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Abstract

In this paper, we propose two time of arrival estimators for ultra wideband signals based on the phase difference
between the discrete Fourier transforms (DFT) of the transmitted and received signals. The first estimator is based
on the slope of the unwrapped phase and the second one on the absolute unwrapped phase. We derive the
statistics of the unwrapped phase. We show that slope-based estimation almost achieves asymptotically the
baseband Cramer-Rao lower bound (CRLB), while the absolute-phase-based estimator achieves asymptotically the
passband CRLB. We compare the proposed estimators to the time-domain maximum likelihood estimator (MLE).
We show that the MLE achieves the CRLB faster than the DFT-based estimator, while the DFT-based estimator
outperforms the MLE for low signal to noise ratios. We describe also how to use the proposed estimators in
multipath UWB channels.

I. Introduction
UWB has received increasing attention for many appli-
cations like positioning since the FCC (Federal Commu-
nications Commission) allowed in 2002 the unlicensed
use of the spectrum between 3.1 and 10.6 GHz [1].
Thanks to their ultra wideband (UWB) larger than 500

MHz, UWB signals can be used for highly accurate posi-
tioning using the time of arrival (TOA) technique. Many
TOA estimators have been proposed in the literature,
especially for impulse radio UWB (IR-UWB) signals.
Most proposed estimators like the maximum likelihood
estimator (MLE), the energy-based estimators, the auto-
correlation-based estimators, the threshold-based esti-
mators, and others are based on the time domain
[2-10]. The drawback of time-domain estimators is that
their precision is limited by the sampling frequency
being used, and complex interpolation is required in
order to improve the performance. Some other estima-
tors for either electromagnetic or acoustic signals are
using the discrete Fourier transform (DFT) of the
received signal [11-17].
In this paper, we propose two estimators for the TOA

based on the phase of the DFT of the received signal.
The first estimator is based on the slope of the phase

and the second one, on the absolute phase. For both
estimators, we first compute local estimates at the dif-
ferent frequency components, and then we combine
them in order to find the global estimates.
The main three contributions of this work are that:

• we show that using the DFT, we can achieve
asymptotically the CRLBs (Cramer-Rao lower
bound) using very simple estimators requiring only
few samples and a sampling rate equal to the signal
bandwidth. In our approach, the sampling period is
much larger than the achieved accuracy, while in
time-domain-based estimation, the sampling period
must be smaller than the required accuracy. Another
advantage of DFT-based estimation is that we do
not need to identify the main lobe of the autocorre-
lation of the used pulses like in time-domain
estimation.
• we show that the MLE achieves the CRLB faster
than the DFT-based estimator, while the DFT-based
estimator outperforms the MLE for low SNRs.
• we compute the statistics of the unwrapped phase
of a noisy signal.

The main difference between this work and the pre-
vious works using the DFT approach is that in the pre-
vious works, the TOA is not estimated based on the
phase of the DFT [13,14], or the problem of phase
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ambiguity is not investigated (by assuming the maxi-
mum time delay smaller than the period of the highest
frequency component) [15,16], or the problem of phase
ambiguity is solved using other approaches (Chinese
remainder theorem [11,12] or recursive correction of
the TOA estimate [17]). The proposed estimators can
be used for IR-UWB signals as well as for multi-carrier
UWB (MC-UWB) signals. Note that the main goal of
this paper is to give the main ideas about DFT-based
TOA estimation. Many improvements can be intro-
duced in order to make the proposed estimators achieve
performance closer to the CRLBs.
The paper is organized as follows. In Section II, we

describe the system model. In Section III, we consider
the MLE of the local phase and compute the statistics of
the unwrapped phase. In Section IV, we derive the local
slope-based and absolute-phase-based TOA estimators.
In Section V, we derive the global slope-based and abso-
lute-phase-based TOA estimators. In Section VI, we
show how multipath UWB channel can be handled.

II. System model
We consider a transmitter and a receiver communicat-
ing through an additive white Gaussian noise (AWGN)
channel.
Denote by s(t), r(t) and n(t) the complex envelopes

(baseband) of the transmitted signal, the received signal
and the AWGN, filtered around central frequency fc with
a bandwidth B ([fc - B/2, fc + B/2]). r(t) can be written as:

r(t) = αe−j2π fc
τ

s(t − τ ) + n(t) = αe−j2π fc
τ

sτ (t) + n(t)

where a and τ are the gain and the time delay of the
channel, and sτ(t) = s(t - τ). After sampling at the rate B,
we get:

r[m] = αe−j2π fcτ sτ [m] + n[m]

where z[m] denotes the sample of the signal z(t) at t =
mTs (Ts = 1/B is the sampling period). (n[m]) is a white
Gaussian sequence (i.e., the samples n[m] are indepen-
dent and identically distributed (iid)). The variance of n

[m] is given by σ 2
n = 2N0B where 2N0 is the one-sided

power spectral density of the AWGN.
Let R[k], (k = -M/2,..., M/2 - 1) be the DFT of r[m]:

R[k] =
M−1∑
m=0

r[m]e
−j2π

mk
M = αe−j2π fcτ Sτ [k] +N[k] (1)

where Sτ[k] and N[k] are the DFTs of sτ[m] and n[m],
respectively. As n[m] is a white Gaussian sequence, N[k] is

also white Gaussian with a variance equal to

σ 2
N = Mσ 2

n = 2MN0B [18]. As the Shannon sampling theo-

rem is respected, and by assuming s(t) limited in time and
sτ(t) falling in the period of observation, we can write:

Sτ [k] =
Sτ (fk)
Ts

=
e−j2π fkτ S(fk)

Ts
= e−j2π fkτ S[k] (2)

where Sτ(f) and S(f) are the FTs of sτ(t) and s(t),
respectively, and S[k] is the DFT of s[m] and:

fk = k/(MTs) = kΔf . (3)

For simplicity reasons, we denote from now S[k], R[k]
and N[k] by Sk,Rk and Nk, respectively. From (1) and (2),
we can write Rk as:

Rk = αe−j2π(fc+fk)τSk +Nk = Uk +Nk (4)

where Uk = αe−j2π(fc+fk)τSk is the DFT of the useful
part of the received signal. Denote by rZ,θZ, xz and yZ
the modulus, phase, real part and imaginary part of any
complex number Z. From (4), we can define �k as:

ϕk = θSk − θUk = 2π(fc + fk)τ . (5)

Given that Nk is Gaussian, we can write the probabil-
ity density function (PDF) of Rk as:

TRk(xRk , yRk) =
1

2πσ 2
e
−
(xRk − xUk)

2 + (yRk − yUk)
2

2σ 2

TRk(ρRk , θRk) =
ρRk

2πσ 2
e
−

ρ2
Rk

+ ρ2
Uk

− 2ρRkρUk cos(θRk − θUk)

2σ 2

(6)

where σ 2 = σ 2
N/2 = MN0B is the variance of xNk and

yNk .

III. Statistics of the unwrapped MLE of the phase
In this section, we consider the MLE of the phase and
compute the statistics of its unwrapped version.
The joint log-likelihood function of ρUk and �k can be

obtained from (5) and (6):

ΛρUk
,ϕk = −ρ2

Rk
+ ρ2

Uk
− 2ρRkρUk cos(θRk − θSk + ϕk)

2σ 2
.(7)

The CRLBs of ρUk and �k are the diagonal elements
of the inverse of the Fisher information matrix given by

−E{(∂2ΛρUk
,ϕk/∂zi∂zj)}, zi, zj ∈ {ρUk ,ϕk}(E{·} denotes the

expectation operator). The CRLB of �k is given by:

Cϕk = σ 2/ρ2
Uk

= 1/νk (8)
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where νk = ρ2
Uk
/σ 2 = α2ρ2

Sk
/σ 2 is the SNR obtained at

fk. νk is called the local (or instantaneous) SNR (corre-
sponding to fk). The global SNR is defined as:

ν =
N/2−1∑
k=−N/2

νk. (9)

It is obvious that the time delay can be estimated
from an estimation of (5) as either: (i) the phase to
angular frequency ratio or (ii) the slope of the phase
with respect to the angular frequency. For both
approaches, the estimated phase must be continuous.
With the former it must also be around the true value,
while with th e latter a constant offset along the fre-
quency axis is accepted. As in practice the phase is
computed modulo 2π (wrapped phase), an unwrapped
version of it is needed in order to rebuild the continu-
ous phase.
In practice, the unwrapped phase can be obtained

recursively by adding a multiple of 2π to the wrapped
phase until the absolute difference between neighboring
phases becomes less than or equal to π. Denote by ϕ̂k

the wrapped MLE of the phase and ϕ̃k the unwrapped
MLE. We can write the unwrap criterion as:

|ϕ̃k − ϕ̃k−1| ≤ π (10)

where the non-ambiguity condition (2πΔfτ <π) must
be respected. Unwrap procedure described above is well
known and “unwrap” MATLAB function can be used to
perform unwrapping.
As in practice the true value of the phase is unknown

we can start the unwrap procedure from an arbitrary k0
by taking ϕ̃k0 = ϕ̂k0 , then running the unwrap procedure
for k0 +1,..., M/2 - 1 and k0 - 1,..., -M/2. It is obvious
that the unwrapped phase may have an offset (almost
constant ∀k) with respect to the true phase dependent
on the offset at the starting point (2π(fk0 + fc)τ − ϕ̂k0) .
Let us now consider how to obtain a wrapped estima-

tion ϕ̂k of the phase. It can be obtained from (7) using
a MLE and taking ∂ΛρUk

,ϕk/∂ϕk = 0 :

ϕ̂k = θSk − θRk = θSkR∗
k

where {·}* denotes the complex conjugate. The esti-
mates ϕ̂k at different frequencies k are independent
because the noise samples Nk are independent.

As shown in [19], the PDF of ϕ̂k can be obtained
from that of θRk by integrating (6) with respect to ρRk :

TθRk
(θRk) =

+∞∫
0

TRk(ρRk , θRk)dρRk ⇒

Twr
ϕ̂k
(ϕ̂k) =

e
−

νk

2

2π
+

√
νk cos(ϕ̂k − ϕk)

2
√
2π

e
−

νk

2
sin2(ϕ̂k−ϕk)

× erfc
(√

νk

2
cos(ϕ̂k − ϕk)

)
(11)

where erfc(z) = (2/
√

π)
∫ +∞
z e−ξ2

dξ denotes the com-

ple-mentary error function, and the superscript wr the

wrapped phase. Twr
ϕ̂k
(ϕ̂k) is 2π periodic and can be

defined on any interval (Ick = [ck − π , ck + π]) of width

2π.

∫
Ick

Twr
ϕ̂k
(ϕ̂k)dϕ̂k = 1∀ck . It is shown in [20] that the

distribution of the wrapped phase can be approximated
by a normal distribution if the local SNR νk is suffi-
ciently high, and by a uniform distribution if νk is very
low.
Let us now compute the PDF of the unwrapped MLE

ϕ̂k of the phase. Assume that we start the unwrap pro-

cedure from k = 0 (so, we have ϕ̃0 = ϕ̂0 ). Let Tϕ̃k(ϕ̃k)

be the marginal PDF of ϕ̂k . Below, we will show that
Tϕ̃k(ϕ̃k) can be computed recursively for k = 1,..., M/2 -

1 and k = - 1,..., -M/2 starting from ϕ̂0 .
As the unwrap criterion in (10) can be written as

ϕ̃k ∈ Iϕ̃k−1 = [ϕ̃k−1 − π , ϕ̃k−1 + π], ϕ̃k−1 is then inside

the domain Dk = [min{ϕ̃k−1} − π ,max{ϕ̃k−1} + π]. As
for ϕ̃0 = ϕ̂0 we have D0 = [-π, π], the domain Dk is
given by:

Dk = [−|k + 1|π , |k + 1|π], (k = −N/2, ...,N/2 − 1)(12)

As ϕ̃k ∈ Iϕ̃k−1 , |ϕ̃k − ϕ̂k| = 2lπ (l integer), and Twr
ϕ̂k
(ϕ̂k)

is 2π periodic, the conditional distribution of ϕ̃k (PDF
of ϕ̃k given ϕ̃k−1 ) can be obtained from (11):

Tϕ̃k|ϕ̃k−1(ϕ̃k) = Twr
ϕ̂k
(ϕ̃k).

Note that the domain of Tϕ̃k|ϕ̃k−1(ϕ̃k) depends on
ϕ̃k−1 but not its expression. In order to express the
marginal PDF of ϕ̃k with respect to that of ϕ̃k−1 , we
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first compute the joint PDF of ϕ̃k and ϕ̃k−1 , and then
we integrate with respect to ϕ̃k−1 taking into account

that ϕ̃k ∈ Iϕ̃k−1(ϕ̃k − π ≤ ϕ̃k−1 ≤ ϕ̃k + π) :

Tϕ̃k,ϕ̃k−1 (ϕ̃k, ϕ̃k−1) = Tϕ̃k|ϕ̃k−1 (ϕ̃k)Tϕ̃k−1 (ϕ̃k−1)

= Twr
ϕ̃k
(ϕ̃k)Tϕ̃k−1(ϕ̃k−1)

Tϕ̃k(ϕ̃k) =

ϕ̃k+π∫
ϕ̃k−π

Tϕ̃k,ϕ̃k−1(ϕ̃k, ϕ̃k−1)dϕ̃k−1

= Twr
ϕ̂k
(ϕ̃k)

ϕ̃k+π∫
ϕ̃k−π

Tϕ̃k−1(ϕ̃k−1)dϕ̃k−1

(13)

where for (13), we have
ϕ̃k ∈ Dk = [−|k + 1|π , |k + 1|π] . Finally, Tϕ̃k(ϕ̃k) can be
computed recursively for k = 1,..., M/2 - 1 and k = -1,...,
-M/2 using (13). Obviously, the starting point is
Tϕ̃0(ϕ̃0) = Twr

ϕ̂k
(ϕ̃0) . The mean and the variance of ϕ̃k

are given by:

μϕ̃k =

(k+1)π∫
−(k+1)π

ϕ̃kTϕ̃k(ϕ̃k)dϕ̃k (14)

σ 2
ϕ̃k

=

(k+1)π∫
−(k+1)π

(ϕ̃k − μϕ̃k)
2Tϕ̃k(ϕ̃k)dϕ̃k. (15)

In Figure 1a, we show the true phase �k, a realization
of the wrapped MLE of the phase ϕ̂k(ϕ̂k ∈ [−π ,π]) ,
and the corresponding unwrapped MLE ϕ̃k versus fk +
fc (number of samples M = 16, k = -8, ..., 7). The
unwrap procedure is started here from k = - 8. The
transmitted signal is a cardinal sine (bandwidth B = 2
GHz) modulated by a carrier (fc = 2 GHz). We take τ =
2 ns, and ν = 17 dB (global SNR). We can see that ϕ̃k is
almost continuous with a phase offset almost constant
with respect to the true phase.
However, some errors multiple of - 2π can be intro-

duced during the unwrap procedure as can be seen in
Figure 1b, c for two other realizations of the of the
wrapped phase ϕ̂k . This happens when the unwrap pro-
cedure should add a multiple of 2π to the next phase
(for instance at k = - 3 in Figure 1b), but does not do it
because the absolute difference between the neighboring
noisy phases is less than π(|ϕ̂−3 − ϕ̂−4| ≤ π) . Every
time this phenomenon happens, an additional error of
-2π will be introduced.
Note that errors multiple of 2π can also be intro-

duced. This happens when the unwrap procedure
should not add a multiple of 2π to the next phase, but

does it because the absolute difference between the
neighboring noisy phases is greater than π. These errors
occur rarely if the slope of the true phase is positive.
In Figure 2a, b, we show the marginal PDF of ϕ̃k for k

= 1,..., 15 and k = 15, respectively. We take B = 2 GHz,
fc = 0, τ = 1 ns, M = 32, and νk = 5dB (local SNR), ∀k.
Here we have started the unwrap procedure from k = 0.
We can see in Figure 2b that for k = 15 (phase cor-
rected at the end of the unwrap procedure), the PDF
has three secondary lobes located at - 4π, -2π, and 2π
from the main lobe. The strongest one is that located at
- 2π.
As already mentioned, the presence of these secondary

lobes is due to errors multiple of ±2π introduced by the
unwrap procedure. The main lobe becomes weaker and
secondary lobes stronger as the frequency increases
which means that we have more chance that such an
error occurs. This is due to the fact that the unwrapping
is performed recursively for increasing frequencies (see
Figure 1a-c), so the ±2π errors accumulate over the
course of the procedure. If we increase the number of
samples or decrease the global SNR, we will obtain
more secondary lobes at · · ·, - 4π, -2π, 2π, 4π, · · · from

(a)

(b)

(c)
Figure 1 True phase �k in (a), three realizations in (a), (b) and
(c) of the wrapped phase ϕ̂k , and the corresponding
unwrapped phase ϕ̃k versus fk + fc, (k = -8, ..., 7) for a cardinal
sine modulated by fc = 2 GHz.
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the main lobe. Errors multiple of - 2π (resp. 2π) are
more frequent if the slope of the true phase is positive
(resp. negative). Obviously, the unwrapped phase is
biased, and both the bias and the variance increase with
the frequency due to the accumulation of ±2π errors.
In Figure 3a, b, we show for the same scenario consid-

ered in Figure 2a, b the theoretical variance σ 2
ϕ̃k

and

mean square error (MSE) ∈2
ϕ̃k
= σ 2

ϕ̃k
+ (μϕ̃k − ϕk)2 (both

computed from (14) and (15)), the CRLB cϕk , and the
simulated (simulation repeated 10,000 times) variance
and MSE of ϕ̃k , all versus the frequency. For Figure 3a
(resp. 3b), local SNRs are given by νk = 5dB (resp. 28
dB), ∀k.
We can see in Figure 3a that the simulated variance

and MSE closely follow the theoretical ones, which vali-
dates our theoretical approach. However, variance and
MSE are not following the CRLB, and they increase
with the frequency due to the errors multiple of ±2π
which are introduced by the unwrap procedure.
In Figure 3b where the local SNRs are sufficiently high

(νk = 28 dB, ∀k), we can see that the derived and simu-
lated variance and MSE are very close to the CRLB. In
fact for high SNRs, the wrapped phases are unwrapped
correctly because the errors multiple of ±2π become
very rare.

IV. Slope-based and absolute-phase-based local
TOA estimators
In the last section, we have studied the unwrapped MLE
ϕ̃k of the phase �k. In this section, we propose two
local TOA estimators based on ϕ̃k .

(a)

(b)
Figure 3 Theoretical (σ 2

ϕ̃k
,∈2

ϕ̃k
) and simulated (simu) variance and MSE, and CRLB ( cϕk ) of �k versus fk+ fc (a) local SNRs νk = 5 dB, ∀k

(b) νk = 28 dB, ∀k.

(a)

(b)
Figure 2 PDF of the unwrapped phase Tϕ̃k(ϕ̃k) (a) k = 1,..., 15
(b) k = 15.
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In order to overcome the problem of the phase offset
mentioned in subsection III, we define the first local
estimator of τ based on the slope of ϕ̃k :

τ̃ bb
k =

ϕ̃k − ϕ̃0

2π fk
, k 	= 0 (16)

where the superscript bb denotes that τ is estimated
based on the information carried by the baseband fre-

quency components. τ̃ bb
k can be named either local

slope-based or local baseband (BB) TOA estimator. By
assuming (for simplicity reasons) that ( ϕ̃k ) are indepen-
dent (not true because of the unwrap procedure), the

covariance and variance σ 2
τ̃ bb
k

of τ̃ bb
k can be written as:

Γ
(
τ̃ bb
k , τ̃ bb

k′

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ 2
ϕ̃0

4π2fkfk′
k 	= k′

σ 2
τ̃ bb
k
=

σ 2
ϕ̃k
+ σ 2

ϕ̃0

4π2f 2k
k = k′

(17)

In order to benefit from the information on τ carried
by the passband frequency components, and as the
phase offset between ϕ̃k and �k is multiple of 2π, we
can estimate the phase offset by:

Δ̃ϕ = 2π round
{
2π fcτ̃ bb − ϕ̃0

2π

}
(18)

where “round” denotes the “round to nearest integer”
function, and τ̃ bb the global slope-based estimator. τ̃ bb

is given in Section V as a linear combination of τ̃ bb
k .

As the phase offset is estimated, we can now define
the second local TOA estimator from (5) and (18):

τ̃ bb
k =

ϕ̃k + Δ̃ϕ

2π(fk + fc)
(19)

where τ̃
pb
k

is named local absolute-phase-based or

local pass-band TOA estimator. By assuming Δ̃ϕ equal

to the true value (true for high SNRs), the variance of

τ̃
pb
k

can be written as:

σ 2
τ̃
pb
k

=
σ 2

ϕ̃k

4π2(fk + fc)
2 . (20)

The local passband CRLB of τ can be obtained from
(5) and (8):

cpbk =
1

4π2νk(fc + fk)
2 . (21)

If we assume in (5) that 2π fcτ is a random phase (if
phase uncertainty is introduced during the down-

conversion of the signal), the local baseband CRLB can
be written as:

cbbk =
1

4π2νkf 2k
. (22)

As for sufficiently high SNRs, the unwrapped phase
becomes unbiased and its variance converges to its
CRLB (1/νk), we can deduce from (20) and (21) (resp.
(17) and (22)) that the local passband (resp. baseband)
TOA estimator becomes also unbiased and achieves the
local passband CRLB (resp. the sum of the local base-
band CRLB of f0 and fk).
In Figure 4, we show the local baseband and passband

CRLBs ( cbbk , cpbk ), and the MSEs of the local baseband

and passband TOA estimators (∈2
τ̃ bb
k

and ∈2
τ̃
pb
k
) obtained

by simula-tion (noise generated 1,000 times), versus fk +
fc. We consider a Gaussian pulse exp(−2π t2/T2

w) , Tw is
the pulse width, modulated by fc. We take Tw = 0.5 ns,
Ts = Tw/4, fc = 4 GHz, τ = 1 ns, M = 32 and ν = 25 dB.

We can see that τ̃
pb
k

achieves the passband CRLB

because the SNR is sufficiently high, while τ̃ bb
k does not

achieve the baseband CRLB. The gap between ∈2
τ̃ bb
k

and

cbbk corresponds to the term σ 2
ϕ̃0
/4π2f 2k in the expres-

sion of σ 2
τ̃ bb
k

in (17).

V. Slope-based and absolute-phase-based global
TOA estimators
In this section, we derive the global TOA estimators
based on the local TOA estimators studied in section
IV.
The global baseband (resp. passband) TOA estimator

τ̃ bb (resp. τ̃ pb ) is defined as the minimum-variance

Figure 4 Local baseband and passband CRLBs (cbbk , cpbk ), and
MSEs (∈2

τ̃ bb
k
and ∈2

τ̃
pb
k
) of the local baseband and passband

TOA estimators versus fk + fc.
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unbiased linear combination of the local estimators

τ̃ bb
k , k = −M/2, ...,M/2 − 1 (resp τ̃

pb
k
).

Consider M unbiased estimators ς̃k of the same para-
meter ζ. The minimum-variance unbiased linear combi-
nation of ( ς̃k ) is given by:

ζ̃ = ã−
T

ζ̃
ζ̃
−
;

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ã−
ζ̃
= argmin

a−
{ σ 2

a−T ζ̃−
}

⇒ ã−
ζ̃
=

�−1
ζ̃

1−∑
(�−1

ζ̃
1−)

s.t.
∑

a− = 1

(23)

where {·}T denotes the transpose operator, zthe vector

(z1 · · · zM)T , σ 2
aT ς̃ = E{(aT(ς̃ − ς1))2},

∑
a the sum of

the elements of a, 1 = (1 · · · 1)T, and �
ς̃ the covariance

matrix of ς̃ . The variance of ς̃ is given by:

ã−
T
Γ

ς̃−
ã−.

From (17) and (23), we can obtain the global baseband
estimator and its variance:

τ̃ bb =

(�−1
τ̃−
bb1−)

T

∑
(�−1

τ̃−
bb1−)

τ̃−
bb; σ 2

τ̃ bb = ã−
T

τ̃ bb
C

τ̃−
bb ã−

τ̃ bb

(24)

Given that the covariance matrix of τ̃−
pb is diagonal

( τ̃ pb
k

assumed independent), we can write the global

passband estimator and its variance as:

τ̃ pb =

∑N−1
k=0 τ̃

pb
k /σ 2

τ̃
pb
k∑N−1

k=0 1/σ 2
τ̃
pb
k

; σ 2
τ̃ pb =

1∑N−1
k=0 1/σ 2

τ̃
pb
k

. (25)

As the covariances and variances of the local estima-

tors τ̃ bb
k and τ̃

pb
k
) are unknown, we compute the global

estimators from (24) and (25) by assuming that ϕ̃k

achieves the CRLB cϕk , and substituting σ 2
ϕ̃k

by 1/ρ2
Sk

(proportional to cϕk ).
Given that Nk in (4) is a white sequence, the global

passband and baseband CRLBs of τ can be written as:

cpb =
1∑

k 1/c
pb
k

=
1∑

k 4π2νk(fc + fk)
2

=
1

ν(4π2f 2c + β2
s

cbb =
1∑

k 1/c
bb
k

=
1∑

k 4π2νkf 2k
=

1
νβ2

s

where ν is the global SNR given in (9) and
β2
s =

∑
k 4π2ρ2

Sk
f 2k /

∑
k ρ2

Sk the discrete mean quadratic

bandwidth of s[k].
Let τ̃ml be the time-domain MLE of τ. τ̃ml is given by:

τ̃ml = argmax
ς

{rpb(ς) ⊗ spb(−ς)}

where spb(t) and rpb(t) denote the real passband trans-
mitted and received signals and ⊗ the convolution
operator.
In Figure 5, we show the baseband and passband

CRLBs (cbb and cpb) of τ, the MSEs (∈2
τ̃ bb
k

and ∈2
τ̃
pb
k
) of

the global baseband ( τ̃ bb ) and passband ( τ̃ pb ) TOA esti-

mators, and the MSE (∈2
τ̃ml ) of the MLE ( τ̃ml ) versus

the global SNR (ν). We consider a Gaussian pulse with
Tw = 0.5 ns, fc = 4 GHz, Ts = Tw/4, τ = 1 ns, and M =
32. For the MLE, the sampling period must be

smaller than the expected accuracy ( Tml
s ≤ √

cτ ). We

Figure 5 Global baseband and passband CRLBs (cbb and cpb), MSEs of the global baseband (∈2
τ̃ bb and ∈2

τ̃ bb
+
) and passband (∈2

τ̃ pb and∈2
τ̃
pb
+
) estimators, and MSE (∈2

τ̃ml ) of the MLE versus the SNR (ν).
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take Tml
s = 1 ps (125 times smaller than the DFT-based

sampling period). The MSEs presented here are
obtained by simulation (noise generated 10,000 times).
We can see that the global baseband estimator almost

achieves asymptotically the baseband CRLB. We can
also see that both the MLE and the global passband esti-
mator achieve asymptotically the passband CRLB. How-
ever, τ̃ml achieves cpb faster than τ̃ pb . Many
improvements can be introduced to our estimators in
order to make them achieve the CRLBs faster. Hereafter,
we will describe briefly one more baseband estimator
and one more passband estimator.
We have already seen that the unwrap procedure

introduces sometimes errors multiple of - 2π in the
unwrapped phase. These errors seriously deteriorate our
estimators. In order to overcome this problem, we con-
sider first the following slope-based estimator:

τ̃
sp
k =

ϕ̃k − ϕ̃k−1

2πΔf
(26)

where Δf is given in (3). The covariance Γ
(
τ̃
sp
k , τ̃ sp

k′

)

and variance σ 2
τ̃
sp
k
of τ̃

sp
k are given by:

Γ
(
τ̃
sp
k , τ̃ sp

k′

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 |k − k′| > 1

−
σ 2

ϕ̃k

4π2Δf 2
k′ = k + 1

σ 2
τ̃
sp
k

=
σ 2

ϕ̃k
+ σ 2

ϕ̃k−1

4π2Δf 2
k′ = k

(27)

As the unwrapped phase errors described above gen-
erate large negative slopes, and as the time delay can be
assumed positive by putting the reference pulse at the
beginning of the observation period, we can mitigate

these errors by keeping only the positive values of τ̃
sp
k .

Let τ̃−
sp

+
be the vector containing the positive values of

τ̃
sp
k and Γ

τ̃−
sp

+
its covariance matrix.

A new global slope-based estimator can be obtained
from (23) and (27):

τ̃ sp
+ =

(Γ −1
τ̃−
sp

+

1−)
T

∑
(Γ −1

τ̃−
sp

+

1−)
τ̃−
sp

+
≈

∑
τ̃
sp
k >=0 τ̃

sp
k ρ2

Sk∑
τ̃
sp
k >=0 ρ2

Sk

. (28)

Now, instead of unwrapping the phase recursively, we
unwrap each ϕ̃k (wrapped phase) with respect to

2π(fk + fc)τ̃
sp
+ in order to get ϕ̃

sp
k (new unwrapped

phase located around the true phase). The new global
baseband (resp. passband) estimator τ̃ bb

+ (resp. τ̃
pb
+ ) is

obtained as before from (16) and (24) (resp. (19) and

(25)), but after substituting ϕ̃k by ϕ̃
sp
k (resp. ϕ̃k + Δ̃ϕ

by ϕ̃
sp
k ) in (16) (resp. (19)).

The MSEs of τ̃ bb
+ and τ̃

pb
+ obtained by simulation are

shown in Figure 5. We can see that τ̃ bb
+ and τ̃

pb
+ achieve

cbb and cpb faster than τ̃ bb and τ̃ pb , respectively. Still,
the MLE achieves cbb and cpb faster than τ̃ bb and τ̃ pb .
However, for small SNRs (r < 15 dB), the new passband
estimator outperforms the MLE.
Fianlly, the main advantage of the MLE is that it

achieves the CRLB faster, while the main two advantages
of the new estimator are that: i) it requires a sampling
rate and a number of samples much smaller than those
required by the MLE and that ii) it outperforms the
MLE for low SNRs.

VI. TOA estimation in multipath channels
Assume now that we have a multipath UWB channel.
The baseband channel impulse response can be written
as:

h(t) =
L∑
l=1

α(l)e−j2π fcτ (l)δ(t − τ (l))

where a(l) and τ(l) are the gain and the delay of the lth
MPC. The baseband signal received through the multi-
path channel can be written as:

rMP(t) = s(t) ⊗ h(t).

Let ΓrMP,s(t) be the cross-correlation function of the
modulus of the baseband transmitted and received sig-
nals. ΓrMP,s(t) can be written as:

ΓrMP,s(t) = |rMP(t)| ⊗ |s(−t)|
where we have considered the modulus in order to get

only one peak per MPC (the used baseband pulse must
have only one lobe). The coarse estimates of τ(l) can be
obtained as locations of the peaks of ΓrMP,s(t) crossing a
given threshold. Once the coarse estimates are obtained,
we can apply our DFT-based estimators by taking a win-
dow around each MPC slightly larger than the pulse
width. The final estimates of τ(l) are expected to have
the same characteristics shown throughout this paper if
the MPCs are not overlapping.

VII. Conclusion
Two TOA estimators are proposed based on the abso-
lute phase and the slope of the unwrapped phase of the
DFT of the received signal. The slope-based TOA esti-
mation is used as a coarse estimation in order to rebuild
the absolute unwrapped phase and to compute the abso-
lute-phase-based estimator. The statistics of the
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unwrapped phase are computed. It has been shown that
the slope-based estimator almost achieves asymptotically
the baseband CRLB, while the absolute-phase-based esti-
mator achieves asymptotically the passband CRLB. The
proposed estimators are compared to the time-domain
MLE estimator. It has been shown that the MLE
achieves the CRLB faster than the DFT-based estimator,
while the DFT-based estimator outperforms the MLE
for low SNRs. It has also been also described how the
proposed estimators can be used in multipath UWB
channels. The main theoretical results are validated by
simulation.

Acknowledgements
The authors would like to thank the FP7 NEWCOM++, the DGTRE COSMOS,
and the RADIANT projects for the financial support and the scientific
inspiration. They also would like to thank Sinan Gezici and Davide Dardari
for the useful discussions with them.

Author details
1ICTEAM Institute, Université catholique de Louvain, Place du Levant 2, 1348,
Louvain-la-Neuve, Belgium 2Department of Information Engineering,
University of Pisa, Via G.Caruso 16, 56122, Pisa, Italy

Competing interests
The authors declare that they have no competing interests.

Received: 17 January 2011 Accepted: 9 January 2012
Published: 9 January 2012

References
1. Federal Communications Commission Revision of Part 15 of the

Commissionís rules regarding ultra-wideband transmission systems FCC 02-
48, (2002)

2. D Dardari., et al, Ranging with ultrawide bandwidth signals in multipath
environments. Proc IEEE. 97(2), 404–426 (2009)

3. Z Sahinoglu, S Gezici, I Guvenc, Ultra-Wideband Positioning Systems:
Theoretical Limits, Ranging Algorithms, and Protocols, (Cambridge
University Press, Cambridge, 2008)

4. S Gezici., et al, Localization via ultra-wideband radios: a look at positioning
aspects for future sensor networks. IEEE Signal Process Mag. 22, 70–84
(2005)

5. Z Tian., et al, A GLRT approach to data-aided timing acquisition in UWB
radios-Part I: algorithms. IEEE Trans Wirel Commun. 4(6), 1536–1576 (2005)

6. D Dardari, C-C Chong, MZ Win, Threshold-based time-of-arrival estimators
in UWB dense multipath channels. IEEE Trans Commun. 56(8), 1366–1378
(2008)

7. AA D’Amico, U Mengali, L Taponecco, Energy-based TOA estimation. IEEE
Trans Wirel Commun. 7(3), 838–847 (2008)

8. Z Lei, F Chin, Y-S Kwok, UWB ranging with energy detectors using ternary
preamble sequences. Proc IEEE Wirel Commun Netw Conf. 2, 872–877
(2006)

9. J-Y Lee, RA Scholtz, Ranging in a dense multipath environment using an
UWB radio link. IEEE J Sel Areas Commun. 20(9), 1677–1683 (2002).
doi:10.1109/JSAC.2002.805060

10. C Falsi, D Dardari, L Mucchi, MZ Win, Time of arrival estimation for UWB
localizers in realistic environments. EURASIP J Appl Signal Process (2006).
(Special Issue on Wireless Location Technologies and Applications)

11. X-G Xia, K Liu, A generalized Chinese remainder theorem for residue sets
with errors and its application in frequency determination from multiple
sensors with low sampling rates. Signal Process Lett IEEE. 12(11), 768–771
(2005)

12. C Towers., et al, Time efficient Chinese remainder theorem algorithm for
full-field fringe phase analysis in multi-wavelength interferometry. Opt
Express. 12(6), 1136–1143 (2004). doi:10.1364/OPEX.12.001136

13. I Sahin, N Yilmazer, Reducing computational complexity of time delay
estimation method using frequency domain alignment, in 43rd Annual
Conference on Information Sciences and Systems (CISS 2009). 43–46 (2009)

14. L Blancoa, J Serraa, M Nájar, Minimum variance time of arrival estimation
for positioning. Special Sect Process Anal High Dimens. Masses Image
Signal Data. 90(8), 2611–2620 (2010)

15. S Wang, D Sen, W Lu, Subband analysis of time delay estimation in STFT
domain. in Proceedings of the 11th Australian International Conference on
Speech Science and Technology. 211–215 (2006)

16. B Jiang., et al, High precision time delay estimation using generalised mvdr
cross spectrum. Electron Lett. 43(2), 131–133 (2007). doi:10.1049/el:20072966

17. S Assous., et al, Short pulse multi-frequency phase-based time delay
estimation. J Acousti Soc Am. 127(1), 309–315 (2010). doi:10.1121/1.3263602

18. SM Kay, Fundamentals of Statistical Signal Processing: Estimation Theory,
(Prentice Hall PTR, Englewood Cliffs, 1993), pp. 39–40

19. BP Lathi, Modern Digital and Analog Communication Systems, 3rd edn.
(Oxford University Press, New York, 1998), p. 522

20. BP Lathi, The Rician distribution of noisy MRI data. Magn Reson Med. 34(6),
910–914 (1995). doi:10.1002/mrm.1910340618

doi:10.1186/1687-1499-2012-3
Cite this article as: Mallat et al.: Discrete fourier transform-based TOA
estimation in UWB systems. EURASIP Journal on Wireless Communications
and Networking 2012 2012:3.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Mallat et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:3
http://jwcn.eurasipjournals.com/content/2012/1/3

Page 9 of 9

http://www.ncbi.nlm.nih.gov/pubmed/19474931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19474931?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8598820?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	I. Introduction
	II. System model
	III. Statistics of the unwrapped MLE of the phase
	IV. Slope-based and absolute-phase-based local TOA estimators
	V. Slope-based and absolute-phase-based global TOA estimators
	VI. TOA estimation in multipath channels
	VII. Conclusion
	Acknowledgements
	Author details
	Competing interests
	References

