parameters of the interference
model. We assume a Markov modeling for simplicity, but
the approach can be generalized to more sophisticated
models, like e.g., [3,4]. More specifically, in this study the
interference over different frequency subchannels is mod-
eled as a set of statistically independent homogeneous
discrete-time Markov chains (DTMCs). We consider a
single-user allocation first, where a single FAP finds the
optimal resource allocation according to two alternative
strategies: (i) maximize the expected rate, conditioned to
the result of the sensing and estimation phase, under
a transmit power constraint; (ii) minimize the transmit
power under the expected rate constraint.

Opportunistic spectrum access (OSA) in multicarrier
networks where the channel occupancy follows a Marko-
vian evolution has already been studied in the frame-
work of cognitive radio (CR) in [5,6], for example. Chen
et al. [5] develop an optimal OSA scheme aimed at
optimizing spectrum sensing and access policies jointly.
They assumed that the secondary transmitter receives
error-free ACK signals from the secondary’s receiver,
whenever the transmission is successful, and this infor-
mation is used to track the state of the primary channels.
Interestingly enough, Chen et al. [5] establish a separation
principle that decouples the design of spectrum sensor
and access policy. A similar context is studied in [6,7],
where the authors combine learning and dynamic spec-
trum access. Both Chen et al. [5] and Unnikrishnan and
Veeravalli [6] consider an objective function that depends
only on the available cognitive bandwidth and puts a con-
straint on the collision probability with the primary users.
Anandkumar et al. [8] and Liu and Zhao [9] formulate
the multi-user OSA problem as a decentralized multi-
armed bandit problem [10]. In such a framework, each
user learns the channel availability statistics and designs
a channel access rule in order to maximize the trans-
mission throughput (or equivalently minimize the system
regret, defined as the loss in secondary throughput due
to learning errors and collisions under distributed access).
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In [9], which is an extension of the single-user policy
proposed in [10] to the multi-user case, Liu and Zhao
propose a family of distributed learning and access poli-
cies known as time-division fair share. For these policies,
they prove the minimum growth rate of the system regret,
which is shown to behave logarithmically with respect
to the number of time slots. Moreover, Liu and Zhao
[9] distinguish the case of known number of secondary
users from the case in which this number is unknown
but estimated at each user through feedback. An alterna-
tive scheme for distributed resource allocation between
CRs incorporating aggregated interference control is ana-
lyzed in [11,12], where the authors propose a form of
real-time multi-agent reinforcement learning, known as
decentralized Q-learning [13], to manage the aggregated
interference. The objective function to be minimized is
an expected discounted cumulative cost related to the
difference between the effective signal-to-noise plus inter-
ference ratio (SINR) and a target SINR, which has to be
guaranteed to the primary system. This SINR is mea-
sured at some control points located in the protection
contour of the primary network and it is fed back to the
secondary base stations that adjust their transmit power
consequently. One of the interesting aspects of such an
approach is that it is model-free and does not require the
knowledge of the transition probabilities of the underlying
Markov process. Finally, Geirhofer et al. [14] propose an
interference-aware resource allocation for OFDMA sys-
tems, based on the sensing and prediction of the ad hoc
users from the infrastructure users.
Different from the previous studies, in this article

we propose a Bayesian radio access method enabling
(possibly multiple) FAP’s to allocate power/bits over a
time–frequency grid based on the current belief on the
interference level, as obtained from previous sensing.
Since the interference cannot be known in advance, we use
a Bayesian approach and formulate the utility function as
the expected value of the utility conditioned to previous
measurements. The goal is to relax the requirement on
sensing time and allocate resources over a certain number
of future time slots, depending on the interference model
and on our prediction capability.
The article is organized as follows. We consider first the

radio access of a single FAP and wemaximize the expected
rate, averaged over the interference activity model, under
a transmit power constraint. In this case, the solution can
be found in closed form and it represents a sort of general-
ized water-filling algorithm, with water level depending on
the interference activity probabilities. Then, we illustrate
an alternative approach consisting in the minimization of
the transmit power, subject to a constraint on the min-
imum average femto-user rate. Then, we generalize the
proposed approaches to the multi-FAP scenario, where
we analyze the interaction among FAPs using a game-

theoretic approach. In particular, we consider first a purely
competitive game, where each FAP adopts a purely self-
ish strategy. Since the competitive game might lead to
inefficient Nash equilibria, we also propose a coordinated
game where, thanks to the exchange of a few parame-
ters through the backhaul link, the FAP’s coordinate their
action to improve upon inefficient Nash equilibria and
maximize the sum-rate or minimize the sum-power.

Single-user Bayesian adaptive allocation
Femtocell networks are fully compliant with cellular stan-
dards. Given the current evolution of 3G systems, in
this article we are concerned with an LTE system and
the goal is to allocate power over a time–frequency grid
adaptively, as a function of the current occupancy. This
implies that the channel and interference power must be
sensed at the beginning of each frame. Given the low
mobility of indoor users, the channel can be assumed to be
nearly constant over the frame. However, the interference
from macro-users may vary along the frame depending
on the macro-user activity. A correct power allocation
across time and frequency would require a non-causal
knowledge of the interference, which is of course unavail-
able. To circumvent this inconvenience, we propose a
time–frequency resource allocation based on a Markov
modeling of the interference activity over each frequency
subchannel. More specifically, we assume that the activ-
ity of the macro users over the frequency subchannels
is modeled as a set of statistically independent homoge-
neous DTMCs. The parameters of the statistical model
are assumed constant within the frame, but they may vary
over successive frames. Each FUE estimates the interfer-
ence power and the transition probabilities of the inter-
ference activity over each subchannel and feeds this infor-
mation back to the associated FAP, which computes the
optimal power allocation over a time–frequency frame,
following a Bayesian approach.
In this section, we assume that the interferers do not

react to the strategy of the FAP of interest. In the subse-
quent sections, we will extend the study to the case where
the other FAPs react to the choice of nearby, interfering
FAPs, thus generating an iterative process, whose stability
properties will properly be studied.

Markovian interference model
The interference activity over each frequency subchan-
nel is modeled as a DTMC. We use the random binary
variable Sk,m to indicate the macro activity over the kth
subchannel, at time m: Sk,m = 1 if the subchannel is busy,
with interference power σ 2

I (k,m), while Sk,m = 0, if the
subchannel is idle. We consider different orders for the
DTMC so that we can test the effect of the order on the
performance of the proposed strategy. As an example, for
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the order L = 1, 2, 3, we introduce the following transition
probabilities.

pkjl = Pr(Sk,m = l | Sk,m−1 = j) for L = 1 (1)

pkijl = Pr(Sk,m = l | Sk,m−1 = j, Sk,m−2 = i) for L = 2
(2)

pkrijl = Pr(Sk,m = l | Sk,m−1 = j, Sk,m−2 = i, Sk,m−3 = r)

for L = 3 (3)

where k is the subchannel index and (j), (i, j), (r, i, j) are,
respectively, the states for L = 1, 2, 3, i.e., all the binary
sequence in {0, 1}L. The probability of being in the state i ∈
{0, 1} at time m over the kth subchannel is denoted with
π

(k,m)
i = Pr(Sk,m = i). In the case of a first-order DTMC,

starting from an initial time slot m0 = 1, the probability
π

(k,m)
i can be obtained recursively as(
π

(k,m)
0

π
(k,m)
1

)
=
(

ω
(k)
1 1 − μ

(k)
1

1 − ω
(k)
1 μ

(k)
1

)(
π

(k,m−1)
0

π
(k,m−1)
1

)

m = 2, 3, . . . ,

(4)

where ω
(k)
1 := p(k)

00 , μ
(k)
1 := p(k)

11 , whereas the initial state
(π

(k,1)
0 ,π(k,1)

1 ) is obtained by observing the channel state
at the time slot of indexm0. Equation (4) can be written in
compact matrix form as

�(k,m) = P(k)
1 �(k,m−1) (5)

where �(k,m) =[π(k,m)
0 ,π(k,m)

1 ]T and the entries p(k)
jl of

the transition matrix P(k)
1 are given in (4). Let βk,m =

Pr(Sk,m = 0) and γk,m = Pr(Sk,m = 1) the probabili-
ties that the channel k at time m is, respectively, idle and
busy. Then, we can iteratively calculate them at time m
from Equation (4) as βk,m = π

(k,m)
0 and γk,m = π

(k,m)
1 . The

generalization to higher orders is straightforward and the
formulas are reported in Appendix 1, for convenience. In
Appendix 1, we also report the formulas used to estimate
the transition probabilities from the observations.

Maximum expected rate optimization
Having introduced the interference model, our goal now
is to find the bit/power allocation over an OFDM frame
composed of N subcarriers and M consecutive time
slots, in order to maximize the expected rate, taking
into account the macro-users activity. The assumptions
underlying the proposed approach are (1) the channels
are affected by multipath, with time-invariant coefficients
within each frame, supposed to be known at the transmit-
ter side; (2) the activity of the interferers over each sub-
channel is modeled as a homogeneous DTMC of order L

and the transition probabilities are estimated by using the
ML estimators discussed in Appendix 1; (3) the activities
of the interferers over different channels are statistically
independent of each other; (4) the power allocation of the
interferers are independent of the power allocation of the
FAP of interest.
The last assumption is made to distinguish this situation

from the case where the interferers are themselves sens-
ing the channel (interference) and adapting their strategy
consequently. In this second case, each adaptive transmit-
ter reacts to the strategies of the other, thus inducing an
iterative process that must properly be studied. The first
scenario, which is the subject of this section, is appro-
priate when the interferer is an MBS, for example. The
second scenario is more appropriate to model the situ-
ation where there are a few nearby FAP’s attempting to
access the radio channel at the same time. The analysis
of this scenario will be carried out in the next section by
resorting to game-theoretic tools.
In the case where there is only one adaptive device, the

FUE is supposed to measure the interference power from
the macro network over each subchannel over a number
of time slots that depend on the order of theMarkov chain
as well as on the accuracy of the estimation.
Based on the channel sensing, up to a current time slot

m0, our goal is to find out the optimal power allocation
over a set of M successive time slots m = m0,m0 +
1, . . . ,m0 + M − 1. Since the interference in the slots
successive to the current one is not known, we follow a
Bayesian approach. More specifically, our first optimiza-
tion criterion is the maximization of the expected rate,
conditioned to the current estimation of the interference
power profile and of the Markov chain parameters, over
each frequency subchannel. In formulas, our objective
function is

r̄ = 1
M

m0+M−1∑
m=m0

N∑
k=1

ESk,m{r(Sk,m)} (6)

where

r(Sk,m) =

⎧⎪⎨⎪⎩
log

(
1 + pk,m|Hk |2

σ 2
n (k)

)
if Sk,m = 0

log
(
1 + pk,m|Hk |2

σ 2
n (k)+σ 2

I (k,m)

)
if Sk,m = 1

, (7)

where σ 2
n (k) denotes the variance of noise and Hk is the

FAP channel transfer coefficient over the kth subchannel.
The average rate is then

r̄ = 1
M

m0+M−1∑
m=m0

N∑
k=1

[
βk,m log

(
1 + pk,man(k)

) + γk,m

× log
(
1 + pk,maI(k,m)

)]
(8)
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where an(k) := |Hk|2/σ 2
n (k) and aI(k,m) :=

|Hk|2/(σ 2
n (k) + σ 2

I (k,m)). Since the transition probabili-
ties are not a priori known, they are estimated from the
observations, using Equations (42), (44) or (45), depend-
ing on the most appropriate Markov order L. Knowing the
transition probabilities, the occupancy probabilities βk,m
and γk,m at any time m, conditioned to the observation
of the channel state at the first L time slots can easily be
derived by using Equations (4), (39), (40). Then, denoting
with p the (time–frequency) NM-dimensional power
allocation vector, the max-rate optimization problem is
formulated as follows

max
p

r̄(p)

s.t. 1
M
∑m0+M−1

m=m0

∑N
k=1 pk,m ≤ PT

0 ≤ pk,m ≤ pmax(k) ∀ k,m
(9)

where the upper limit pmax(k), k = 1, . . . ,N represents
a mask constraint useful to limit the transmit power
over some prescribed channels, for example, the channels
occupied by the MBSs. This is a convex problem, as r̄(p)

is a concave function of p and the constraint set is convex.
The optimum power vector p∗ can be expressed in closed
form by imposing the KKT conditions (see Appendix 2 for
further details). The optimal power over the kth frequency
subchannel, at timem, is

p∗
k,m =

[
−b̃k,m+

√
b̃2k,m−4ãk,mc̃k,m
2ãk,m

]pmax(k)

0

(10)

where [ x]ba = a if x ≤ a, [ x]ba = b if x ≥ b and [ x]ba = x if
a < x < b. The coefficients b̃k,m, c̃k,m, d̃k,m are related to
an(k) and aI(k,m) as follows

ãk,m = λ an(k)aI(k,m)

b̃k,m = λ [ an(k) + aI(k,m)]−an(k)aI(k,m)

c̃k,m = λ − an(k)βk,m − aI(k,m)γk,m,

where λ is the Lagrange multiplier. Since the optimal
powers p∗

k,m are functions of λ, we can find this multi-
plier numerically as the solution of the power constraint
m0+M−1∑
m=m0

N∑
k=1

p∗
k,m = MPT . Expression (10) is a generaliza-

tion of the well-known water-filling solution. Indeed, it
can be shown that, by taking the limit for the transition
probabilities going to 1 or 0, i.e., by turning the Markov
chain into the degenerate case of a deterministic signal,
Equation (10) converges to the water-filling solution.

Min-power optimization strategy
Since one of the most critical issues in femtocells is inter-
ference management, an alternative optimization proce-
dure consists in minimizing the FAP transmit power,

under the constraint of guaranteeing the required rate
over the link between the FAP and the associated FUE.
This strategy was proposed, for example, in [15] assuming
a static interference. Here, we generalize that approach to
the case where the interference is dynamic and its activ-
ity evolves as a Markov chain, as described in the previous
section. The objective now is to minimize the average
transmit power across theN subchannels and overM con-
secutive time slots. Denoting withm0 the index of the time
slot where the interference power profile is measured, the
goal is to allocate power over a set of consecutive slots,
starting from m0, i.e., for m = m0, . . . ,m0 + M − 1,
under the constraint that the expected rate, conditioned
to the observation on the initial L time slots, i.e., for m =
m0 − L + 1, . . . ,m0, does not have to be smaller than a
given value R0.
The optimization problem can then be formulated as

min
p

1
M

N∑
k=1

m0+M−1∑
m=m0

pk,m

subject to R̄(p) ≥ R0

0 ≤ pk,m ≤ pmax(k), ∀k = 1, . . . ,N ,

m = 1, . . . ,M

(11)

where the expected rate is computed as in (8).
The minimization problem in (11) is a convex optimiza-

tion problem, since the objective function is a linear (then
convex) function of p and the set is convex. The solution
can be written in closed form by exploiting the KKT con-
ditions and following the same steps as in Appendix 2, the
result is

p∗
k,m =

[
−b(k,m) + √

b(k,m)2−4a(k,m)c(k,m)

2a(k,m)

]pmax(k)

0
∀k = 1, . . . ,N , m = 1, . . . ,M

(12)

with

a(k,m) = an (k) aI (k,m)

b(k,m) = an (k) + aI (k,m) − λan (k) aI (k,m)

c(k,m) = 1 − λ
[
an (k) βk,m + aI (k,m) γk,m

] (13)

where the Lagrange multiplier λ is found numerically in
order to satisfy the rate constraint R̄(p∗) = R0.
One important difference between the min-power and

the max-rate problems is that, in the min-power case, the
feasible set could be empty. If this happens, it means that
the rate requirement is too high to be accommodated.
Hence, either the rate requirement is lowered until the fea-
sible set becomes non-empty, or the user is not admitted.
This protocol is handled by the call admission control.
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Multi-FAP case: maximum expected rate game
In a scenario containing multiple nearby FAP’s imple-
menting the radio access according to the adaptive strat-
egy described in the previous section, each FAP may
react to the power allocation of nearby FAP’s, by chang-
ing its own power allocation and so on. This interaction
induces an iterative mechanism whose convergence prop-
erties have to be carefully studied. The problem can be
studied using the theoretical tools of game theory, which is
well suited for this kind of multi-objective decision prob-
lem. In particular, given the existence of a wired backhaul
connecting the FAP’s, we will consider a purely competi-
tive game, where each FAP (player) seeks to optimize its
own utility function, irrespective of the other FAP’s per-
formance, and a coordination game, where nearby FAP’s
exchange some parameters to improve performance with
respect to the purely competitive case.
Denoting again with the binary variable Sk,m the macro-

interference activity over the channel k at timem and with
Pr(Sk,m = 0) = βk,m and Pr(Sk,m = 1) = γk,m the proba-
bilities that channel k is idle or busy, at time m, the
expected rate of the qth FAP isa

R̄q(pq,p−q) =
m0+M−1∑
m=m0

N∑
k=1

[
βk,m log

(
1 + pqk,ma

q
n(k,m)

)
+ γk,m log

(
1 + pqk,ma

q
I (k,m)

)]
,

(14)

with q = 1, . . . ,Q, and

aqn(k,m) = |Hqq
k |2

σ 2
n,q(k) + ∑

r∈Nq p
r
k,m|Hrq

k |2 , a
q
I (k,m)

= |Hqq
k |2

σ 2
n,q(k) + ∑

r∈Nq p
r
k,m|Hrq

k |2 + σ 2
Iq(k,m)

(15)

where Nq is the set of neighbors of the qth FAP and
Hrq
k is the channel transfer function of the kth subchan-

nel between the rth transmitter and the qth receiver. The
probabilities βk,m and γk,m evolve in time according to a
Markov chain of order L. We assume, as in the previous
section that the allocation over M consecutive time slots
is carried out on the basis of the observation of a number
of initial time slots equal to the order of theMarkov chain,
i.e., L.
It is worth noticing that the major difference between

the expected rate in (14) with respect to (8) is that now
the interference is composed of two contributions: the
dynamic interference of the macro-users, whose activi-
ties evolve as Markov chains but whose power profile,
when on, is fixed, and the interference from the other

FAP’s, whose activity is always on, but whose power pro-
file, described by the vectors prk,m evolve as a response to
the choices of the other FAP’s.
Denoting by � = {1 . . .Q} the set of Q players, with

Pq the maximum transmit power over a frame and with
pmax
q (k) the mask constraint over each subcarrier, the

problem can be cast as a game, i.e.,

G1 :
max
pq

R̄q(pq,p−q)

subject to pq ∈ Pq
∀q ∈ � (16)

where the feasible set of FAP q is

Pq =
{
pq ∈ R

NM×1 :
m0+M−1∑
m=m0

N∑
k=1

pqk,m ≤ Pq, 0 ≤ pqk,m

≤ pmax
q (k),∀k∈{1, . . . ,N},m∈{m0, . . . ,m0+M−1}

}
.

(17)

Since the objective function in (16) is strictly concave
in pq ∈ Pq, for any given p−q, and the feasible set Pq
is compact and convex, game G1 admits a non-empty
solution set for any set of channels and transmit power
constraints of the users. In [16], we reformulated this
game as a Variational Inequality [17] and we applied the
iterative gradient projection algorithm to solve it, deriv-
ing sufficient conditions for its convergence to a Nash
Equilibrium (NE).
Game G1 may possess multiple equilibria, which may

not be Pareto-efficient.b To improve upon the perfor-
mance of the NE of purely competitive game G1, we can
modify the utility function of each user in order to induce
the players to incorporate a social utility function, rather
than being purely selfish. For example, in [18,19] it has
been proposed to modify the utility function of each
player so as tomaximize the sum of all users’ rates. In prin-
ciple, this change should require a centralized solution.
Nevertheless, Huang et al. [18] showed that the solution
of the sum-rate game can be still achieved in decen-
tralized form, provided that the players exchange some
parameters, the so-called prices. These parameters induce
a penalty on each player utility proportional to the rate
decrease that each player strategy induces on the other
players. Introducing pricing mechanisms in femtocell net-
works is possible, thanks to the existence of the backhaul
link, which allows the exchange of prices among FAP’s.
Furthermore, we will show next that every FAP needs to
exchange pricing coefficients only with its neighbors, thus
keeping the amount of extra signaling limited.
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Generalizing the approach proposed in [18] to our
Bayesian formulation, we introduce the price coefficient:

π r
k,m := − ∂R̄r(p)

∂Irk,m(p−r)
(18)

with Irk,m(p−r) :=
∑

i∈Nr p
i
k,m|Hir

k |2. These coefficients are
proportional to the marginal decrease of user r’s expected
rate resulting from an increase of the qth node’s trans-
mit power, as ∂Rr(p)

∂pqk,m
= −π r

k,m
∂Irk,m
∂pqk,m

= −π r
k,m|Hqr

k |2. The
incorporation of the pricing mechanism leads to the new
gamec:

G2 :
max
pq

R̄q(pq,p−q)−
m0+M−1∑
m=m0

N∑
k=1

pqk,m

( ∑
r∈Nq

π r
k,m|Hqr

k |2
)

s.t. pq ∈ Pq.
(19)

Each local problem is convex, hence the KKT conditions
lead to power coefficients pqk,m of each FAP that, within the
interval [ 0, pmax

q (k)), must satisfy the following equation

ãq(k,m)
(
pqk,m

)2 + b̃q(k,m)pqk,m + c̃q(k,m) = 0 (20)

where, denoting with νq the Lagrangian multiplier, we
have set

ãq(k,m) =
⎛⎝νq +

∑
r∈Nq

π r
k,m|Hqr

k |2
⎞⎠ aqn(k,m)aqI (k,m)

b̃q(k,m) =
⎛⎝νq +

∑
r∈Nq

π r
k,m|Hqr

k |2
⎞⎠(aqn(k,m) + aqI (k,m)

)
− aqn(k,m)aqI (k,m)

c̃q(k,m) = νq +
∑
r∈Nq

π r
k,m|Hqr

k |2 − (
aqn(k,m)βk,m

+ aqI (k,m)γk,m
)

.

(21)

We can verify that, ∀νq > 0, we have b̃q(k,m)2 −
4ãq(k,m)c̃q(k,m) ≥ 0, and the only solution is

p̃bk,m = −b̃q(k,m) +
√
b̃q(k,m)2 − 4ãq(k,m)c̃q(k,m)

2ãq(k,m)
.

(22)
More specifically, we get

pqk,m =
{ 0 if νq + ∑

r∈Nq π r
k,m|Hqr

k |2 ≥ aqn(k,m)βk,m + aqI (k,m)γk,m

p̃bk,m if νq + ∑
r∈Nq π r

k,m|Hqr
k |2 < aqn(k,m)βk,m + aqI (k,m)γk,m

(23)

and the optimal power allocation vector is pq∗k,m =[
p̃bk,m

]pmax
q (k)

0
where the multiplier νq is chosen in order

to satisfy the constraint
N∑
k=1

m0+M−1∑
m=m0

[
p̃bk,m

]pmax
q (k)

0
= Pq.

The previous solution assumes, for each player, that the
powers used by the other players are given.
In practice, the game evolves with each FAP reacting

to the choices of the other FAPs. It is then fundamen-
tal to prove the convergence of this iterative mechanism.
In the following, we present a version of the so-called
Modified Asynchronous Distributed Pricing algorithm
(MADP) proposed in [19], adapted to our formulation.
To this purpose, it is useful to rewrite (19) introducing a
unique index h so that the entries of the power vector pq
are pqh for h = 1, . . . ,NM. Then, defining the quantities

SNIRβq

h : = pqh
∣∣Hqq

h
∣∣2

σ 2
n,q(h) + ∑

r∈Nq

prh
∣∣Hrq

h
∣∣2 ,

SNIRγ q

h : = pqh
∣∣Hqq

h
∣∣2

σ 2
n,q(h) + ∑

r∈Nq

prh
∣∣Hrq

h
∣∣2 + σ 2

Iq(h)

(24)

we can derive the qth user best response as

pq
∗

h = 2cqh∑
r∈Nq

π r
h
∣∣Hqr

h
∣∣2 + νq − η

q
h

−pqh ∀ h = 1, . . . ,MN ,

(25)

where cqh = β
q
hSNIRβq

h

1+SNIRβq
h

+ γ
q
h SNIRγ q

h

1+SNIRγ q
h

and νq and η
q
h are the

Lagrangian multipliers. Given this setting, the modified
MADP algorithm is illustrated below.

Algorithm 1MADP algorithm
Each FAP performs its allocation over M consecutive time
slots fromm0 tom0 + M − 1.
Before performing its allocation each FAP has to

observe qs samples fromm0−qs+1 tom0, in order to esti-
mate the transition probabilities of the underlyingMarkov
chain.

S.0: Each FAP q chooses an initial power profile in
the set Pq and set n = 0;
S.1: Each FAP computes its interference prices
π
q
h (n)|Hiq

k |2 for h = 1, . . . ,MN and
sends them to its neighbors with index i ∈ Nq;
S.2: At each time n, each FAP updates its power
profile so as to maximize its utility function R̄q,
given the other FAP’s power profiles p−q and price
vectors according to
pqh (n + 1) = pqh (n) + αq(n)

(
pq∗h − pqh (n)

)
for

h = 1, . . . ,MN , where pq∗h is given by (25);
S.3: Set n = n + 1, go to step S.1 and repeat until
convergence is reached.
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Following similar arguments as [19], we proved in
Appendix 3 that there exists a small enough step size
values αq(n) for which the MADP algorithm converges
monotonically to a fixed point.

Multi-FAP case: min-power game
As with the max-rate game, let us consider now the gen-
eralization of the min-power algorithm to the multi-FAP
case. The utility of each player is now the total transmit
power over the N subchannels and theM time slots

uq(pq) =
N∑
k=1

m0+M−1∑
m=m0

pqk,m (26)

and the constraint is that the expected rate for each FAP,
conditioned to the initial observations, be not smaller
than a given value R0

q. The feasible set is now

F̃q(p−q) =
{
pq ∈ R

NM×1 : R̄q(pq,p−q) ≥ R0
q, 0 ≤ pqk,m

≤ pmax
q (k), ∀k = 1, . . . ,N ,m = m0, . . . ,m0

+ M − 1
}

(27)

and the game is

G̃1 = {�, {F̃q(p−q)}q∈�, {uq(pq)}q∈�} . (28)

The optimal strategy for each player amounts to solving
the following optimization problem

(̃P1)
min
pq

uq(pq)

subject to pq ∈ F̃q(p−q)
∀q ∈ �. (29)

The minimization problem in (29) for each player q,
given the strategies of the others, is a convex optimization
problem, since the objective function is a linear (then con-
vex) function of pq and the set F̃q(p−q), given the power
vector p−q of the other players, is a convex set. Imposing
the KKT conditions, as in the single FAP case, the solution
can be expressed in closed form as p∗

q = g(p−q) whose
entries are (see Appendix 4)

pq∗k,m =
[
g
(
p−q

)]
k,m

=
[

−bq(k,m) + √
bq(k,m)2 − 4aq(k,m)cq(k,m)

2aq(k,m)

]pmax
q (k)

0

× ∀k = 1, . . . ,N , m = 1, . . . ,M
(30)

with

aq(k,m) = aqn (k,m) aqI (k,m)

bq(k,m) = aqn (k,m)+aqI (k,m)−λqa
q
n (k,m) aqI (k,m)

cq(k,m) = 1−λq
[
aqn (k,m) βk,m+aqI (k,m) γk,m

]
(31)

where the Lagrange multiplier λq is chosen in order to sat-
isfy the rate constraint R̄q(p∗

q,p−q) = R0
q. However, now

the overall feasible set is not jointly convex with respect
to the power vectors of all the users, i.e., it is not con-
vex in p = (pq)Qq=1. This makes the study of this game
much harder than the standard NE problem. Neverthe-
less, game G̃1 is a Generalized Potential Game (GPG) [20],
with a potential 
 equal to the sum power. In such a case,
the existence of a NE of the potential game can be proved
directly by the existence of a maximum of the potential
function
 on the set X̃ of the game. To exploit the theory
of GPG, we must prove that game G̃1 admits a non-empty
feasible set. The proof of this result is given in Appendix 5,
containing the sufficient conditions under which the fea-
sible set of the game G̃1, i.e.,

X̃ =
{
p ∈ R

NMQ : R̄q(p) ≥ R0
q, 0 ≤ pqk,m ≤ pmax

q (k),

× ∀k,m, ∀q ∈ �}
(32)

is compact and non-empty. Hence, game G̃1 =
{�, {F̃q(p−q)}q∈�, {uq(pq)}q∈�} is a GPG with potential
function 
(p) the sum of the objective functions of all

players, i.e., 
(p) =
Q∑

q=1
uq(pq).

Nevertheless, being a potential game does not guaran-
tee the equilibrium to be efficient. Hence, as with the
max-rate game, efficiency can be improved by introducing
pricing. The introduction of pricing leads to a modified
game which can be cast as

G̃2 :
min
pq

uq(pq) +
m0+M−1∑
m=m0

N∑
k=1

( ∑
s∈Nq

λsπ
s
k,m|Hqs

k |2
)

×pqk,m∀q ∈ �

subject to pq ∈ F̃q(p−q)

(33)

where λs is the Lagrangian multiplier of user s relative
to the rate constraint. The pricing coefficients π s

k,m are
defined in the same way as in the max-rate case.

Numerical results
In this section, we present some numerical results in order
to assess the performance of the algorithms proposed in
the previous sections. Let us start with the single-FAP
case. In all the simulation results, we have considered
Rayleigh fading frequency-selective channels where the
number of resolvable paths is 4, each one with unit vari-
ance. The number of subcarriers N is set to 12, as in LTE
Primary Resource Block (PRB). In Figure 2 we show the
average rate per OFDM symbol as a function of the allo-
cated time slots obtained in the max-rate problem. The
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Figure 2 Single FAPmax-rate: rate versus number of time slots.

simulation results have been averaged over 100 indepen-
dent channel andMarkov chain realizations. The different
curves indicate the rate obtained by assuming different
kinds of knowledge of the interference: the green curve
assumes perfect knowledge of the future evolution of the
macro-user activity and it is used as a benchmark case;
the pink curve assumes that the interference power level
over each subchannel is equal to the value observed in
the first time slot; all other curves refer to the proposed
algorithm, where we observe the channels in the first slot
and allocate power using our proposed method. The dif-
ferent curves refer to different Markov orders (from L = 1
to L = 3). We also compare the case where the transi-
tion probabilities are perfectly known and the case where
the probabilities are estimated from the data. The interest-
ing behavior is that, as the order increases, our approach
is able to approach the ideal case where the interference
activity is non-causally known. The price to be paid is the
loss of performance resulting from the estimation of the
Markov parameters. Further developments could incor-
porate some kind of reinforcement learning to be able
to allocate resources without necessarily estimating the
transition probabilities, as proposed in [12], for example.
In Figure 3, we report the optimal rate of our algorithm

versus the number of time slots, for different Markov
orders, L = 3 in the upper subplot and L = 1 in the
lower. We have considered different numbers of samples
qs used to estimate the transition probabilities. Of course,
the higher is the Markov order, the greater is the num-
ber of parameters to estimate. In fact, we can notice that,
for the same number of samples qs used for the estimate,

the performance loss with respect to the ideal case of
perfect knowledge of the macro-user activity (curve with
red squared markers) is much higher for L = 3 than for
L = 1. The aim of Figure 4 is to show the cumulative
rate versus the number of slots m0 used for the recur-
sive estimation of the transition probabilities assuming
M = 3 and by modeling the macro-user activity as a first-
order Markov chain. We observe that, after less than 50
time slots, the performance gets very close to the asymp-
totic case. Finally, in Figure 5, we show the performance
of the min-power allocation strategy. The utility function
is the SNR [dB] at the FUE receiver obtained for differ-
ent number of allocated time slots. As in the max-rate
case, it is evident the advantage of increasing the order of
statistical knowledge (from L = 1 to L = 3) and it can
be observed a gain of about 4 dB with respect to the case
where no knowledge about the macro-user activity has
been assumed.
Finally, we provide some numerical examples to assess

the performance of the proposed approaches (max-rate
and min-power) in the multiuser case. The reference
scenario is composed of one MBS and Q = 10 FAPs
randomly distributed over a square area. The MBS activ-
ity is modeled as a third-order Markov chain and the
results have been averaged over 50 independent Markov
chain realizations. In Figure 6, we have reported the users’
sum-rate versus the iteration index for the maximum
expected rate game G1 in order to test the convergence
of the algorithm. It can be observed that it converges in
a few iterations. In Figures 7 and 8, we depict the FAPs’
sum-rate versus the number of allocated time slots. In
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Figure 3 Single FAPmax-rate: rate versus number of time slots for different number of samples used for TPs estimation.

particular, Figure 7 refers to the purely competitive max-
imum expected rate game G1, while Figure 8 refers to the
modified pricing game G2. In both cases, we assumed the
same maximum transmit power per FAP. The three differ-
ent curves in each figure indicate the sum-rate obtained by
assuming perfect (non-causal) knowledge of the macro-
user activity, no knowledge at all (thus assuming the
interference to remain equal to the values observed in

the first slots of each frame), or only knowledge of the
Markov parameters. Both figures show that acquiring
a statistical knowledge (estimation) of the interference
activity parameters (Markov transition rates) yields a per-
formance advantage over the case with no information
and brings the performance close to the ideal case of
perfect non-causal knowledge of the interference activity.
Of course, as time evolves, there is a mismatch between

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

m0

C
um

ul
at
iv
e
ra
te

First order chain

Figure 4 Single FAPmax-rate: cumulative rate versus number of time slots used for the estimation of the transition probabilities.
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Figure 5 Single FAPmin-power: SNR versus number of time slots.

what is predicted and the real interference so that the
performance improvement tends to decrease in time. Fur-
thermore, comparing Figures 7 and 8, it is evident that the
gain achieved with the introduction of pricing.
Considering the same scenario, in Figures 9 and 10 we

report the simulation results corresponding to our pro-
posed minimum power games, G̃1 and G̃2. Figure 9 refers
to the min-power game with no pricing, while Figure 10

refers to the game including pricing. The curves show the
average SNR per FUE as a function of the number of allo-
cated time slots. The expected target rate R0

q in both cases
is set to 3 bps for each user. From both Figures 9 and 10
we can verify that, also in this case, the simple statisti-
cal knowledge of the transition rates yields performance
close to the ideal case where the interference activity is
non-causally known. Observe that the curve referring to
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Figure 6Multi-FAPmax-rate: convergence of the game.
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Figure 7Multi-FAPmax-rate: sum-rate versus number of time slots for the maximum expected rate game without pricing.

the non-causal knowledge tends to have zero slope asymp-
totically and the statistical knowledge curve presents a
performance gain which tends to decrease as time evolves
due to the mismatch between what is predicted and the
real interference. In both Figures 9 and 10, the advantage
of the statistical approach with respect to the case where
there is no knowledge is considerable and by comparing

the two figures it is evident the performance gain due to
the introduction of a pricing mechanism.

Conclusion
In conclusion, in this article we have shown how the esti-
mation of the interference statistical parameters can be

1 2 3 4 5 6 7 8

150

200

250

300

350

400

450

Number of time slots

S
um

 R
at

e 
[b

it 
pe

r 
O

F
D

M
 s

ym
bo

l]

10 FAPs, N=12

Statistical Knowledge with pricing

No Knowledge with pricing

Non-Causal Knowledge with pricing

Figure 8Multi-FAPmax-rate: sum-rate versus number of time slots for the max-rate game with pricing.
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Figure 9Multi-FAPmin-power: average SNR versus number of time slots for the min-power game without pricing.

beneficial to improve the performance of a power alloca-
tion technique, provided that the statistical model fits the
real data. In this study, we assume that the transition prob-
abilities are estimated from the data. An interesting future
direction consists in incorporating methods which do not
really require such an estimation, but acquire the proper
behavior through reinforcement learning. The interesting
part of our method is that, for a given estimation of the
transition probabilities, the power allocation across the

set of time slots/frequency channels is found in closed
form. This is indeed useful to save convergence time with
respect to gradient-based techniques.
The other important contribution of this article is the

decentralized approach for resource allocation based on
game theory, in the case where the interference is dynam-
ically varying. Our Bayesian formulation of the game
provides interesting results in such an uncertain envi-
ronment. Finally, the introduction of coordination among
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Figure 10Multi-FAPmin-power: average SNR versus number of time slots for the min power game with pricing.
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FAP’s based on the exchange of a few parameters (prices)
through the backhaul link has been shown to provide
significant performance gains with respect to the purely
competitive game.
Further developments should incorporate a robust

approach for the situation where the interference statisti-
cal model is not known or the statistical parameters are
time-varying. One more critical aspect is the availability
of the backhaul link for the exchange of prices. Since such
a link is affected by random delays, it may be useful to
incorporate robust mechanisms to cope with the situa-
tion where the price does not arrive within a maximum
tolerable delay.

Appendix 1
Extending the Markov model used in (5) to higher-order
chains, we can write the time evolution of the occu-
pancy probabilities conditioned to the observations of the
channel state at the first L time slots as

�(k,m−L+1,...,m) = P(k)
L �(k,m−L,m−L+1,...,m−1) (34)

form = L + 1, . . . ,∞ and given the initial state �(k,1,...,L).
More specifically, the entries of the 2L-dimensional vector
�(k,m−L+1,...,m) are defined as

π
(k,m−1,m)
ij = Pr(Sk,m−1 = i, Sk,m = j) for L = 2,

∀ (i, j) ∈ {0, 1}2 (35)

π
(k,m−2,m−1,m)
rij = Pr(Sk,m−2 = r, Sk,m−1 = i, Sk,m = j)

for L = 3, ∀ (r, i, j) ∈ {0, 1}3 (36)

while the transition matrix P(k)
L are expressed, respec-

tively, for L = 2 as

P(k)
2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω
(k)
2 0 θ

(k)
2 0

1 − ω
(k)
2 0 1 − θ

(k)
2 0

0 ν
(k)
2 0 1 − μ

(k)
2

0 1 − ν
(k)
2 0 μ

(k)
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(37)

with ω
(k)
2 = p(k)

000, θ
(k)
2 = p(k)

100, ν
(k)
2 = p(k)

010, μ
(k)
2 = p(k)

111 and
for L = 3 as

P(k)
3 =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω
(k)
3 0 0 0 λ

(k)
3 0 0 0

1 − ω
(k)
3 0 0 0 1 − λ

(k)
3 0 0 0

0 ν
(k)
3 0 0 0 ψ

(k)
3 0 0

0 1 − ν
(k)
3 0 0 0 1 − ψ

(k)
3 0 0

0 0 η
(k)
3 0 0 0 θ

(k)
3 0

0 0 1 − η
(k)
3 0 0 0 1 − θ

(k)
3 0

0 0 0 1 − γ
(k)
3 0 0 0 1 − μ

(k)
3

0 0 0 γ
(k)
3 0 0 0 μ

(k)
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(38)

where ω
(k)
3 = p(k)

0000, λ
(k)
3 = p(k)

1000, ν
(k)
3 = p(k)

0010, ψ
(k)
3 =

p(k)
1010, η

(k)
3 = p(k)

0100, θ
(k)
3 = p(k)

1100, γ
(k)
3 = p(k)

0111, μ
(k)
3 =

p(k)
1111. Hence, assuming for simplicity of notation

π
(k,m−2,m−1)
ij = π

(k)
ij and π

(k,m−3,m−2,m−1)
rij = π

(k)
rij , the

probabilities that the kth subchannel is idle (busy) at
time m, i.e., βk,m (γk,m) will be at time m for L = 2, 3,
respectively,
βk,m = ω

(k)
2 π

(k)
00 + θ

(k)
2 π

(k)
10 + ν

(k)
2 π

(k)
01 + (1 − μ

(k)
2 )π

(k)
11

γk,m = (1 − ω
(k)
2 )π

(k)
00 + (1 − θ

(k)
2 )π

(k)
10 + (1 − ν

(k)
2 )π

(k)
01

+μ
(k)
2 π

(k)
11

(39)

and

βk,m = ω
(k)
3 π

(k)
000 + λ

(k)
3 π

(k)
100 + ν

(k)
3 π

(k)
001 + ψ

(k)
3 π

(k)
101

+ η
(k)
3 π

(k)
010 + θ

(k)
3 π

(k)
110 +

(
1 − γ

(k)
3

)
π

(k)
011

+
(
1 − μ

(k)
3

)
π

(k)
111

γk,m =
(
1−ω

(k)
3

)
π

(k)
000+

(
1 − λ

(k)
3

)
π

(k)
100+

(
1 − ν

(k)
3

)
π

(k)
001

+
(
1−ψ

(k)
3

)
π

(k)
101+

(
1−η

(k)
3

)
π

(k)
010+

(
1−θ

(k)
3

)
π

(k)
110

+ γ
(k)
3 π

(k)
011 + μ

(k)
3 π

(k)
111 .

(40)

The transition probabilities of a Markov chain of arbi-
trary order can be estimated from the observed data using
the maximum likelihood strategy, as suggested for exam-
ple in [21,22]. To simplify the description of the estimator
we focus on a first-order Markov chain, but the extension
to higher orders is straightforward. Let us assume that a
set of m states, namely, sm ≡ sk,1, . . . , sk,m, are observed.
The probability of observing a specific sequence of states
is

Pr
(
Sm = sm

) =
m∏
l=2

Pr
(
Sk,l = sk,l|Sk,l−1 = sk,l−1

)
× Pr

(
Sk,1 = sk,1

)
. (41)

Let nij(l) denote the number of times the state i at time
l − 1 switches to state j at time l. It has been proved
in [21] that for a stationary Markov chain, the set nij =∑m

l=2 nij(l) forms a set of sufficient statistics. Further-
more, the maximum likelihood estimator based on the set
sm is

p̂ij(m) =

m∑
l=2

nij(l)

m∑
l=2

[ni0(l) + ni1(l)]
. (42)
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Introducing the counter Nij(m) := ∑m
l=2 nij(l), (42) can

be rewritten in a recursive form as

p̂ij(m) = Nij(m − 1) + nij(m)

Ni0(m − 1) + Ni1(m − 1) + ni0(m) + ni1(m)
.

(43)

The extension of the estimator to higher-order Markov
chains is straightforward. As shown in [21], the estima-
tors for a second- and third-order Markov chain are,
respectively,

p̂ijk(m) =

m∑
l=3

nijk(l)

m∑
l=3

nij(l)
(44)

and

p̂ijkr(m) =

m∑
l=4

nijkr(l)

m∑
l=4

nijk(l)
. (45)

Appendix 2
In order to solve the problem (9) let us consider the
following Lagrangian function

L(p) = 1
M

N∑
k=1

m0+M−1∑
m=m0

[
βk,m log2

(
1 + pk,man(k)

)
+ γk,m log2

(
1 + pk,maI(k,m)

)] − λ

×
(

1
M

N∑
k=1

m0+M−1∑
m=m0

pk,m − PT

)
+

N∑
k=1

m0+M−1∑
m=m0

× μk,mpk,m −
N∑
k=1

m0+M−1∑
m=m0

νk,m
(
pk,m − pmax(k)

)
(46)

where λ, μk,m, νk,m are the Lagrangian multipliers and the
KKT conditions can be written as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∇L = 0
0 ≤ μk,m ⊥ pk,m ≥ 0 ∀ k,m

0 ≤ νk,m ⊥ (pk,m − pmax(k)) ≤ 0 ∀ k,m

0 ≤ λ ⊥
(

1
M

N∑
k=1

m0+M−1∑
m=m0

pk,m − PT

)
≤ 0

. (47)

Observe that if pk,m < pmax(k) then νk,m = 0 and this
system can be reduced to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
M

[
λ − an(k)βk,m+aI (k,m)(γk,m+an(k)pk,m)

(1+an(k)pk,m)(1+aI (k,m)pk,m)

]
pk,m = 0

λ ≥ an(k)βk,m+aI (k,m)(γk,m+an(k)pk,m)

(1+an(k)pk,m)(1+aI (k,m)pk,m)

0 ≤ λ ⊥
(

1
M

N∑
k=1

m0+M−1∑
m=m0

pk,m − PT

)
≤ 0

pk,m ≥ 0

.

(48)

By exploiting the following inequality whose validity can
easily be proved

an(k)βk,m + aI(k,m)(γk,m + an(k)pk,m)

(1 + an(k)pk,m)(1 + aI(k,m)pk,m)

≤ an(k)βk,m + aI(k,m)(γk,m + an(k)pk,m)

(1 + an(k)pk,m)(1 + aI(k,m)pk,m)
|pk,m=0

= an(k)βk,m + aI(k,m)γk,m,

(49)

we can deduce that if λ < an(k)βk,m + aI(k,m)γk,m the
second inequality in (48) can hold only if pk,m > 0 so that
from the first equation in (48) it results

λ = an(k)βk,m + aI(k,m)
(
γk,m + an(k)pk,m

)(
1 + an(k)pk,m

) (
1 + aI(k,m)pk,m

) . (50)

On the other hand if λ ≥ an(k)βk,m + aI(k,m)γk,m, then
pk,m > 0 is never verified since it would imply

λ ≥ an(k)βk,m + aI(k,m)γk,m

>
an(k)βk,m + aI(k,m)

(
γk,m + an(k)pk,m

)(
1 + an(k)pk,m

) (
1 + aI(k,m)pk,m

) (51)

which violates the complementary conditions. As a conse-
quence for λ ≥ an(k)βk,m+aI(k,m)γk,m we have pk,m = 0.
Let us now solve Equation (50), i.e.,

ãk,mp2k,m + b̃k,mpk,m + c̃k,m = 0 (52)

then defining ãk,m = λ an(k)aI(k,m), b̃k,m = λ[ an(k) +
aI(k,m)]−an(k)aI(k,m) and c̃k,m = λ − an(k)βk,m −
aI(k,m)γk,m

pk,m = −b̃k,m±
√
b̃2k,m−4ãk,mc̃k,m
2ãk,m

. (53)
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Let us now make some useful observations:

1. The solutions in (53) are always real. In fact the term
under the squared root is always positive ∀ λ ≥ 0
since it results

b̃2k,m − 4ãk,mc̃k,m = λ2 (an(k) − aI(k,m))2 + 2λan(k)
× aI(k,m) (an(k) − aI(k,m))

× (
1 − 2γk,m

) + an(k)2aI(k,m)2

(54)

where an(k) − aI(k,m) > 0 and the minimum,
achieved for γk,m = 1, is given by

[λ (an(k) − aI(k,m)) − an(k)aI(k,m)]2 ≥ 0, ∀λ ≥ 0 ;
(55)

2. The solution

pak,m = −b̃k,m−
√
b̃2k,m−4ãk,mc̃k,m
2ãk,m

(56)

is always negative since the inequality√
b̃2k,m−4λan(k)aI(k,m)

(
λ−an(k)βk,m−aI(k,m)γk,m

)
> −b̃k,m

(57)

is verified for all λ > 0;
3. The sign of the solution

pbk,m = −b̃k,m+
√
b̃2k,m−4ãk,mc̃k,m
2ãk,m

(58)

can be studied by considering the following inequality√
b̃2k,m−4λan(k)aI(k,m)

(
λ−an(k)βk,m−aI(k,m)γk,m

)
> b̃k,m.

(59)

In particulard it results

pbk,m =
{

> 0 for λ < an(k)βk,m + aI(k,m)γk,m

≤ 0 for λ ≥ an(k)βk,m + aI(k,m)γk,m
.

(60)

According to the above considerations the solution for
0 < pk,m < pmax(k) and λ < an(k)βk,m + aI(k,m)γk,m is
pk,m = pbk,m, hence we can write

pk,m =
{
0 if λ ≥ an(k)βk,m + aI(k,m)γk,m

pbk,m if λ < an(k)βk,m + aI(k,m)γk,m
(61)

so that the optimal solution can be written as p∗
k,m =[

pbk,m
]pmax(k)

0
with

N∑
k=1

m0+M−1∑
m=m0

[
pbk,m

]pmax(k)

0
= PTM.

Appendix 3
Convergence Analysis of MADP Algorithm
Proceeding as in [19], in order to prove the convergence
of the algorithm it is sufficient to show that

(a) With a proper choice of the step αq(n), MADP
converges to a fixed point;

(b) This point is a solution of the KKT conditions of the
modified game in (19) and then it is also a solution
point of the optimization problem

max
p

R̄(p)

s.t. p ∈ P
(62)

where the FAPs’ sum rate is R̄(p) =
Q∑

q=1
R̄q(p) and P

is the cartesian product of the sets Pq.

Let us denote with U1(n) = R̄(p(n)) the sum utility
reached at the step n of the MADP algorithm. Then for
each user q we must prove that there exists a sequence
αq(n) > 0 so that U1(n) is monotonically increasing and
convergent, i.e., U1(n + 1) ≥ U1(n) ∀n and U1(n) → U∗

1
as n → ∞. As discussed in [19], we only need to show
that U1(n) is monotonically increasing, i.e., it suffices to
consider a given iteration n in which user q is selected to
update its power profile, and show that U1(pq (n + 1)) ≥
U1(pq (n)), where the total utility U1 is now regarded as a
function of pq because only the power profile of user q is
updated. Hence, our goal is to prove thatU1(pq (n + 1)) ≥
U1(pq (n)). To do this we will use the descent lemma to
bound U1(pq (n + 1)). Descent lemma [19] says that if a
function F : Rn → R is continuously differentiable and its
gradient is Lipschitz continuous with Lipschitz constant
equal to K then, ∀x, y ∈ R

n

F(x + y) ≤ F(x) + yT∇F(x) + K
2
∥∥y∥∥22 . (63)

One sufficient condition for Lipschitz continuity is that
the l2-norm of the Hessian matrix of F(x) is bounded,
in which case this bound can be used for the Lips-
chitz constant. It can easily be shown that it is true for
U1(pq). Specifically, there exists a constant Bq

U1
which

upper bounds the l2-norm of the Hessianmatrix ofU1(pq)
independent of others’ power profiles.
Applying the Descent lemma to −U1(pq), we get

U1(pq (n + 1)) ≥ U1(pq (n)) +
[
pq (n + 1) − pq (n)

]T
× ∇pqU1(pq (n)) − Bq

U1

2

×
∥∥∥pq (n + 1) − pq (n)

∥∥∥2
2
.

(64)
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Hence to prove that U1(pq (n + 1)) ≥ U1(pq (n)), it
suffices to show that

[
pq (n + 1) − pq (n)

]T ∇pqU1(pq) (n) ≥ Bq
U1

2

∥∥∥pq (n + 1)

− pq (n)

∥∥∥2
2
.

(65)

Using the power updating rule

pqh (n + 1) = pqh (n) + αq(n)
(
pq∗h − pqh (n)

)
(66)

with the best response of user q defined in (25), the
inequality in (65) can be written as

[
p∗
q−pq (n)

]T ∇pqU1
(
pq(n)

)
≥αq(n)

Bq
U1

2

∥∥∥p∗
q−pq (n)

∥∥∥2
2
.

(67)

Observe that

∂U1
(
pq
)

∂pqh

∣∣∣∣∣∣
pq=pq(n)

= β
q
hSNIRβq

h

1 + SNIRβq

h
· 1
pqh(n)

+ γ
q
h SNIRγ q

h

1 + SNIRγ q

h

× 1
pqh(n)

−
∑
r∈Nq

π r
h(n)|Hqr

h |2 ,

(68)

then exploiting the result in (25), we can write the left-
hand side (LHS) of (67) as

LHS =
Q∑

q=1

∑
r∈Nq

π r
h(n)

∣∣Hqr
h
∣∣2

2pqh(n)

(
pqh

∗ − pqh (n)
)2

+
Q∑

q=1

cqh
(
η
q
h − νq

) (
pqh

∗ − pqh (n)
)

pqh(n)

( ∑
r∈Nq

π r
h(n)

∣∣Hqr
h
∣∣2 + νq − η

q
h

) .

(69)

Now from (69), with the same steps as in [19], to ensure
that

LHS ≥ αq(n)
Bq
U1

2

∥∥∥p∗
q − pq (n)

∥∥∥2
2
, (70)

we can choose the step αq(n) as

αq(n) ≤ min
{
2An

q

Bq
U1

, 1
}

(71)

where the coefficient An
q is defined as

An
q = min

h

⎧⎪⎪⎨⎪⎪⎩
∑

r∈Nq

π r
h(n)

∣∣Hqr
h
∣∣2

pqh (n) cqh

⎫⎪⎪⎬⎪⎪⎭ . (72)

Finally, in order to prove the point (b), let U∗
1 a fixed

point of the algorithm such that U1(n) = U∗
1 for some

index n. Then since this is a fixed point, it follows that
pqh(n) = pq∗h , ∀h, q. It can then be seen that for all q, pq∗h
must be an optimal solution to the problem (19), given the
other users current power profiles and interference price
vectors. Hence, p(n) will satisfy also the KKT conditions
of the problem (62).

Appendix 4
In order to find the optimal solutions of the convex prob-
lem (̃P1) by studying the Lagrange dual problem, some
additional constraint qualification conditions must hold,
beyond convexity, to ensure strong duality [23]. One sim-
ple constraint qualification is Slater’s condition, i.e., we
must verify that some strictly feasible point exists. We
can prove that the set F̃q(p−q) for each user q fixed the
strategies of the others is nonempty. For simplicity in this
proof we assume w.l.o.g. m0 = 1. More specifically, the
constraint Rq(p) > R0

q can be written as

Vq
N∑

k=1

Vq
M∑

m=1

[
βk,m log

(
1 + pqk,ma

q
n(k,m)

)
+ γk,m

× log
(
1 + pqk,ma

q
I (k,m)

)]
> R0

q

(73)

where we have denoted with Vq
N ⊆ {1, . . . ,N} and Vq

M ⊆
{1, . . . ,M} the subsets, respectively, of subcarriers and
time slots that the player q is using during the game. Since
aqn(k,m) > aqI (k,m), to verify (73), it is sufficient to prove
that

log
(
1 + pqk,ma

q
I (k,m)

)
> R0

q, ∀ k ∈ Vq
N , m ∈ Vq

M, q ∈ �

(74)

and clearly it exists always a set of positive values
pqk,m, p

max
q (k) ∈ R+ such that

pmax
q (k) > pqk,m ≥ (eR

0
q − 1)

1
aqI (k,m)

∀ k ∈ Vq
N ,

m ∈ Vq
M, q ∈ �.

(75)
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Let us consider, for k = 1, . . . ,N , m = 1, . . . ,M, the
KKT conditions of the optimization problem (̃P1):

1 − λq

[
βk,ma

q
n(k,m)

1+pqk,ma
q
n(k,m)

+ γk,ma
q
I (k,m)

1+pqk,ma
q
I (k,m)

]
− μ

q
k,m + α

q
k,m = 0

0 ≤ λq ⊥ R̄q(pq,p−q) − R0
q ≥ 0

0 ≤ pqk,m ⊥ μ
q
k,m ≥ 0

0 ≤ α
q
k,m ⊥ pmax

q (k) − pqk,m ≥ 0

.

(76)

Observe that if pmax
q (k) − pqk,m > 0, then α

q
k,m = 0 so

that, by eliminating in (76) the multiplier μ
q
k,m, we obtain

0 ≤
[
1 − λq

(
βk,ma

q
n(k,m)

1+pqk,ma
q
n(k,m)

+ γk,ma
q
I (k,m)

1+pqk,ma
q
I (k,m)

)]
⊥ pqk,m ≥ 0

0 ≤ λq ⊥ R̄q(pq,p−q) − R0
q ≥ 0

(77)

where λq > 0 otherwise complementarity yields pqk,m = 0,
∀ k = 1, . . . ,N ,m = 1, . . . ,M, and the rate constraint
is contradicted. Then, the optimum power vector must
satisfy the following equation

aq(k,m)(pqk,m)2 + bq(k,m)pqk,m + cq(k,m) = 0 (78)

having set

aq(k,m) = aqn (k,m) aqI (k,m)

bq(k,m) = aqn (k,m) + aqI (k,m) − λqa
q
n(k,m)aqI (k,m)

cq(k,m) = 1 − λq
[
aqn(k,m)βk,m + aqI (k,m)γk,m

] .

(79)

The solutions of (78) are

pqk,m =

⎧⎪⎨⎪⎩
pak,m = −bq(k,m)−

√
bq(k,m)2−4aq(k,m)cq(k,m)

2aq(k,m)

pbk,m = −bq(k,m)+
√

bq(k,m)2−4aq(k,m)cq(k,m)

2aq(k,m)

.

(80)

It can be proved that ∀λq > 0, it results pak,m ≤ 0,
bq(k,m)2 − 4aq(k,m)cq(k,m) ≥ 0, and

pbk,m =
⎧⎨⎩

> 0 for λq > 1
aqn(k,m)βk,m+aqI (k,m)γk,m

≤ 0 for λq ≤ 1
aqn(k,m)βk,m+aqI (k,m)γk,m

. (81)

According to the above considerations the solution is
pqk,m = pbk,m for 0 < pqk,m < pmax

q (k) and λq >
1

aqn(k,m)βk,m+aqI (k,m)γk,m
so that we can write the optimal

power allocation vector as

pq∗k,m =
[
pbk,m

]pmax
q (k)

0
(82)

where the multiplier λq is chosen in order to satisfy the
constraint R̄q(p∗

q,p−q) = R0
q.

Appendix 5
Proof that the feasible set of the game G̃1 is compact and
non-empty so that it can be cast as a GPG.
Let us start by the following definition of GPG given in

[20]:

Definition 1. A Generalized Nash Equilibrium Problem
is a GPG if

(a) There exists a non-empty, closed set X̃ ⊆ R
n such

that

Xq(x−q) = {xq ∈ Dq : (xq, x−q) ∈ X̃ } ∀ q = 1, . . . ,Q
(83)

where Dq ⊆ R
nq e are non-empty, closed sets such

that
∏Q

q=1 Dq
⋂

X̃ �= ∅;
(b) There exists a continuous function, 
 (x) : Rn → R,

named potential function, such that ∀ q ∈ �, ∀ x−q
and for all yq, zq ∈ Xq(x−q)

uq
(
yq, x−q

)
− uq

(
zq, x−q

)
> 0 (84)

implies



(
yq, x−q

)
−


(
zq, x−q

) ≥ uq
(
yq, x−q

)
−uq

(
zq, x−q

)
(85)

where uq is the qth player payoff function.

According to Definition 1, we have to check the validity
of the conditions (a) and (b) for the game G̃1. As regard the
condition (a), let us consider the feasible set of the game
G̃1, i.e.,

X̃ ={p ∈ R
NMQ×1 : R̄q(p) ≥ R0

q, 0 ≤ pqk,m ≤ pmax
q (k),

∀k ∈ {1, . . . ,N},∀m ∈ {1, . . . ,M},∀q ∈ �},
(86)

where we have assumed w.l.o.g. m0 = 1. Then we have to
prove the following lemma.

Lemma 1. The feasible set X̃ of the game G̃1 is a
non-empty, closed and bounded (then compact) subset of
R
NMQ×1 if the matrices Ak defined in (91) are P-matrices,

for all k = 1, . . . ,N, m = 1, . . . ,M. Sufficient conditions
for which this happens are

∑
r∈Nq

|Hrq
k |2

|Hqq
k |2 <

1
eR0q − 1

∀q ∈ �, ∀k = 1, . . . ,N .

(87)
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Proof. Let us start by considering the constraints
R̄q(p) ≥ R0

q that, by considering only the subcarriers and
the time slots that are effectively occupied, can be written
as

Vq
N∑

k=1

Vq
M∑

m=1

[
βk,m log

(
1 + pqk,ma

q
n(k,m)

)
+ γk,m

× log
(
1 + pqk,ma

q
I (k,m)

)]
≥ R0

q, ∀q ∈ �

(88)

where Vq
N ⊆ {1, . . . ,N}, Vq

M ⊆ {1, . . . ,M} are the subsets,
respectively, of subcarriers and time slots, that the player
q is using during the game. We can note that aqn(k,m) >

aqI (k,m) then (88) is surely valid if we prove that

log
(
1 + pqk,m|Hqq

k |2
σ 2
n,q(k) + ∑

r∈Nq p
r
k,m|Hrq

k |2 + σ 2
Iq(k,m)

)
≥ R0

q

(89)

so that we have to verify ∀ k ∈ Vq
N , m ∈ Vq

M the following
set of inequalities

pqk,m|Hqq
k |2 −

(
eR

0
q − 1

) ∑
r∈Nq

prk,m|Hrq
k |2

≥
(
eR

0
q − 1

) (
σ 2
n,q(k) + σ 2

Iq(k,m)
)

∀ q ∈ �.
(90)

Defining the vector pk,m = (pqk,m)
Q
q=1 and the matrices

Ak =

⎡⎢⎢⎢⎢⎢⎣
|H11

k |2 −(eR01 − 1)|H12
k |2 . . . −(eR01 − 1)|H1Q

k |2
−(eR02 − 1)|H21

k |2 |H22
k |2 . . . −(eR02 − 1)|H2Q

k |2
...

...
. . .

...
−(eR

0
Q − 1)|HQ1

k |2 −(eR
0
Q − 1)|HQ2

k |2 . . . |HQQ
k |2

⎤⎥⎥⎥⎥⎥⎦
T

(91)

we can express the system of inequalities in (90) as

Akpk,m ≥ vk,m ∀ k ∈ Vq
N , m ∈ Vq

M (92)

where the positive entries of the vector vk,m = (vqk,m)
Q
q=1

are given by vqk,m = (eR
0
q −1)(σ 2

n,q(k)+σ 2
Iq(k,m)). It can be

observed that each matrix Ak is a Z-matrix, i.e. a matrix
with all off-diagonal elements non positive. Furthermore
if we ensure that each Ak is also a P-matrix, i.e. a matrix
whose determinant and all principal minors are positive
[24], we can deduce that its inverse is well defined. By
imposing diagonally dominance on the elements of the
matrices Ak , ∀ k = 1, . . . ,N , we can find the following
sufficient conditions for them to be P-matrices, i.e.,∑

r∈Nq

|Hrq
k |2

|Hqq
k |2 <

1
eR0q − 1

∀ q ∈ �,∀ k = 1, . . . ,N .

(93)

Hence, by considering the general case Vq
N = {1, . . . ,N}

and Vq
M = {1, . . . ,M}, we can deduce from (92) that there

exist positive vectors pk,m,pmax(k) � (pmax
q (k))Qq=1 ∈ R

Q

such that

pmax(k)>pk,m≥A−1
k vk,m ∀ k=1, . . . ,N , m=1, . . . ,M

(94)

or the sets Fk,m = {pk,m ∈ R
Q : log(1 + pqk,ma

q
I (k,m)) ≥

R0
q, 0 ≤ pqk,m ≤ pmax

q (k), ∀q} are non-empty. Of course
also the product set F = {∏N

k=1
∏M

m=1Fk,m} ⊆ X̃ is non-
empty, so that the non-emptiness of X̃ is implied.
Furthermore, ∀ q ∈ � the set {p ∈ R

MNQ×1
+ : R̄q(p) ≥

R0
q}, is the upper level set of the continuous function

R̄q(p), then it is closed for all scalar R0
q [25]. Hence, the

set X̃ = {p ∈ R
NMQ×1 : R̄q(p) ≥ R0

q, 0 ≤ pqk,m ≤
pmax
q (k), ∀ k ∈ {1, . . . ,N},∀m ∈ {1, . . . ,M},∀ q ∈ �}, as

non-empty intersection of closed sets, is closed [25] and,
since it is also bounded, its compactness is proved.
Verification of condition (b) is rather straightforward.

In our case, the objective functions do not depend on the
other players variables, i.e., uq(pq,p−q) = uq(pq) so that
the interaction of the players takes places only at the level
of feasible sets. In this case, it is immediate to see that
condition (b) is satisfied with the potential function 
(p)

simply given by the sum of the objective functions of all
players, i.e.,


(p) =
Q∑

q=1
uq(pq) (95)

and this concludes the proof.

Endnotes
a We denote with pq the NM-dimensional power vector
with entries pqk,m and define p−q � (pi)

Q
i=1,i�=q where Q is

the number of FAPs.
b We recall that a set of strategies is Pareto efficient,
or Pareto optimal, if it is not possible to make at least
some player better off without making any other player
worse off. Given the whole set of feasible strategies, i.e.,
the strategies satisfying the system constraints, the Pareto
boundary is defined as the set of choices that are Pareto
efficient. If an equilibrium point belongs to the Pareto
boundary, the equilibrium is said to be efficient.
c We will assume the prices constant with respect to
pqk,m. In general, the assumption of π r

k,m to be con-
stant with respect to pqk,m is only an approximation.
Nevertheless, the resulting algorithm provides significant
performance improvement with respect to the purely
competitive game.
d In order to prove this result we have exploited the
inequality an(k)aI (k,m)

[an(k)+aI (k,m)] < an(k)−[ an(k) − aI(k,m)] γk,m
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whose validity can easily be proved.
e We assume that

Q∏
q=1

R
nq = R

n.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This study was performed in the framework of the FP7 project FREEDOM
ICT-248891 STP, which was funded by the European Community. The authors
would like to acknowledge the contributions of their colleagues from
FREEDOM Consortium (http://www.ict-freedom.eu). Part of this study has
been presented at ICASSP 2011.

Received: 28 November 2011 Accepted: 12 November 2012
Published: 27 December 2012

References
1. V Chandrasekhar, JG Andrews, A Gatherer, Femtocell networks: a survey,

IEEE Commun. Mag. 46, 59–67 (2008)
2. O Simeone, E Erkip, SS Shitz, Robust transmission and interference

management for femtocells with unreliable network access, IEEE J. Sel.
Areas Commun. 28, 1469–1478 (2010)

3. V Chandrasekhar, JG Andrews, Uplink capacity and interference
avoidance for two-tier femtocell networks, IEEE Trans. Wirel. Commun. 8,
3498–3509 (2009)

4. F Baccelli, B Blaszczyszyn, Stochastic geometry and wireless networks. Vol.
II–applications, Foundations and Trends in Networking, vol 4, (New York,
November 2009), pp. 1–312

5. Y Chen, Q Zhao, A Swami, Joint design and separation principle for
opportunistic spectrum access in the presence of sensing errors, IEEE
Trans. Inf. Theory. 54(5), 2053–2071 (2008)

6. J Unnikrishnan, VV Veeravalli, Algorithms for dynamic spectrum access
with learning for cognitive radio, IEEE Trans. Signal Process. 58(2),
750–760 (2010)

7. A Motamedi, A Bahai, Optimal channel selection for spectrum-agile
low-power wireless packet switched networks in unlicensed band,
EURASIP J. Wirel. Commun. Netw. 2008, 10 (2008)

8. A Anandkumar, N Michael, AK Tang, A Swami, Distributed algorithms for
learning and cognitive medium access with logarithmic regret, IEEE J. Sel.
Areas Commun. 29(4), 731–745 (2011)

9. K Liu, Q Zhao, Distributed learning in multi-armed bandit with multiple
players, IEEE Trans. Signal Process. 58(11), 5667–5681 (2010)

10. P Auer, N Cesa-Bianchi, P Fischer, Finite-time analysis of the multiarmed
bandit problem, Mach. Learn. 47(2), 235–256 (2002)

11. A Galindo-Serrano, L Giupponi, Distributed Q-learning for aggregated
interference control in cognitive radio networks, IEEE Trans. Veh. Technol.
59(4), 1823–1834 (2010)

12. A Galindo-Serrano, L Giupponi, in 71st Veh. Technol. Conf. (VTC
2010-Spring). Distributed Q-learning for interference control in
OFDMA-based femtocell networks, (Taipei, May 2010, pp. 1–5

13. CJ Watkins, P Dayan, Technical note: Q-learning, Mach. Learn. 8(3–4),
279–292. (Kluwer Academic Publishers, Boston, 1992)

14. S Geirhofer, L Tong, BM Sadler, in Proc. of Military Commun. Conf. (MILCOM
2008). Interference-aware OFDMA resource allocation: a predictive
approach, (San Diego, CA, November 2008, pp. 1-7

15. JS Pang, G Scutari, F Facchinei, C Wang, Distributed power allocation with
rate constraints in Gaussian parallel interference channels, IEEE Trans. Inf.
Theory. 54(8), 3471–3489 (2008)

16. S Barbarossa, A Carfagna, S Sardellitti, M Omilipo, L Pescosolido, in ICASSP
2011. Optimal radio access in femtocell networks based on Markov
modeling of interferers’ activity, (Prague, 22–27 May 2011), pp. 3212–3215

17. F Facchinei, J Pang, Finite-Dimensional Varational Inequalities and
Complementarity Problems. (Springer-Verlag, New York, 2003)

18. J Huang, RA Berry, ML Honig, Distributed interference compensation for
wireless networks, IEEE J. Sel. Areas Commun. 24, 1074–1084 (2006)

19. C Shi, RA Berry, ML Honig, in Proc. of CISS 2008. Distributed interference
pricing for OFDM wireless networks with non-separable utilities,
Princeton, March 2008, pp. 755–760

20. F Facchinei, V Piccialli, M Sciandrone, in Computational Optimzation and
Application. Decomposition algorithms for generalized potential games
(Springer-Verlag, New York, 2010

21. TW Anderson, LA Goodman, Statistical inference about Markov chains,
Ann. Math. Stat. 28, 89–110 (1957)

22. DS Bai, S Kim, Estimation of transition probabilities in a two-state Markov
chain, Commun. Stat. Theort Methods. 8(6), 591–599 (1979)

23. S Boyd, L Vandenberghe, Convex Optimization. Cambridge University
Press, New York, 2004)

24. RW Cottle, J-S Pang, RE Stone, The Linear Complementarity Problem.
(Academic Press, Cambridge, UK, 1992)

25. DP Bertsekas, Convex Analysis and Optimization. (Athena Scientific,
Belmont, MA, 2003)

doi:10.1186/1687-1499-2012-371
Cite this article as: Sardellitti et al.: Optimal resource allocation in fetmocell
networks based onMarkovmodeling of interferers’ activity. EURASIP Journal
onWireless Communications and Networking 2012 2012:371.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Introduction
	Single-user Bayesian adaptive allocation
	Markovian interference model
	Maximum expected rate optimization
	Min-power optimization strategy

	Multi-FAP case: maximum expected rate game
	Algorithm 1 MADP algorithm

	Multi-FAP case: min-power game
	Numerical results

	Conclusion
	Appendix 1
	Appendix 2
	Appendix 3
	Convergence Analysis of MADP Algorithm

	Appendix 4
	Appendix 5
	Endnotes
	Competing interests
	Acknowledgements
	References

