
RESEARCH Open Access

CDSWS: coverage-guaranteed distributed sleep/
wake scheduling for wireless sensor networks
Guofang Nan1*, Guanxiong Shi1, Zhifei Mao1 and Minqiang Li2

Abstract

Minimizing the energy consumption of battery-powered sensors is an essential consideration in sensor network
applications, and sleep/wake scheduling mechanism has been proved to an efficient approach to handling this
issue. In this article, a coverage-guaranteed distributed sleep/wake scheduling scheme is presented with the
purpose of prolonging network lifetime while guaranteeing network coverage. Our scheme divides sensor nodes
into clusters based on sensing coverage metrics and allows more than one node in each cluster to keep active
simultaneously via a dynamic node selection mechanism. Further, a dynamic refusal scheme is presented to
overcome the deadlock problem during cluster merging process, which has not been specially investigated before.
The simulation results illustrate that CDSWS outperforms some other existed algorithms in terms of coverage
guarantee, algorithm efficiency and energy conservation.

1 Introduction
With the advances in digital signal processing, RF tech-
niques and low-power hardware manufacturing and
integration, wireless sensor networks (WSNs) have
attracted increasing interests in recent years [1]. A WSN
is structured with a certain number of tiny sensor
devices, and each device has the abilities of computa-
tion, storage, and communication, which enable it to
collect sensing data and conduct data processing tasks
about the environment, and to generate and deliver
helpful information on the monitored objects to the
base station for decision making [2]. The appearance of
WSNs has significantly changed various kinds of remote
sensing applications such as environmental and ecologi-
cal monitoring of natural habitats, smart homes, and
military areas [3].
In order to provide high-quality data service, a multi-

level of sensing coverage and network connectivity is
needed in the practical implementation of a WSN. That
is, any point in the region should be covered by more
than one sensor. Therefore, wireless sensors are usually
densely deployed on the target field [4], that is, many
sensors can detect an event, deliver and receive the
sensed data packets simultaneously, which will cause
redundant communication overhead and thereby leads

to large amount of energy consumption. Due to the
facts that wireless sensors are physically small and must
use extremely limited power or energy, the network life-
time is an essential consideration in sensor network
applications. Moreover, a WSN is usually deployed in
hostile fields or under harsh environments [5] where
manually recharging batteries for sensors is not feasible,
one typical alternative approach to energy saving is to
turn off some sensors and activate only a necessary set
of sensors while providing a good sensing coverage and
network connectivity simultaneously [6]. A good sleep/
wake scheduling has to provide an even distribution of
energy consumption among sensor nodes so that the
network lifetime is extended [7].
Several schemes have been proposed in the literature to

determine how many and which nodes should be allowed
to sleep [7], and they can be divided into distributed
sleep/wake scheduling schemes [8-11] and centralized
sleep/wake scheduling mechanisms [12-16]. Generally,
centralized sleep/wake scheduling algorithms are appro-
priate only for stationary targets or moving targets with
known and static movement patterns [17], and it is easy
to achieve more precise scheduling results. However, for
an unknown and dynamically changing movement envir-
onment, the centralized sleep/wake scheduling algo-
rithms are not flexible enough to adapt themselves to
these changes. Another drawback for the centralized
ones is that sleeping nodes should have the ability to

* Correspondence: gfnan@tju.edu.cn
1Institute of Systems Engineering, Tianjin University, Tianjin 300072, China
Full list of author information is available at the end of the article

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

© 2012 Nan et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:gfnan@tju.edu.cn
http://creativecommons.org/licenses/by/2.0

receive messages all the time, and their receiving antenna
cannot be switched off. In addition, a powerful base sta-
tion [14] is used for centralized scheduling to perform a
large amount of computation and communication tasks,
and it is dificult for the base station to maintain the glo-
bal information of the whole network, which will lead to
a large amount of data transmission, and thereby cause
more energy consumption. On the other hand, most of
these distributed sleep/wake scheduling schemes make
the sensors self-organized to carry out network tasks,
which have less messaging cost and better adaptability to
dynamic conditions [16]. Moreover, distributed algo-
rithms are scalable and can work independently for a
long time.
However, there are still several major limitations in

prior distributed sleep/wake scheduling algorithms. First,
it is inconvenient for sensors to maintain sensing cover-
age and connectivity of the entire network by using these
distributed algorithms due to the fact that only local
information is used for sensors to decide their status. For
example, in [8], an adaptive partitioning scheme called
connectivity-based partition approach (CPA) was pre-
sented for sleep scheduling and topology control in
WSNs, CPA divides the network into several groups,
only one node in each group will be selected to be active
to form a backbone network. Since the communication
radius of sensors is applied in group partitioning stage,
the proposed algorithm ensures the effective connectivity
of the network, but does not consider the problem of
sensing coverage. A geographical adaptive fidelity (GAF)
algorithm [18] partitions the nodes into multiple equal-
size squared cells based on their geographic locations,
and one node in each cell remains active, GAF also
ensures network connectivity, but ignores sensing cover-
age. The authors in [6] also developed a distributed adap-
tive sleep scheduling algorithm (DASSA) for WSNs with
partial coverage, which suits only for temperature or
humidity monitoring. Second, most of the distributed
algorithms [6,8,14,17,19,20] assume that only one node
in each cluster or group is active while others are shut
off, which is usually effective in early stage of the network
lifetime, and once some nodes are failed to sense and
communicate, this mechanism may lead to poor quality
of service (QoS) of the network. Third, the deadlock pro-
blem arising from resource contention has received little
attention in the past, which will result in degraded net-
work performance in distributed sleep/wake scheduling.
A deadlock is a persistent and circular-wait condition in
forming a cluster or a group [8], where each potential
cluster head delivers a merging request message to
another cluster, and may involve in a deadlock waiting
indefinitely for the merging respond from other nodes
while not answering other merging requests [21].

Motivated by above limitations, a novel distributed
coverage-guaranteed sleep/wake scheduling algorithm
called CDSWS is proposed in this article. In CDSWS, a
cluster hierarchy based network framework is consid-
ered, and a minimum number of nodes are selected to
be active to monitor the area while maintaining better
coverage and connectivity in this article. We assume in
this article that communication radius of a sensor is
equal to or greater than twice of its sensing radius,
which has been proved that the coverage of a region
implies connectivity of the network [22]. Moreover, a
sensor is selected to be in sleep mode based on its sen-
sing radius. That is, if a sensor is in the sleep mode, its
whole working area can also be covered by other active
nodes, which does not affect whole coverage perfor-
mance. Thus, any point in the region can be covered by
those active nodes and any two active nodes are con-
nected. In addition, a dynamic node selection mechan-
ism is also adopted in each cluster to maintain network
performance. Unlike prior work, more sensors in each
cluster are allowed to be active simultaneously. Finally,
in order to overcome the deadlock problem in clusters
merging, a set of rules are illustrated to avoid existing
deadlocks. For each clusterhead, when it sends request
to other clusters while receiving other requests simulta-
neously, obtaining respond from its requesting object or
answering other requests is determined by these rules,
consequently, merging delay and energy consumption
are reduced.
The rest of this article is organized as follows. Section

2 gives a brief literature overview. We introduce the
motivation and present our solution in Section 3. In
Section 4, we propose our coverage-guaranteed schedul-
ing framework and the corresponding algorithms to
support our scheduling framework. In Section 5, we pre-
sent simulation and experiment results to demonstrate
the efficiency of the work and compare it with other
scheduling techniques. Finally, the advantages and disad-
vantages of the proposed scheme are discussed in Sec-
tion 6.

2 Literature review
Almost all the literature treat the objective of sleep/wake
scheduling as minimizing energy consumption or maxi-
mizing sensor network lifetime [23]. However, they
make quite different assumptions regarding the sensors
and the sensor network, and also propose different
approaches in their applications. These approaches can
be divided into centralized and decentralized scheduling,
deterministic and random scheduling, layer-based sche-
duling (MAC layer, routing layer, application layer). In
this section, we will summary the recent sleep/wake
scheduling algorithms.

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 2 of 14

Turning off some nodes in the network and using only
a necessary set of nodes for information collection and
packet delivery is one popular way of energy conservation
[16]. GAF uses geographic location information to divide
a sensing region into equal-sized grid cells, and each cell
of the grid is square shaped, only one node is active in
each grid, then forms a backbone network to maintain
connectivity [21]. In [24], a few nodes are selected as
coordinators which remain active for packet routing, and
other nodes go into the sleep state according to a sleep/
wake cycle specified by the coordinators. In [25], a node
decides to go into sleep mode if there is an active neigh-
bor within its sensing range, and its sleeping period is
self-adjusted dynamically. Otherwise, it remains active.
However, this method does not need the location infor-
mation. The mechanism that randomly selected idle sen-
sors to go into the sleep mode is allowed in the
scheduling [26] to save energy. The data packets for
sleeping nodes are temporarily stored at the active nodes
in their neighbors, and the sleeping sensors wake up peri-
odically to retrieve the stored packets from their neigh-
boring nodes. This method usually leads to packet delay.
An adaptive partitioning scheme of sensor networks for
node scheduling and topology control was presented in
[8] to reduce energy consumption. Sensors are parti-
tioned into several groups according to the measured
connectivity between pair-wise nodes, which varies prior
partitioning approaches based on sensor locations. In
each group, only one node is active while others are put
into sleep mode. The authors formulated a constrained
optimal graph partition problem to study sleep/wake
scheduling with topology control. A distributed heuristic
approach called CPA was proposed. The authors in [6]
also developed a DASSA for WSNs with partial coverage,
which does not require location information of sensors
while maintaining network connectivity and satisfying a
user defined coverage requirement. A common character
among above scheduling schemes is that these active
nodes form a backbone network to assure network con-
nectivity without considering sensing coverage.
Some coverage-preserving scheduling algorithms were

discussed in [17,27-29]. In [27], each node in the network
autonomously and periodically makes decisions on
whether to turn on or turn off itself only depending on its
local neighbor information. To preserve sensing coverage,
a node will turn it off when other active neighbors can
help it to cover its whole working area. Optimal Coverage-
Preserving Scheme (OCoPS) [28] extends the center
angles calculation method described by [27], based on the
proposal of a wake-up strategy, a new decision algorithm
is illustrated to decide the node status by exchanging local
information. Aiming at dynamic point coverage, a schedul-
ing algorithm based on learning automata is proposed in
[17], the advantage is that less auxiliary messages are

needed to be delivered between nodes, and each node in
the network is equipped with a set of learning automata
which determine when and which node should be in active
or asleep state according to environmental information.
Experimental results show that the proposed scheme out-
performs the existing methods. A coverage-adaptive ran-
dom sensor scheduling [29] was also presented to meet
the desired sensing coverage specified by the users. How-
ever, the above methods pay little attention to network
connectivity.
The Sense-Sleep Tree (SS-Tree) [10] uses flow models

and mathematical programming to the network in accor-
dance with the classification tree structure to solve sleep
scheduling. It uses the tree structure of the network sche-
duling and graph theory was applied to form SS-Tree, the
method has a high computing complexity and cannot
work in the complex situation. The authors in [12] inves-
tigated the cross-layer sleep/wake scheduling design in
service-oriented WSNs, the purpose of this study is to
minimize the energy consumption and guarantee that
enough sensors are active to provide all required network
performances. The sleep scheduling is considered to be
NP-hard, and a heuristic linear programming based solu-
tion is also presented. However, they assume that each
service has a known requirement on the number of active
sensors based on the historical service composition
requests in the system, which may not be the case in
practice.
Some centralized scheduling approaches have been

investigated. A cluster-based hierarchical network was
considered in [14], in this structure, sleep/wake schedul-
ing problem was illustrated based on multi-hop commu-
nication. Unlike prior work, this article considered the
effect of synchronization error in their sleep/wake sche-
duling algorithm. Most of computation tasks are per-
formed in a base station which uses the sub-gradient
method and computes the capture probability thresholds,
then tells the sensor nodes and the nodes decide the
wake-up schedule themselves. A centralized sleep sche-
duling algorithm based on integer linear programming
was presented in [6], which calculates the lifetime using
the global information of the whole network based on
the assumption that the global knowledge of sensor loca-
tions and energies is known. According to their proposed
scheme, sensors allowed to sleep can be intermittently
inactive to reduce energy consumption and thus extend
network lifetime. In [30], the authors assumed that all
sensors were supplied with approximately the same
amount of initial energy and studied the coefficient of
variation of energy consumption of three different sleep
scheduling schemes: the randomized scheduling (RS)
scheme, the distance-based scheduling (DS) scheme, and
the Balanced energy Scheduling (BS) scheme. The pro-
posed algorithm is also performed by a cluster head.

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 3 of 14

More accurate scheduling results will be achieved by
suing the centralized approaches, which also lead to a
large amount of data transmission and computation.
Another fundamental issue is the deadlock problem in

distributed computing and several deadlock avoiding
mechanisms for sensor network applications have been
illustrated in the prior literature. However, the afore-
mentioned mechanisms were designed for distributed
edge-coloring [31], determining d-dominating sets for
coverage tier [32] and secure data aggregation [33]. One
possible deadlock scenario will occur for sensors to self-
organize into clusters or groups. However, little atten-
tion has been given to the deadlock problem in sleep/
wake scheduling.

3 Motivation and major considerations
In this section, we analyze several limitations of the
existing studies that motivate us to make the nodes self-
organize into clusters in pure distributed manner. We
also give the main strategies to overcome these
limitations.

3.1 Motivation
In CPA, sensors are partitioned into several groups
based on their measured connectivity between nodes
instead of their location information. The process of
CPA starts from the initial partition where each node
forms a unique group, and two groups are continuously
merged into a larger one. CPA has more flexibility
because it can achieve k-connectivity of the backbone
network and switch node status within each group after
the partitioning process is finished. Meanwhile, con-
strained optimal graph partition problem is used to for-
mulate group partitioning, and a distributed
implementation of CPA is illustrated. However, it still
suffers from several limitations.
First, sensing coverage and network connectivity are

two important issues that considerably influence the
QoS of an entire network system. However, CPA was
designed with the purpose of maintaining the network
connectivity, and the sensing coverage was not taken
into consideration. The lack of coverage guarantee will
clearly render the network more prone to node failures
and produce more coverage holes, which will lead to
poor network monitoring performance.
Second, in the group merging process of CPA, a prior-

ity value is assigned for each two completely adjacent
groups, which is given by priority = k1(1- a) + k2b + R,
where k1 and k2 are coefficients, a indicates the level of
equivalence between these two groups, b is the ratio of
energy in these two groups to the total energy of the
entire network, R is a random value uniformly distribu-
ted in [0,1]. As a result, the appropriate assignment
enables pairwise groups with a lower priority value to

merge first. It is noteworthy that the calculation of the
total energy has to rely on a centralized scheme of infor-
mation collection that is apparently run contrary to the
concept of distributed computation. In practice, numer-
ous data relays among nodes are required to figure out
the total energy of the network, thereby increasing the
execution complexity. Apart from the execution com-
plexity, the data arrived at sensor nodes tend to be out-
of-date due to the severe network delay, so the priority
value that obtained may be imprecise.
Third, severe deadlocks potentially exist during the

process of group merging in CPA. For instance, a
request circle will occur among three groups when each
group sends simultaneously a merging request to its
next group in the circle as shown in Figure 1, and each
group do not answer the merging request from its last
group. Thus, a deadlock is generated and no further
merging process will continue. Generally, a time-out
mechanism or a multi-round technique can be exploited
to address deadlock problems. However, these
approaches will incur undesirable resources abuse in
terms of time delay and energy consumption.
Finally, in the startup phase of nodes scheduling in

CPA, a large communication over-head will be produced
because each node in one group broadcasts a message
to announce its inclination to be the head node, which
will results in not only energy inefficiency but transmis-
sion interferences among sensor nodes. Besides, the
node with the maximum residual energy will be selected
as the head theoretically by setting the time delay for
each node inversely proportional to its residual energy.
However, it is usually not the case in practice because
of the network delay and poor signal quality.
In our scheme, we modify the group merging con-

straints and priority formulation, and then introduce a
dynamic unlocking method in conjunction with a novel
nodes scheduling scheme. In consequence, substantial

Cluster 1 Cluster 2

Cluster 3

Request

Request

Req
ue

st

Figure 1 A request circle.

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 4 of 14

improvement will be achieved in terms of coverage sup-
port and algorithm efficiency.

3.2 Sensing coverage guarantee
Our CDSWS partition sensors into several clusters
based on their sensing coverage rather than measured
connectivity. Since it has been proven that if the radio
range of the sensor is equal to or greater than twice the
sensing range, i.e., rc ≥ 2rs, complete sensing coverage
implies network connectivity [22]. In other words, in
case of rc ≥ 2rs, we only need to consider the sensing
coverage.
Consider that the sensor nodes are divided into multi-

ple clusters. At any given time, only a few sensors are
selected from different clusters to be in active status,
while others are put into sleep mode to conserve the
precious energy. To maintain a nearly full coverage, the
area that can be monitored by the active sensors should
be almost equal to the area that can be monitored by all
sensors. Hence, the coverage disks of these active sen-
sors should intersect one another within each cluster.
However, if two neighboring clusters are not densely
connected, they cannot be merged into a larger one.
In terms of minimizing the number of sensors used in

deployment, an efficient method to cover the monitored
region is to deploy sensors in a triangular pattern with√
3rs as the length of a side [34], that is, if the distance

between each two nodes within the same cluster is no
more than

√
3rs, their coverage disks will be densely

connected.
In CDSWS, the concept of neighboring clusters is

defined as follows:
Definition 1 (Neighboring clusters): Let A and B be

two different clusters, for any node xi in A and any
node xj in B, A and B are said to be neighboring clusters
if

d(xi, xj) ≤
√
3rs (1)

where, d(xi, xj) denotes the distance between xi and xj.
Denote that the numbers of sensors in A and B are

NA and NB. For any xi Î A and xj Î B, if
d(xi, xj) ≤ √

3rs, then the connection value between xi
and xj is referred to be 1, say cij = 1. Thereby, the con-
nectivity intensity between clusters A and B can be cal-
culated as

CAB =
NA∑

i=1

NB∑

j=1

cij
NA × NB

(2)

The calculation of connectivity intensity is executed
along with the cluster-forming operation. Clusters A
and B can be merged only when CAB = 1, i.e., A and B
are neighboring clusters. Moreover, in order to

guarantee the coverage-connectivity in the scheduling
process, there must exist at least one other cluster
(denoted as D) that can satisfy CAD and CBD simulta-
neously. Hence, the connectivity of the area covered by
active sensors of these given two clusters A and B can
be guaranteed.

3.3 Priority design in cluster merging
In cluster merging, each two adjacent clusters that
matches sensing coverage requirement is assigned with a
utility value. For a given cluster, there may exist several
candidate clusters that can be merged with, and only one
cluster is allowed to be merged with the given cluster in
our algorithm. Therefore, we rank the candidate merging
clusters according to their utility value and the one with
lower utility value is merged ultimately until no candidate
merging clusters satisfy merging requirement.
For a given cluster, several candidate clusters may

exist to form different pairwise clusters, if two or more
of them have not only the same but the least cluster
size. The problem that which one should be merged
with the given cluster will become a challenge for the
distribute environment. In our algorithm, we introduce
a random value distributed in 0[1] in the priority formu-
lation to solve this issue. Specifically, to balance energy
distribution among all clusters, merging priority should
be given to the cluster pairwise with the least sensors.
One reason is that it will spend more time for sensor
nodes in small-size clusters to be in active status due to
periodically alternative working mechanism, which
thereby leads to unbalanced energy distribution among
clusters. Furthermore, it is convenient for the cluster
heads to maintain only the sensor number information
of their clusters, thus avoiding collection of the nodes’
residual energy which is hard to implement. For any
two adjacent clusters Ai and Aj , the number of sensors
in them are size(Ai) and size(Aj), respectively. The
priority value is given by

priority = size(Ai) + size(Aj) + R (3)

where, R is a random value uniformly distributed in
[0,1].

3.4 Dynamic refusal scheme
A purely distributed algorithm is characterized by con-
currency which may bring deadlocks. There are four
necessary and sufficient conditions for a deadlock to
occur.
(a) Mutual exclusion condition. There is a kind of

resource that cannot be used by more than one process
at a time. In the cluster merging process, for example,
each cluster can simultaneously merge with only one
another cluster at most.

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 5 of 14

(b) Hold and wait condition. Processes already holding
resources may request new resources held by other pro-
cesses. During cluster merging, each cluster holds a
resource (i.e., the cluster itself) and meantime waits for
another cluster that holds the same resource to merge
with.
(c) No preemption condition. No resources can be

forcibly removed from a process that holds it, and
resources can be released only by the explicit action of
the process. A cluster who broadcasts a merging request
would not accept a merging request from other clusters.
(d) Circular wait condition. Two or more processes

form a circular chain where each process waits for a
resource that the next process in the chain holds. Given
that the sensor nodes are homogeneous and the clusters
are equal with each other, it is reasonable to suppose
that circular waiting does exist during cluster merging.
Considering the severe consequence brought by dead-

lock, it is necessary to design an approach to break at
least one of the four conditions that would produce a
deadlock. Here, we introduce a dynamic refusal scheme
to combat the deadlock problem through avoiding cir-
cular-waiting.
Specifically, each initiative cluster opens a timer and

creates a variable named WaitPossibility after delivering
the request for merging, the value of which indicates the
possibility of accepting the request and refusing other
requests. This value is initially set to 0.9, and then
decreases by a fixed rate with time until it reaches zero.
During cluster forming process, a cluster that receives a
merging request will first check the source of the
request rather than directly accept it, if the source is
one of its merging targets, the cluster can deliver an
acknowledge to accept the request with a possibility of
the value of WaitPossibility (particularly, 0 means a
refusal).

3.5 Sleep/wake scheduling
Due to the fact that sensors within the same cluster are
densely deployed, the connectivity of the area covered
by active sensors can be guaranteed. It is noteworthy
that the selection of active sensors in different clusters
is independent from others. Thus, to evaluate the con-
nectivity between the cluster and its neighboring clus-
ters, a connection value for each cluster (denoted as A)
is calculated as follow.

CONA =
∑

B∈neighbor(A)
CAB (4)

It can be seen from (4) that the connection value for
each cluster is evaluated by the summation of the con-
nectivity intensities between A and its neighboring clus-
ters. In addition, we can see that if CONA is larger than

a given threshold h, only one sensor with the highest
energy is needed to be active. Otherwise, two sensors
are required to keep in active mode in cluster A.

4 CDSWS: coverage-guaranteed distributed sleep/
wake scheduling
We considered the scenario where nodes are densely
deployed into a region of interest. That means that only
some nodes are selected to be active to maintain sensing
coverage and network connectivity. The goal of our
CDSWS is to partition these nodes into clusters, and at
least one node in each cluster is allowed to be active to
perform monitoring task. Meanwhile, nodes in the same
clusters work alternatively to save energy. Our CDSWS
has three major phases: initialization phase, cluster
forming phase and sleep/wake scheduling phase.
In this scheme, each cluster is a basic running unit.

First it runs an initiative thread to search any clusters
that can be merged with, and then opens a listener for
receiving messages from other clusters. The initiative
thread can be divided into two parts, i.e., initiative
searching and merging. In order to control the distribu-
ted process, we specify six states for each cluster to dif-
ferentiate its working status.

Decision
A cluster is said to be in Decision state when it has not
sent its merging request or has already finished a round
of merging process, and this cluster can accept merging
requests from other clusters in this state.

Contending
A cluster that has decided its merging target and has
sent the request message will go into this state so that
this cluster can deal with the request from other clusters
through the dynamic refusal mechanism.

Waiting
A cluster will be switched into Waiting state immedi-
ately after responding an initiative cluster, and wait for a
corresponding merging instruction until waiting delay
exhausts or receiving a instruction.

Locking
The cluster will stop searching, namely entering Locking
state, while all of its neighboring clusters enter the mer-
ging process. Its locking level is determined by the num-
ber of lock messages from its neighboring clusters.

Merging
Two neighboring clusters who reach an agreement to
merge with each other will both start the Merging pro-
cess regardless of other merging requests.

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 6 of 14

Disposed
When two clusters are successfully merged into a new
and larger one, their IDs will be disposed from the
memory of their respective head nodes and neighbors.
Each cluster switches between these six states in the

cluster forming process until the whole process ends.
Besides, because the process runs in a distributed man-
ner, it is necessary for the nodes and cluster heads to
memorize several important variables of the algorithm,
which are shown in Tables 1 and 2.

4.1 Initialization phase
In the initialization phase, sensor nodes transmit and
receive packets randomly after they are deployed. There-
fore, every node obtains the location information of its
neighbors. The proposed algorithm is a distributed
heuristic algorithm, it starts from the initial partition
where each node forms a unique cluster while being the
head itself and opens a listener preparing to receive
messages from other clusters. These clusters enter Lock-
ing state first, and then broadcast a message to search
for neighbors and memorize their IDs while wait
responses. Afterwards, the cluster head sends an
UPDATE message to its neighbors, which contains the
basic information of the cluster. As long as a cluster
receives an UPDATE message from each of its neigh-
bors, it goes into Decision state. At the end of the initia-
lization phase, nodes move to the cluster forming phase
where two potential clusters will be merged into a large
one through a user predefined iterative process until no
cluster pairs can be further merged.

4.2 Cluster forming phase
Once all the clusters have entered Decision state, each of
them creates a thread to run the initiative searching pro-
cess. Meanwhile, its listener keeps open and waits for
messages. The initiative searching process consists of
three steps. First, each cluster calculates its merging
priority by using the information of its neighbors as men-
tioned in Section 3. If a cluster finds a target to merge
with, it will memorize the ID of the target and enter into
Contending state and it will stop the whole merging pro-
cess. Second, under the former circumstance in step 1,

the cluster delivers a MERGE_REQ message to the target
and opens a timer while the value of WaitPossibility is
set to 0.9 which will be decreased over time. Third, the
cluster waits for a reply from the target until its state is
turned into Disposed. The procedure of initiative search-
ing is summarized in Algorithm 1.
The listener of a cluster works all the time during the

whole merging process, and it responses each received
message from other clusters. To distinguish the received
messages with distinct functions, we design a number of
message heads for the listener and their corresponding
trigger shown in Algorithms 2, 3, 4, 5 and 6.
MERGE_REQ
It is a merging request which is sent by an initiative
cluster to its merging target.
MERGE_ACK
It is an acknowledgement of MERGE_REQ. A cluster that
receives a MERGE_REQ and in Contending or Waiting
state will first check the source (namely ID of this source
node) of the message according to the content of its Mer-
gingTarget. If the source is one of its merging target, the
cluster either deliver a MERGE_ACK to accept the
request or refuse it by using the dynamic refusal scheme.
MERGE_NAK
It is a refusal of MERGE_REQ. A cluster that receives a
merging request but not in Decision or Contending
state will deliver a MERGE_NAK to refuse this request.
As to a cluster that receives a MERGE_NAK, its state
will transfer into Decision and then initiate next
searching.

Table 1 Variables in node

Name Description

ID Identification of the node

Location Geographic location of the node

Address Network address of the node

rc Communication radius of the node

rs Sensing radius of the node

IsHead A Boolean variable indicating whether the node is the head of the cluster

MyCluster ID of the cluster the node belongs to

Table 2 Variables in cluster head

Name Description

ID Identification of the cluster

Head Head of this cluster

Members Members in the cluster

Neighbors Neighbors of this cluster

State Current state of the cluster

WaitPossibility Possibility of this cluster refusing requests from other
clusters

MergingTarget ID of another cluster considered as the merging target

LockLevel Locking level of this cluster

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 7 of 14

MERGE
This is a merging rule for two clusters. If a cluster is not
in MERGING state, it will check whether the merging
message is from its mergingTarget. If yes, the merging
begins and both of these clusters first turn their states
into Merging, the cluster with more sensor nodes will
be the initiative one and its cluster head will record the
information of the new merged cluster. After two clus-
ters are merged, they will be in DECISION state.
CANCEL
It is a cancellation of its former merging request sent by
an initiative cluster to its merging target. A cluster in
the state of Waiting will reset the content of Merging-
Target and go into Decision state when it receives this
CANCEL message.
LOCK
It is a locking signal. Clusters stepping into Merging
state, namely starting merging, will broadcast a LOCK
message. A cluster that not being in the state of Mer-
ging or Waiting will raise its locking level by 1 while
receiving one LOCK, and go into the state of Locking
while the locking level is high than 0.
UPDATE
It carries information of an initiative cluster that has
already been merged with another one. When a cluster
in the state of Locking receives a UPDATE message, its
locking level will decrease by 1, and it will transfer into
Decision state if the lock level is 0.
DISPOSED
Its content is the information of a passive cluster that
has been merged by another. When the cluster in the
state of Locking receives this message, its lock level will
decrease by 1 as well as receiving a UPDATE message.
The whole flow diagram of cluster forming is shown

in Figure 2.

4.3 Sleep/wake scheduling phase
Once the cluster forming process is completed, every
cluster starts the process of sleep/wake scheduling. In
order to save energy, only one or two nodes with high-
est residual energy in each cluster are required to keep
active, while others turn off their radio devices, i.e.,
being asleep.
In the continuous data-gathering mechanism, each sen-

sor node in a given cluster works periodically. At the
beginning of sleep/wake scheduling, all the nodes have to
keep active to configure the network, i.e., active node(s)
selection. Generally, node(s) with highest energy will
undertake the sensing task in a cluster. The cluster head
decides which node(s) should be in active state. In one
cluster, the cluster head delivers a WORK message to
order the selected node(s) to perform its/their duty as
working node(s), moreover, one of which is told to be the

head node in the next period. Meanwhile, the head delivers
a SLEEP message to all of the rest nodes. All the sleeping
nodes will wake up and send a WORK_REQ to the cluster
head to participate in node(s) selection when the next
round comes. While receiving WORK_REQs from all the
sleeping nodes in the cluster, the head will run the process
of selecting active nodes. The procedures that deal with
distinct messages are summarized in Algorithm 7.

4.4 Time complexity analysis
Now we analyze the complexity of CPA and CDSWS. We
only analyze cluster or group merging phase because it
significantly affects the time connectivity of whole algo-
rithms. Assume that n sensors are deployed into an area
of interest, and the average connectivity degree is m. In
CPA, the connectivity level for every node is firstly mea-
sured, and complexity of calculating the connectivity
level is O(n2). Another important phase is the group mer-
ging which includes calculating merging priority and
ranking. In the process of calculating merging priority,
the maximum value of connectivity for each group is m.
So the complexity of executing union or intersection
operation for every two candidate groups is O(m2). It is
also required to measure the level of equivalence between
these two groups, which can be indicated as a cartesian
product of two groups, so the connectivity becomes
O

(
m × n

m

) × O
(
m2

)
, that is O(nm2). Further, the ratio of

energy in two groups to the total energy of the entire net-
work is then calculated, and the complexity is O(n + 2m).
Thus, the complexity of calculating merging priority is
approximate to O(nm2). In the process of sorting mer-
ging priority for all candidate merging groups, because
the number of groups is uncertain in each iteration and
the maximum value is n, the complexity can be denoted
as O(n). Therefore, in each iteration of the merging and
ranking phase, the complexity is O(n) + O(nm2), and the
maximum number of iterations does not exceed n, so
the complexity is O(n2) + O(n2m2). Therefore, the
whole complexity of CPA is O(n2) + O(n2m2) + O(n2) =
O((m2 + 2)n2).
In CDSWS, we only calculate the time complexity for

each node because our CDSWS is a distributed scheme.
After sensors are initially deployed, each node records
information from at most m adjacent nodes, and the com-
plexity is O(m). Unlike CPA, CDSWS only ranks candidate
nodes or clusters that satisfy merging conditions, and the
number of candidate nodes or clusters does not exceed m.
Normally, the number of merging requests of nodes is lar-
ger than m but smaller than m2 because not all the mer-
ging requests can be really achieved due to concurrency of
nodes. Therefore, the whole complexity of each node in
our CDSWS does not exceed O(m3). Actually, the run
time of each node may not be fully in accordance with the

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 8 of 14

above theoretical analysis due to concurrency of nodes,
even so, our CDSWS still performs better than CPA in
time complexity.

5 Performance evaluation
5.1 System configuration
Our algorithm is simulated with homogenous sensors
randomly deployed in square areas. Both the

communication radius and sensing radius are fixed in
each experiment, and the value of which varies in dif-
ferent experiments. It is also assumed that each node
has an initial energy of 500 Units and 1 s of work
costs 1 Unit of energy. To simulate the behavior of
sensor nodes as in real environment, a 30 ms delay is
added in each communication.

Start

Search the
meringTarget by the

priority

No message received

Contending

Decide a target

Send
MERGE_R

EQ

EndNo available target

Response
MERGE

Receive MERGE_ACK

Merging

Broadcast
LOCK

Run the process
of merging
Broadcast

UPDATE or
DISPOSE

Receive MERGE_NAK

Decision

LOCKING
Receive

UPDATE or
DISPOSE and
the Locking

level<1

Receive LOCK
Response

MERGE_ACK
Decide to accept

request or not
Receive MERGE_REQ

Yes

No

Response
MERGE_NAK

Waiting

Receive MERGE

Time out

Figure 2 The whole flow diagram of cluster merging phase.

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 9 of 14

5.2 Cluster merging
The dynamic refusal scheme is a key technique to tackle
circular waiting, which further improves the efficiency of
clusters forming. In this experiment, we evaluate the
impact of dynamic refusal scheme on cluster forming in
terms of merging time.
Here, a WSN is con figured with different sensor den-

sities (say 1-5 sensors per grid) randomly deployed in a
100 × 100 square area which is divided into 25 grids
with the size of 20 × 20 for each. In order to compare
the performance of our algorithm with that of CPA, the
communication radius and sensing radius are set equal
to those in CPA, say 40

√
5 and 20

√
5, respectively. To

reduce the effects of stochastic factors involved in the
test, we run this experiment 30 times and then average
the results.
Figure 3 shows that the merging efficiency is signifi-

cantly improved by using the dynamic refusal scheme,
especially for the deployments with higher node density.
For example, approximately 30 s is reduced with the
deployment of five nodes per grid. Figure 4 shows that
the merging time cost per node decreases to around
0.25 s by a 0.1 s from nearly 0.35 s with the deployment
of one node in each grid, and even 0.2 s is saved when
there are five nodes in each grid. With higher node den-
sity, both the total merging time and the merging time
per node increase almost linearly, which should be
attributed to the increasing frequency of merging and
information exchanges. However, both of them can be
significantly reduced by using our dynamic refusal
scheme, this can be interpreted under the scenario
where circular waiting will more possibly occur as node
density increases, the efficiency of cluster forming will
deteriorate due to frequent and unavoidable failures to
merging handshaking.

In addition, a comparison of average cluster size is
made between CPA and our CDSWS. The table below
provides the comparison result when the node density is
5. Because parameter controls the minimum degree of
the 2-induced graph of the final partition in CPA [8],
we list four different clustering results with different set-
tings. We notice from Table 3 that the average size of
each cluster of our algorithm is larger than that of CPA.
This is because the merging constraint in CDSWS is
relaxed while CPA does not consider the coverage guar-
antee. In our CDSWS, the average size of each cluster is
larger that that of CPA, which means that less clusters
are produced. Moreover, in most cases, the connection
value between a cluster and its neighbors is larger that
the threshold, only one sensor in each cluster needs to
be in active state. Therefore, a minimum number of
nodes are selected to be active.

5.3 Sleep/wake scheduling
In this section, we investigate the effects of sleep/wake
scheduling. The simulation region is a 100 × 100 square
area which is divided into 10 × 10 grids with a grid of
10 × 10 for each. The communication radius and sen-
sing radius are set to 40

√
5 and 20

√
5, respectively, as

the same in the cluster forming part. First, we compare
our algorithm with CPA in terms of the number of

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

M
er

gi
ng

 T
im

e(
se

co
nd

s)

Node density

 Using dynamic refusing mechanism
 Without dynamic refusing mechanism

Figure 3 Merging time VS node density.

1 2 3 4 5

0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70

 Using dynamic refusing mechanism
 Without dynamic refusing mechanism

M
er

gi
ng

 T
im

e
pe

r N
od

e(
se

co
nd

s)

Node density
Figure 4 Merging time per node VS node density.

Table 3 Average cluster size produced by CDSWS and
CPA

Partition approach Average cluster size

CDSWS 9.4

CPA (mindeg = 2) 7.0

CPA (mindeg = 3) 6.0

CPA (mindeg = 4) 5.5

CPA (mindeg = 5) 4.7

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 10 of 14

working nodes in the process of sleeping scheduling.
Table 4 shows that the number of working nodes in our
algorithm during each working round is less than that
in CPA, especially when h = 2.4, it achieves the least
working nodes, i.e., only 60 nodes for node density 2
and 64 nodes for node density 3. Furthermore, Table 5
also indicates that the coverage rate reaches more than
99% with different values of h.
We also show the impact of h on the number of work-

ing nodes. In this example, the communication radius
and sensing radius are set to 20 and 10, respectively.
Figure 5 illustrates the general trend of the number of

working nodes. With the growth of the number of
deployed nodes, the numbers of working nodes experi-
ence a sharp increase first, followed by a comparatively
steady and marginal rise. But the corresponding twists
show a little difference, say around 75 for the 50 × 50
area. More importantly, the value of shows a strong cor-
relation with the number of working nodes. That is,
more working nodes are required to achieve a higher
value of h. Moreover, because the average size of each
cluster in our scheme is larger that that of CPA, the
number of working nodes by our CDSWS is thereby
smaller that that of CPA.

5.4 Coverage guarantee
In this section, we study the coverage issue. Here, the
monitoring area is 50 × 50 which is divided into 25
grids. The communication radius and the sensing radius
are 20 and 10, respectively.
In Figure 6, we observe that the coverage rate

becomes higher with the increasing number of deployed
sensors. We also investigate the impact h of on sensing
coverage in Figure 6. Here, h is a threshold that controls
how many sensors are selected to be active. When
deployed sensors are fixed, h larger will lead to more
active nodes, which thereby improves the whole sensing
coverage. However, h has only a small influence on the
sensing coverage for the scenario where sensors are den-
sely deployed. In addition, the coverage rates generated
by CDSWS and CPA can achieve almost complete cov-
erage when more than 150 nodes are deployed into the
region.

Another experiment is carried out to capture the effect
of h on network coverage with the network running. The
results are shown in the Figure 7. In the earlier stage,
where the energy of each node is sufficient, the network
coverage keeps steady. A higher level and a higher level
of coverage is always with a higher value of h. Then, the
figure shows a slight fall in the coverage after a long
steady process due to energy consumption. Finally, the
network coverage degrades dramatically as the energy
consumption is aggravated. In contrary to the earlier
stage, a higher value of h will result in a lower coverage
level. The reason is that more active nodes are required
to maintain a higher level of network coverage (denoted
by a higher value of h), and nodes will consume energy
faster until their failures. Thus, it is impossible to keep a
higher level of network coverage by more active nodes.
Accordingly, there is an essential tradeoff between cover-
age guarantee and network lifetime, that is, a higher h
indicates a better coverage but a shorter network lifetime,
and vice versa. Meanwhile, we simulated the trend of the
coverage performance of CPA with the network running.
It also shows a slight fall and performs worse than
CDSWS when h is set to 2.4 and 3.0.

5.5 Network survivability
Finally, we evaluate our CDSWS from the perspective of
network survivability which mainly involves the energy
consumption of nodes during their working period.

Table 4 Number of working nodes needed by using
CDSWS and CPA

Number of working nodes Destiny = 2 Destiny = 3

CDSWS (h = 2.4) 60 64

CDSWS (h = 3.0) 69 75

CDSWS (h = 3.6) 71 87

CPA (mindeg = 2) 66 70

CPA (mindeg = 3) 76 81

CPA (mindeg = 4) 88 90

Table 5 Coverage performance evaluation by our CDSWS
under different value of h and different node-density
deployments

Coverage h = 2.4 (%) h = 3.0 (%) h = 3.6 (%)

Destiny = 1 99.575 99.753 99.920

mDestiny = 2 99.827 99.895 100

Destiny = 3 100 100 100

20 40 60 80 100 120 140 160 180 200 220
10

15

20

25

30

35

40

N
um

be
r o

f W
or

ki
ng

 N
od

e

Number of deployed nodes

 CDSWS()
 CDSWS()
 CDSWS()
 CPA

Figure 5 Number of working nodes in area of 50 × 50 .

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 11 of 14

Because energy consumption in cluster forming phase is
comparatively low, it is not included in this example.
Figure 8 shows a comparison between CDSWS and

CPA in terms of fraction of survival nodes. Apparently,
our algorithm has a stronger survivability than CPA,
especially at the end of network lifetime since the sche-
duling by CDSWS makes the energy consumption of
nodes in each cluster more balanced and needs fewer
working nodes than CPA. In other words, nodes in net-
work with CDSWS have a considerably long survival-
cycle.

6 Conclusion
This article studied the sleep/wake scheduling problem
in WSNs and proposed a new CDSWS to improve net-
work performance. There are three advantages in this
algorithm, i.e., coverage guarantee, algorithm efficiency,
and energy balance. Coverage is a fundamental QoS of
topology control in WSNs, we studied coverage

provision based on a prior proof that if the radio range
of sensor is equal to or greater than twice the sensing
range, then complete coverage implies connectivity, as a
result, the network connectivity is provided as well. Sec-
ond, algorithm efficiency is another essential aspect of
our proposed algorithm. Due to the fact that inefficient
ones always produce long time delay and energy dissipa-
tion, this problem was thereby investigated by avoiding
deadlock during cluster forming phase. Accordingly, we
designed a dynamic refusal scheme to break circular-
waiting by setting a time-varying possibility in each clus-
ter, which determines whether a merging request should
be accepted. The last but not least important, we
obtained an energy-balanced network by allowing more
than one node in each cluster to keep in an active state.
Simulations were conducted to evaluate the performance
of our proposed algorithm. The results illustrate that
CDSWS outperforms existing algorithms with respect to
coverage guarantee, algorithm efficiency and energy
conservation.
Algorithm 1 - Procedure of initiative searching
1 : for search for the mergingTarget if it exists {
2 : if the state of the cluster is Decision {
3 : set the state of the cluster Contending;
4 : if the state of the cluster is not Disposed {
5 : send MERGE_REQ to mergingTarget;
6 : }
7 : set WaitPossibility = 0.9;
8 : while the state of the cluster is not Decision {
9 : set the WaitPossibility-= 0.2 every 100

milliseconds;
10: if the state of the cluster is Disposed
11: return;
12: }
13: set delay with 1000* size(cluster) milliseconds;
14: }
15: }

70 140 210

85

90

95

100

 CDSWS()
 CDSWS()
 CDSWS()
 CPA

C
ov

er
ag

e(
%

)

Number of Node

Figure 6 Coverage effect in area of 50 × 50 .

0 500 1000 1500 2000 2500 3000
50

55

60

65

70

75

80

85

90

95

100

 CDSWS()
 CDSWS()
 CDSWS()
 CPA

C
ov

er
ag

e(
%

)

Simulation Time (seconds)

Figure 7 Coverage with 200 nodes in area of 50 × 50 .

0 500 1000 1500 2000 2500 3000

0.0

0.2

0.4

0.6

0.8

1.0 CDSWS
 CPA

Fr
ac

tio
n

of
 S

ur
vi

ve
d

N
od

es
(%

)

Simulation Time (seconds)
Figure 8 Fraction of survived nodes.

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 12 of 14

Algorithm 2 - Trigger for MERGE_REQ
1 : case MERGE_REQ:
2 : if the state of cluster is Decision or Contending {
3 : if mergingTarget is null or the message is from

mergingTarget {
4 : response MERGE_ACK;
5 : set the state of cluster WAITING;
6 : set a delay for waiting;
7 : } else {
8 : if a random number <WaitPossibility {
9 : response MERGE_ACK;
10: } else {
11: if mergingTarget is not null{
12: send CANCEL to mergingTarget;
13: }
14: response MERGE_ACK;
15: set the state of cluster WAITING;
16: set a delay for waiting;
17: }
18: }
19: } else {
20: response MERGE_ACK;
21: }
Algorithm 3 - Trigger for MERGE_ACK
1 : case MERGE_ACK:
2 : if the state of cluster is Contending or Waiting {
3 : if mergingTarget is null or the message is from

mergingTarget {
4 : response Merge;
5 : send Merge to itself;
6 : }
7 : }
Algorithm 4 - Trigger for MERGE
1 : case MERGE:
2 : if the state of the cluster is not MERGING and the

message is from mergingTarget {
3 : set the state of the clusters MERGING;
4 : broadcast Lock;
5 : if the size of the cluster > the size of merging-

Target {
6 : merge the mergingTarget;
7 : broadcast UPDATE;
8 : } else if the size of the cluster==the size of mer-

gingTarget {
9 : if (the ID of the cluster < the ID of merging-

Target) {
10: merge the mergingTarget;
11: broadcast UPDATE;
12: } else {
13: broadcast DISPOSED;}
14: merged by mergingTarget;}
15: } else {
16: broadcast DISPOSED;
17: merged by mergingTarget;

18: }
19: set the state of clusters DECISION;
20: }
Algorithm 5 - Trigger for UPDATE
1 : case UPDATE:
2 : refresh the information of the source cluster;
3 : if the state of the cluster is LOCKING {
4 : the locking level -= 1;
5 : if the locking level == 0;
6 : set the state of the cluster DECISION;
7 : }
Algorithm 6 - Trigger for DISPOSED
1 : case DISPOSED:
2 : delete the record of the source cluster;
3 : if the state of the cluster is LOCKING {
4 : the locking level -= 1;
5 : if the locking level == 0;
6 : set the state of the cluster DECISION;}
7 : }
Algorithm 7 - Sleep/wake Scheduling
1 : case WORK:
2 : response SLEEP;
3 : start sensing;
4 : set the node cluster head;
5 : case SLEEP:
6 : stop sensing;
7 : set the node normal cluster members;
8 : case WORK_REQ:
9 : if the number of the WORK_REQ message

received{
10: select a node remains the highest energy;
11: if the CON of the cluster <h {
12: select another node remains highest energy
13: }
14: }
15: send WORK to the nodes selected;
16: send SLEEP to other nodes;

Acknowledgements
This research is partially supported by research grants from the National
Science Foundation of China under Grant Nos. 70701025 and 71071105, the
Program for New Century Excellent Talents in Universities of China under
Grant No.NCET-08-0396, and a National Science Fund for Distinguished
Young Scholars of China under Grant No.70925005, and the Program for
Changjiang Scholars and Innovative Research Team in University.

Author details
1Institute of Systems Engineering, Tianjin University, Tianjin 300072, China
2Department of Information Management and Management Science, Tianjin
University, Tianjin 300072, China

Competing interests
The authors declare that they have no competing interests.

Received: 17 November 2011 Accepted: 14 February 2012
Published: 14 February 2012

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 13 of 14

References
1. CK Ting, CC Liao, A memetic algorithm for extending wireless sensor

network lifetime. Inf Sci. 180(24), 4818–4833 (2010). doi:10.1016/j.
ins.2010.08.021

2. GF Nan, MQ Li, Energy-efficient query management scheme for a wireless
sensor database system. EURASIP J Wirel Commun Netw. 2010, 1–18 (2010)

3. K Kalpakis, K Dasgupta, P Namjosh, Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks.
Comput Netw. 42(6), 697–716 (2003). doi:10.1016/S1389-1286(03)00212-3

4. H Jun, W Zhao, MH Ammar, EW Zegura, C Lee, Trading latency for energy
in densely deployed wireless ad hoc networks using message ferrying. Ad
Hoc Netw. 5(4), 444–461 (2007). doi:10.1016/j.adhoc.2006.02.001

5. A Chehri, P Fortier, M Tardif, UWB-based sensor networks for localization in
mining environments. Ad Hoc Netw. 7(5), 987–1000 (2009). doi:10.1016/j.
adhoc.2008.08.007

6. T Yardibi, E Karasan, A distributed activity scheduling algorithm for wireless
sensor networks with partial coverage. Wirel Netw. 16(1), 213–225 (2010).
doi:10.1007/s11276-008-0125-2

7. E Bulut, I Korpeoglu, Sleep scheduling with expected common coverage in
wireless sensor networks. Wirel Netw. 17(1), 19–40 (2011). doi:10.1007/
s11276-010-0262-2

8. Y Ding, L Wang, L Xiao, An adaptive partitioning scheme for sleep
scheduling and topology control in wireless sensor networks. IEEE Trans
Parallel Distrib Syst. 20(9), 1352–1365 (2009)

9. JJ Niu, Distributed self-learning scheduling approach for wireless sensor
network, in 2nd International Conference on Future Computer and
Communication, Wuhan, China, pp. 253–257 (21–24 May 2010)

10. RW Ha, PH Ho, XS Shen, Cross-layer application-specific wireless sensor
network design with single-channel csma mac over sense-sleep trees.
Comput Commun. 29(17), 3425–3444 (2006). doi:10.1016/j.
comcom.2006.01.019

11. B Chen, K Jamieson, H Balakrishnan, R Morris, SPAN: an energy-efficient
coordination algorithm for topology maintenance in ad hoc wireless
networks. Wirel Netw. 8(5), 481–494 (2002). doi:10.1023/A:1016542229220

12. JP Wang, DY Li, GL Xing, HW Du, Cross-layer sleep scheduling design in
service-oriented wireless sensor networks. IEEE Trans Mobile Comput. 9(11),
1622–1633 (2010)

13. NA Pantazis, DJ Vergados, DD Vergados, C Douligeris, Energy efficiency in
wireless sensor networks using sleep mode TDMA scheduling. Ad Hoc
Netw. 7(2), 322–343 (2009). doi:10.1016/j.adhoc.2008.03.006

14. Y Wu, S Fahmy, NB Shro, Sleep/wake scheduling for multi-hop sensor
networks: non-convexity and approximation algorithm. Ad Hoc Netw. 8(7),
681–693 (2010). doi:10.1016/j.adhoc.2010.02.002

15. T Yardibi, E Karasan, A distributed activity scheduling algorithm for wireless
sensor networks with partial coverage. Wirel Netw. 16(1), 213–225 (2010).
doi:10.1007/s11276-008-0125-2

16. E Bulut, I Korpeoglu, DSSP: a dynamic sleep scheduling protocol for
prolonging the lifetime of wireless sensor networks, in 21st International
Conference on Advanced Information Networking and Applications Workshops,
Niagara Falls, Canada, pp. 725–730 (21–23 May 2007)

17. M Esnaashari, MR Meybodi, A learning automata based scheduling solution
to the dynamic point coverage problem in wireless sensor networks.
Comput Netw. 54(14), 2410–2438 (2010). doi:10.1016/j.comnet.2010.03.014

18. Y Xu, J Heidemann, D Estrin, Geography-informed energy conservation for
Ad Hoc routing, in Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking, Rome, Italy, pp. 70–84 (July 2001)

19. M Peng, Y Xiao, PP Wang, Error analysis and Kernel density approach of
scheduling sleeping nodes in cluster-based wireless sensor networks. IEEE
Trans Veh Technol. 58(9), 5105–5114 (2009)

20. TR Sheltami, E Shakshuki, Neighbor-aware clusterhead with different sleep
scheduling protocols, in International Conference on Parallel Processing,
Portland, USA, pp. 143–147 (8–12 Sept 2008)

21. YB Ling, SG Chen, CYJ Chiang, On optimal deadlock detection scheduling.
IEEE Trans Comput. 55(9), 1178–1187 (2006)

22. XR Wang, GL Xing, CY Zhang, CY Lu, R Pless, C Gill, Integrated coverage
and connectivity configuration in wireless sensor networks, in Proceedings
of the 1st International Conference on Embedded Networked Sensor Systems,
Los Angeles, USA, pp. 28–39 (2003)

23. L Wang, Y Xiao, A survey of energy-efficient scheduling mechanisms in
sensor networks. Mobile Netw Appl. 11(5), 723–740 (2006). doi:10.1007/
s11036-006-7798-5

24. B Chen, K Jamieson, H Balakrishnan, R Morris, Span: an energy efficient
coordination algorithm for topology maintenance in Ad hoc wireless
networks. Wirel Netw. 8(5), 481–494 (2002). doi:10.1023/A:1016542229220

25. F Ye, G Zhong, L Lu, L Zhang, PEAS: a robust energy conserving protocol
for long-lived sensor networks, in 10th IEEE International Conference on
Network Protocols, Los Angeles, USA, pp. 200–201 (2002)

26. W Ye, J Heidemann, D Estrin, An energy-efficient MAC protocol for wireless
sensor networks, in Proceedings of the 21st International Annual Joint
Conference of the IEEE Computer and Communications Societies, California,
USA, pp. 1567–1576 (2002)

27. D Tian, ND Georganas, A coverage-preserving node scheduling scheme for
large wireless sensor networks, in Proceedings of the 1st ACM International
Workshop on Wireless Sensor Networks and Applications, Atlanta, USA, pp.
32–41 (2002)

28. A Boukerche, X Fei, RB Araujo, An optimal coverage-preserving scheme for
wireless sensor networks based on local information exchange. Comput
Commun. 30(14-15), 2708–2720 (2007). doi:10.1016/j.comcom.2007.05.018

29. W Choi, SK Das, Coverage-adaptive random sensor scheduling for
application-aware data gathering in wireless sensor networks. Comput
Commun. 29(17), 3467–3482 (2006). doi:10.1016/j.comcom.2006.01.033

30. J Deng, YS Han, WB Heinzelman, PK Varshney, Balanced-energy sleep
scheduling scheme for high-density cluster-based sensor networks. Comput
Commun. 28(14), 1631–1642 (2005). doi:10.1016/j.comcom.2005.02.019

31. S Gandham, M Dawande, R Prakash, Link scheduling in wireless sensor
networks: distributed edge-coloring revisited. J Parallel Distrib Comput.
68(8), 1122–1134 (2008). doi:10.1016/j.jpdc.2007.12.006

32. B Pazand, A Datta, A three-tiered node scheduling scheme for sparse
sensing in wireless sensor networks. Comput Commun. 33(3), 350–364
(2010). doi:10.1016/j.comcom.2009.10.003

33. K Wu, D Dreef, B Sun, Y Xiao, Secure data aggregation without persistent
cryptographic operations in wireless sensor networks. Ad Hoc Netw. 5(1),
100–111 (2007). doi:10.1016/j.adhoc.2006.05.009

34. HH Zhang, JC Hou, Maintaining sensing coverage and connectivity in large
sensor net-works. Ad Hoc Sens Wirel Netw. 1(1-2), 89–124 (2005)

doi:10.1186/1687-1499-2012-44
Cite this article as: Nan et al.: CDSWS: coverage-guaranteed distributed
sleep/wake scheduling for wireless sensor networks. EURASIP Journal on
Wireless Communications and Networking 2012 2012:44.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

Nan et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:44
http://jwcn.eurasipjournals.com/content/2012/1/44

Page 14 of 14

http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Literature review
	3 Motivation and major considerations
	3.1 Motivation
	3.2 Sensing coverage guarantee
	3.3 Priority design in cluster merging
	3.4 Dynamic refusal scheme
	3.5 Sleep/wake scheduling

	4 CDSWS: coverage-guaranteed distributed sleep/wake scheduling
	Decision
	Contending
	Waiting
	Locking
	Merging
	Disposed
	4.1 Initialization phase
	4.2 Cluster forming phase
	MERGE_REQ
	MERGE_ACK
	MERGE_NAK
	MERGE
	CANCEL
	LOCK
	UPDATE
	DISPOSED

	4.3 Sleep/wake scheduling phase
	4.4 Time complexity analysis

	5 Performance evaluation
	5.1 System configuration
	5.2 Cluster merging
	5.3 Sleep/wake scheduling
	5.4 Coverage guarantee
	5.5 Network survivability

	6 Conclusion
	Acknowledgements
	Author details
	Competing interests
	References

