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Abstract

In this article, we investigate to perform spectrum sensing in two stages for a target long-term evolution (LTE)
signal where the main objective is enabling co-existence of LTE femtocells with other LTE femto and macrocells. In
the first stage, it is required to perform the sensing as fast as possible and with an acceptable performance under
different channel conditions. Toward that end, we first propose sensing the whole LTE signal bandwidth using the
fast wavelet transform (FWT) algorithm and compare it to the fast Fourier transform-based algorithm in terms of
complexity and performance. Then, we use FWT to go even deeper in the LTE signal band to sense at multiples of
a resource block resolution. A new algorithm is proposed that provides an intelligent stopping criterion for the
FWT sensing to further reduce its complexity. In the second stage, it is required to perform a finer sensing on the
vacant channels to reduce the probability of collision with the primary user. Two algorithms have been proposed
for this task; one of them uses the OFDM cyclic prefix for LTE signal detection while the other one uses the
primary synchronization signal. The two algorithms were compared in terms of both performance and complexity.

1. Introduction

Spectrum scarcity has become one of the serious pro-
blems facing the wireless communications regulatory
bodies especially when the wireless applications and
standards are increasing significantly. At the same time,
a recent study by the United States Federal Communica-
tions Commission (FCC) shows that most of the allo-
cated spectrum in the US is under-utilized [1].
Cognitive radio (CR) technology enables other second-
ary users to co-exist with the primary users of a wireless
system and to make use of the non-utilized portions of
the spectrum, also known as the white spaces, thus
making a more efficient utilization of the spectrum
[2-4].

One of the most recent wireless standards, where the
use of CR is possible, is the long-term evolution (LTE)
used for broadband wireless access. LTE could provide
data rates up to 100 Mbps in the downlink and 50
Mbps in the uplink in a 20-MHz bandwidth; thanks to
its powerful physical layer which uses orthogonal fre-
quency division multiple access (OFDMA), multi-input
multi-output technology as well as advanced channel
coding techniques [5].
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Within the context of LTE, CR technology can possi-
bly be used when femtocells are deployed. These are
autonomous small cellular base stations designed for use
in subscribers’ homes and small business environments.
They radiate very low power (< 10 mW) and can typi-
cally support two to six simultaneous mobile users [6,7].
Recently, femtocells have attracted strong interest within
the telecommunication industry due to the unique bene-
fits they offer, both for the operators as well as the end
users. The small, low-cost, and low power home base
station improves the indoor coverage and network capa-
city, increases the average revenue per user, and
enhances customers’ loyalty [7]. These are very attrac-
tive benefits for the operators. As for the end users, the
femtocell solution provides better in-building call quality
and reduced calling cost at home. The battery life is also
improved because of the low power radiation [6].

On the other hand, several technical challenges are
expected due to the mass deployment of femtocells,
these include:

1- RF interference: femtocells operate in the licensed
spectrum owned by mobile operators and they may
share the same spectrum with the macrocell net-
work. RF interference could happen between neigh-
boring femtocells, femtocells to macrocells, and vice
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versa [8]. The spectrum has to be efficiently allo-
cated in the femtocell network to mitigate the inter-
ference problem. In [9-12], interference avoidance
strategies were developed in a coexisting environ-
ment of macrocells and femtocells.

2- Self-optimization and auto-configuration: The
femtocell is expected to operate in a plug and play
fashion to ease installation, configuration, and man-
agement. Methods for self-optimization and auto-
configuration have been investigated in [13,14] to
optimize the coverage of femtocells and minimize
the impact on the macrocell network.

3- Integration and interoperability with the core net-
work: Femtocells extend the operator’s cellular net-
work into homes, providing high data rate services.
Thus, integration and inter-operability with the
operator’s existing network and services are impor-
tant concerns for the operators [14].

The main problem with femotocells deployment is the
RF interference that could happen between neighboring
femtocells or between femtocells and macrocells. An
attractive solution to this problem is to avoid interfer-
ence by carefully controlling transmission power so as
to only just cover the user’s home. Yet, this method can-
not guarantee interference-free operation since the fem-
tocell must also provide complete coverage in the user’s
home. If the user places the femtocell too close to an
outside wall or a window, it may not be able to give full
coverage while avoiding leakage to a neighbor at the
same time. Thus, it could be much better if the LTE
femtocell could detect if the frequency band it intends
to use is already occupied by another nearby femtocell
before starting to operate [15]. A promising solution to
this problem is spectrum sensing. It is the responsibility
of the new femtocell user, namely, the secondary user,
to scan the white spaces in the LTE spectrum and then
to transmit in these white spaces, without interfering
with the other neighboring LTE users; namely the pri-
mary users.

In a CR system, when the secondary users are sensing
a channel, the sampled received signals of the secondary
users represent one of two hypotheses; Hypothesis H; in
which the primary user is active and hypothesis H in
which the primary user is inactive.

Hi :y(n) =s(n) +u(n), 1)

Ho :y(n) =u(n), (2)

where s(n) is the primary user’s signal, u(n) is the
noise, which is assumed to be Gaussian independent
and identically distributed (i.i.d.) random variables with
zero mean and variance 6°. In channel sensing, we are
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interested in the probability of detection, Py, and the
probability of false alarm, P;. P4 and Py are defined as
the probabilities that a sensing algorithm detects a pri-
mary user under hypothesis H; and H, respectively.
There are three important requirements in the sensing
process; the first is to keep the probability of detection
(Pq) of the LTE signal as high as possible, in order to
achieve reliable communications for the primary user.
The second requirement is to keep the probability of
false alarm (P) as low as possible to achieve efficient
radio utilization for the secondary user. Finally, the sen-
sing process and consequently, a correct decision,
should be accomplished as fast as possible. A challen-
ging task is to achieve a compromise between the three
previously mentioned requirements in order to achieve
an acceptable performance in both additive white Gaus-
sian noise channels (AWGN) and fading channels with
different Doppler frequencies (fy).

In order to meet the above requirements, it is usually
assumed that the sensing process is performed in two
stages as shown in [16]:

1. The first stage is coarse sensing, where we are
more concerned with expediting the sensing process
while maintaining an acceptable receiver operating
characteristic (ROC) in terms of Pyq and Pr. Examples
of widely used coarse sensing algorithms are energy
detection in the time domain or the frequency
domain [17], Wavelet-based sensing [18] as well as
others.

2. The second stage is fine sensing, where another
finer stage of sensing is employed in order to double
check for the white spaces after the coarse sensing
stage to achieve reliable communication for the pri-
mary user. Examples of fine sensing algorithms are
radio identification-based sensing [19], cyclostatio-
narity feature detection [20,21] as well as sensing
based on known signal preambles [22,23].

When designing the spectrum sensing module in a CR
system, two important points have to be well consid-
ered. The first point is the challenges associated with
the spectrum sensing process like the sensing time,
which puts a challenge on the CR design as there is a
tradeoff between the sensing reliability and the sensing
speed [24], the hidden node problem where the CR may
not be able to detect the primary transmitter due to
shadowing, hence sensing information from other CR
users is required for more reliable primary user detec-
tion; this is what is called “cooperative sensing” [25].
Finally, the hardware requirements where spectrum sen-
sing for CR applications require operation over wide
bands that need wideband RF sections as well as high
sampling rate and consequently high resolution analog-
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to-digital converters with large dynamic range and high-
speed signal processors [26]. The second point is select-
ing the most suitable sensing algorithm according to the
sensing requirements and the properties of the signal to
be sensed. There are various spectrum sensing algo-
rithms in the literature; for example, energy detector-
based sensing [17], waveform-based sensing [27], cyclos-
tationarity-based sensing [20,21], radio identification-
based sensing [19,28], and matched-filtering. When
selecting a sensing method, some tradeoffs should be
considered. The characteristics of the primary users are
the main factors in selecting a method. Cyclostationary
features contained in the waveform, existence of regu-
larly transmitted pilots, and timing/frequency character-
istics are all important. Other factors include the
required accuracy, sensing duration requirements, com-
putational complexity, and network requirements.

In this article, we use CR to solve the interference
problem arising from the autonomous deployment of
femtocells via reliable and efficient spectrum sensing. In
this study, we choose the fast wavelet transform (FWT)
algorithm in order to perform the coarse sensing stage
and compare its performance against the fast Fourier
transform (FFT)-based coarse detection in terms of both
performance and complexity. The reason behind choos-
ing FWT over other coarse sensing techniques is its
ability to decompose the sensing process into a number
of stages where a stopping criterion could be applied at
a certain stage to reduce the complexity. In particular, a
new intelligent decomposition (ID) algorithm is devel-
oped, where we provide a stopping criterion for the
FWT algorithm based on environmental parameters and
pre-defined thresholds. This algorithm uses a location
awareness module to get the wireless channel para-
meters used for sensing. In addition, a confidence metric
was added to indicate the amount of confidence in the
decision taken.

The coarse sensing algorithm first scans the whole
spectrum to search for the unoccupied LTE channels
with the resolution of a complete LTE channel. If none
exists, the FWT engine would go further in the LTE
spectrum to search with the resolution of a resource
block (RB) with a very slight additional complexity;
this constitutes another benefit of using FWT over
FFT. All this information is then transmitted to the
MAC layer that performs the scheduling among the
cognitive users.

In the fine sensing stage, two algorithms are proposed;
one of them uses the cyclic shift property of the LTE
OFDM signal while the other uses one of the LTE syn-
chronization signals, namely, the primary synchroniza-
tion signal. Fine sensing based on the primary
synchronization signal is chosen because it has less
complexity as compared to the use of other LTE
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synchronization signals such as the secondary synchro-
nization signal or the LTE reference signals (pilots), as
will be shown later in the sequel. Also, it is shown to
perform very well under different wireless LTE channel
models. Some optimizations are also done to the cyclic
prefix algorithm to enhance its performance and reduce
the complexity. Finally, end-to-end results are presented
showing the performance of both the coarse and fine
sensing results collectively for different coarse and fine
sensing algorithm pairs under various LTE channel
conditions.

The rest of this article is organized as follows: Section
2 explains the LTE coarse sensing stage along with its
results while Section 3 explains the fine sensing stage as
well as the end-to-end system results. Section 4 con-
cludes the study.

2. LTE coarse spectrum sensing

The LTE downlink and uplink transmission schemes are
based on OFDMA and single carrier frequency division
multiple access (SC-FDMA), respectively [29]. The basic
LTE scheduling unit in both downlink and uplink is
called an RB and consists of 12 subcarriers with a spa-
cing of 15 kHz (corresponding to 180 kHz overall) in
the frequency domain and six or seven consecutive
OFDM symbols (SC-FDMA symbols for the uplink) in
the time domain. The number of available RBs in the
frequency domain varies depending on the channel
bandwidth, which increases from 6 to 100 when the
bandwidth changes from 1.4 to 20 MHz, respectively. In
the time domain, each RB spans a slot, with a duration
equivalent to six or seven symbols (0.5 ms). Two slots
correspond to one subframe and ten subframes typically
form a frame (10 ms). LTE supports both time division
duplexing (TDD) and frequency division duplexing
(FDD). For TDD, a subframe within a frame can be allo-
cated to downlink or uplink transmissions. In the case
of FDD, because the downlink and uplink transmissions
are separated in the frequency domain, there is no allo-
cation of subframes in time.

In this section, we are mainly concerned with the
coarse sensing part of the LTE spectrum sensing mod-
ule. First, we give a brief summary on wavelets in gen-
eral explaining the FWT algorithm to be used for
sensing. After that, we move to a novel proposed algo-
rithm that uses the wavelet packet transform algorithm
to perform the coarse sensing stage assuming that the
primary signal is an LTE signal.

2.1 Fast wavelet transform

A wavelet is a waveform of effectively limited duration
that has an average value of zero. Comparing sine waves
which are the basis of Fourier analysis with wavelets,
sinusoids do not have limited duration. In addition,
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sinusoids are smooth and predictable while wavelets
tend to be irregular and asymmetric [30].

The continuous wavelet transform (CWT) is defined
as the summation of the signal multiplied by scaled and
shifted versions of the wavelet function. The results of
the CWT are many wavelet coefficients C, which are
functions of scale and position. Here, we show how the
CWT is performed in five steps:

1. Start with a wavelet and compare it to a section at
the start of the signal.

2. Calculate a number, C, which represents how
much correlation exists between the wavelet and this
section of the signal, the higher C is, the more the
similarity.

3. Shift the wavelet to the right and repeat steps 1
and 2 till the end of the signal.

4. Scale (stretch) the wavelet and repeat steps 1
through 3.

5. Repeat steps 1 through 4 for all scales.

Higher scales correspond to more stretched wavelets.
The more stretched the wavelet, the longer the portion
of the signal with which it is being compared, and thus
the coarser the signal features being measured by the
wavelet coefficients. Similarly, lower scales correspond
to more compressed wavelets and thus measuring the
finer signal details [30].

The CWT can operate at every scale, from that of the
original signal up to some maximum scale that is deter-
mined by trading off the need for detailed analysis with
available computational power. On the other hand, dis-
crete wavelet transform (DWT) operates on discrete
levels of scale.

The FWT is a computationally efficient implementa-
tion of the DWT that exploits the relationship between
the DWT coefficients at adjacent scales [30]. In wavelet
analysis, we often speak of approximations and details.
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The approximations are the high-scale, low-frequency
components of the signal. The details are the low-scale,
high-frequency components. In an FWT filtering pro-
cess, a signal is split into an approximation and a detail.
The approximation is then itself split into a second-level
approximation and detail, and the process is repeated.

In Discrete Wavelet Packet Transform (DWPT), the
details as well as the approximations can be split as
shown in Figure 1. DWPT could be used for fast spec-
trum sensing [18] as it divides the spectrum into an
approximation part and a detail part after the first stage,
then in the second stage; each part is divided again and
so on. At the final stage, the DWPT coefficients shall
indicate the amount of energy in each channel thus
used to indicate whether the channel exists or not after
comparing it to a certain threshold. In the sequel, the
term FWT shall be used to indicate the computationally
efficient implementation of the DWPT instead of DWT.
Using FWT has added many benefits to the spectrum
sensing process as shown in the upcoming sections
where we can go deeper while sensing the LTE spec-
trum till an RB resolution with a slight additional com-
plexity. In addition, a stopping criterion could be added
to the FWT sensing module to further reduce its com-
plexity which is our main concern in the coarse sensing
stage.

2.2 FWT LTE sensing performance versus FFT

In order to investigate the performance of using FWT in
LTE coarse spectrum sensing and compare it with that
of FFT, we revert to simulations. In our simulations, we
assume we have eight LTE channels with 5 MHz each
as shown in Figure 2. Consequently, three wavelet
decomposition stages will be needed to scan the eight
channels. Table 1 shows the downlink LTE signal para-
meters used in our spectrum sensing model. Let N be
the number of samples of the signal to be sensed, Ny,
be the number of LTE channels we need to sense, M be

Input
Signal

AAA DAA ADA DDA

DAD ADD DDD

Figure 1 A three stage DWPT process.
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Figure 2 PSD for 8 LTE channels where channels 1, 4 and 7 are

occupied and the remaining ones are empty.

the number of wavelet decomposition stages, where M =
logy(Nen), and L be the wavelet filter length which
equals twice the filter order. Daubechies (dbX) wavelets
[30] are used where X is the filter order so for example
in case of using db4 wavelets, L = 8. It can be shown
that the complexity of the FFT algorithm is in the order
of N x log,(N), while for FWT, the complexity is in the
order of N x M x L [30]. In our simulations, the sensing
duration is 2.5 ms (five LTE slots). For the FWT sen-
sing, a single FWT operation is performed every LTE
OFDM symbol, thus we perform 5 x 7 FWT operations,
while for FFT sensing the whole signal (the five LTE
slots) is divided into FFT blocks according to the FFT
size and then the average FFT of these blocks is the out-
put of the FFT sensing module.

According to the above, let us have a more detailed
view on the comparison. The complexity of the FWT
module is in the order of: 2x (Number of samples per

Table 1 LTE system parameters used in the spectrum
sensing model

LTE system parameters

Duplex mode FDD
FFT size 2048
Number of RBs 25
Number of carriers per RB 12
Number of useful carriers 300
Subcarrier spacing 15 kHz
LTE channel BW 4.5 MHz
Modulation per subcarrier QPSK
Number of LTE channels 8
System sampling frequency 80 MHz
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LTE OFDM symbol) x 7 x 5 x M x L, while for FFT
the complexity is in the order of (Number of FFT blocks
per five LTE slots) x FFT_size x log,(FFT_Size). Table 2
shows a detailed comparison between the two algo-
rithms in terms of their computational complexity for a
sensing duration of 2.5 ms.

In Figure 3, the ROC over an AWGN channel for
both FWT- and FFT-based sensing is shown while vary-
ing the FFT size and the FWT filter length. The results
of the simulations show that db2 wavelets have almost
the same complexity as the 256-point FFT; however,
db2 gives better performance in both high P4 and low
Pyp. On the contrary, although db4 needs more computa-
tions than the 512-point FFT, it is better than the 512-
point FFT only in case of higher Py, which is more
important for maintaining the QoS of primary users,
while in case of lower Pg, which is also important to
achieve better spectral efficiency, db4 is slightly worse.
Thus, we can deduce that the enhancement in the sen-
sing performance due to increasing the wavelet filter
order is less than that due to increasing the FFT size.
So, wavelets are preferred over FFT in case of lower fil-
ter orders and vice versa. But since we are talking about
the coarse sensing stage, our main concern is to achieve
an acceptable performance with the least possible com-
plexity to save the sensing time and the computational
requirements, hence, the choice of wavelets is the logical
choice here.

2.3 RB resolution sensing algorithm

A new sensing algorithm designed specifically for LTE
systems is now proposed. It uses the FWT algorithm to
go even deeper in the LTE spectrum till it reaches mul-
tiples of an RB resolution. The flow chart for the whole
system is shown in Figure 4. In our simulations, the spa-
cing between the LTE channels is 5 MHz while the
actual BW is 4.5 MHz, so there is a 0.25-MHz guard
band on both sides. In order to perform RB sensing on
a certain LTE channel, the following algorithm is pro-
posed:

1. Resample the LTE signal to extend the visible BW
to 5.76 MHz, where the number of RBs becomes 32
which is an integer power of 2 in order to be cap-
able of applying the FWT algorithm.

2. Shift the signal spectrum by the amount equal to
the guard band to align the spectrum to its edge.

3. Apply a 5-stage FWT sensing till we reach the RB
resolution.

In Figure 5, we can see the signal spectrum extended
to span 32 RB (i.e.,, 5.76 MHz), where the first 25 RBs
belong to the LTE signal under consideration while the
last 7 RBs are the ones added due to the bandwidth



Abdelmonem et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:6

http://jwcn.eurasipjournals.com/content/2012/1/6

Table 2 FWT versus FFT sensing complexity comparison

Page 6 of 19

FWT FFT

A single FWT operation per LTE OFDM symbol (5
slots x 7 FWT operations)

Complexity = 2 x (Number of samples per LTE
OFDM Symbol) X 7 X 5 X M x L

The five LTE slots are divided into FFT blocks according to the FFT size, the average FFT of
these blocks is the output of the FFT sensing module

Complexity = (Number of FFT blocks per 5 LTE slots) x FFT_Size X log,(FFT_Size)

Daubechies (dbN) wavelets are used where N is the 256 and 512 point FFT modules are used

filter order

1598520 computations for db2 FWT
3197040 computations for db4 FWT

1599488 computations for 256-point FFT
1797120 computations for 512-point FFT

extension mentioned above, also the RBs number 1, 2, 3,
4, 17, 18, 19, and 20 are considered unoccupied.

Two main challenges are associated with the proposed
algorithm:

1. The first one is that since the sensing resolution is
increased to an RB (i.e., 180 kHz), we will need to
perform five FWT stages so the signal is down-
sampled five times leaving a small number of sam-
ples per LTE RB to be used for detection. A solution
might be increasing the number of the input signal
samples which means increasing the sensing time.
Since it is required to perform fast sensing in the
coarse stage, the resolution in our simulations is
reduced to four RBs instead of one to avoid this
problem.

2. The second issue is related to the transmission of
the pilot signals in OFDM symbols number 0 and 4
within the slot on a one-out-of-six basis (i.e., each

RB has two pilots in these symbols) as shown in
[29], where the output will be higher than normal
due to the additional pilot energy. This has two pos-
sible solutions:
i. Properly choosing the decision threshold to
mitigate the higher energy due to pilots.
ii. During transmission there is a need for a
cooperating LTE base station to transmit zeros
in non-assigned RBs.

In our coarse sensing simulations, the presence of
the primary, secondary synchronization signals as well
as the physical broadcast channel has been neglected.
The results for the four RBs sensing are shown in Fig-
ure 6 where FWT and FFT are compared for different
FWT filter orders and FFT sizes. As mentioned before,
wavelets are preferred over FFT in case of lower filter
orders and vice versa. But since we are talking about
the coarse sensing stage, our main concern is to

0.5+

Pd

0.3

0.2

0.1

——db2 FWT
------- db4 FWT
—e— 512 point FFT R
—&— 256 point FFT

0 0.2 0.4

Figure 3 ROC for FWT versus FFT in a 0 dB SNR AWGN channel.
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5MHz resolution
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Consider it
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whole LTE

channel

The LTE channel
is totally occupied

Apply fine sensing
on the unoccupied

RB’s

Figure 4 LTE sensing algorithm flow chart.

achieve an acceptable performance with the least possi-
ble complexity to save the sensing time and the com-
putational requirements.

2.4 ID algorithm

Since the complexity of the sensing algorithm is one of
our main concerns, a new algorithm is now proposed to
further reduce the FWT complexity. This is a generic
algorithm that could be applied in case the sensing reso-
lution is the whole LTE channel or multiples of an RB
as described in the previous section.

The main idea behind this algorithm as shown in Fig-
ure 7 is to compute a certain metric for the FWT out-
put after each wavelet decomposition stage and compare
it with a pre-defined threshold to determine whether
this section is vacant or occupied. In this case, it is not
necessary to apply wavelet filtering on this section so
the complexity is further reduced.

The block diagram of the algorithm is shown in Figure
8. A more detailed description is shown below:

1- The approximation and detail after every FWT
decomposition stage shall be denoted by the name
section. So, first of all, the power of each section is
computed.
2- Then the number of channels per section in this
stage is computed as (Total Number of LTE Chan-
nels)/2(Pecomposition Stage) 5 then used to get the
power per LTE channel.
3- It is assumed that there exists another location
awareness module not implemented here, this mod-
ule provides us with some important parameters
like:
A. Large-scale environmental parameters:
+ Average LTE signal power, which depends on
the distance from the transmitter and the
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Resource Block Index
Figure 5 LTE channel spectrum with some RBs unoccupied in
the OFDM symbols other than 0 and 4 which do not have
pilots.

transmitted power. In case of femtocells, this
parameter will be different from the case of a
macro cell.
+ Shadowing margin, which depends on the
environment whether it is urban, sub-urban, or a
rural area.
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B. Small scale environmental parameters such as the
fading margin that depends on the wireless channel
between the femtocell and the user, this parameter
also varies depending on whether we are considering
femto or macro cells.
C. Sensing parameters:
« Positive margin: Used to calculate the upper
threshold value above which the section is con-
sidered to be occupied.
» Negative margin: Used to calculate the lower
threshold value below which the section is con-
sidered to be vacant, this value should be more
conservative than the positive threshold as it will
decide for this section and its channels to be
vacant.

Regarding the operation of the location awareness
module; we assume that this module has previous infor-
mation regarding the network parameters and especially
the cell transmission power; it can also determine the
location of the user with respect to the cell using a cer-
tain determination mechanism (such as GPS). It can
also estimate the type of the wireless channel over
which the user communicates using a certain channel
estimation techniques. Consequently, it can use a certain
look up table that maps the estimated channel para-
meters to the corresponding shadowing and fading mar-
gins. An example of the location awareness engine

—db2 FWT
===db4 FWT
----- db10 FWT )
—8—512 point FFT
—4— 256 point FFT )
—6— 128 point FFT

0 0.2 0.4

duration of 2.5 ms.

Figure 6 ROC for FWT versus FFT based sensing in case of a 4 RB resolution sensing in an AWGN channel at -8 dB SNR and sensing
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Figure 7 ID algorithm using FWT.
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architecture is shown in [31].

4- Then the upper and lower thresholds are com-
puted as follows:
« Upper threshold = Average power + Fading
margin + Positive sensing margin
» Lower threshold = Average power - Fading
margin - Negative sensing margin - Shadowing

margin
5- These thresholds are used to decide for the chan-
nel state:

« If Power > Upper threshold, the section state is
considered occupied, thus no further wavelet fil-
tering is applied as the LTE channels in this sec-
tion will be considered occupied.

« If Power < Lower threshold, the section state is
considered vacant thus no further wavelet filter-
ing is applied and the LTE channels in this sec-
tion will be considered vacant.

» Otherwise, the section state is considered nor-
mal so we shall continue applying wavelet filter-
ing as in the normal case.
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Figure 8 Detailed block diagram for the ID algorithm using FWT.
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6- The declared “state” is used to fill a “state matrix”
upon which we make our decision to apply wavelet
filtering or not as described above. The state matrix
has two dimensions: section and decomposition
stage as shown in Figure 9. The section dimension
(horizontal) represents the part of the LTE spectrum
being sensed, while the decomposition stage dimen-
sion (vertical) represents the FWT current decompo-
sition stage.

The algorithm performance depends on the location
awareness module accuracy as well the wireless environ-
ment in which the sensing is done. In our simulations,
the following assumptions have been made:

- The channel is an AWGN channel thus the fading
and shadowing margins equal to zero.

- The average power received from the base station
is known.

The positive and negative sensing margins are chan-
ged to span a range of upper and lower sensing thresh-
olds. These two thresholds control three main
performance metrics: probability of detection, probabil-
ity of false alarm, and the average number of FWT
operations. When the difference between the upper and
lower sensing thresholds increases, the average number
of FWT operations increases as in this case the prob-
ability that the ID algorithm decides for a channel to be
vacant or occupied will decrease. At the same time, the
performance will be better than the case when the dif-
ference between the upper and lower sensing thresholds
is reduced. So, as shown in Figure 10, each curve repre-
sents a certain value for the difference between the
upper and lower sensing thresholds, thus a certain value
for the average number of FWT operations. A trade off
has to be made between the performance (P4 and Py)
and the computational complexity (average number of

Page 10 of 19

FWT operations) of the sensing algorithm. To conclude,
the number of decomposition levels is determined heur-
istically taking into consideration the following:

- The application using the algorithm and how much
sensitive it is to the sensing false alarm rate that
leads to some waste of bandwidth.

- The application of the primary user and how much
sensitive it is to a missed detection by the cognitive
user that consequently affects the primary user QOS.
- The hardware requirements and power consump-
tion requirements of the sensing module.

It also has to be taken into consideration that deciding
for the whole section to be vacant is a critical decision
as this means that all of its channels will be considered
vacant as well, thus the secondary user can use them
after passing the fine sensing stage. That is why the
negative sensing threshold should be more conservative
than the positive one as it will affect the lower threshold
below which the section is considered vacant. This algo-
rithm shows a clear advantage of FWT over FFT as it
could not be applied on FFT.

The simulation results have shown that the perfor-
mance of the ID algorithm is quite close to the normal
algorithm in case of a regular pattern for LTE channel
occupancy (i.e., 1 1 0 01 1 0 0), which means we
achieve the same performance with reduced complexity
as shown in Figure 11 in case of an AWGN channel
and Figure 12 in case of multipath fading channels.
While in case of a random pattern the performance var-
ies as shown before in Figure 10.

A further enhancement to the ID algorithm is now in
order. It is possible to compute a weighted average of
the channel states to take the final decision. This weight
is a function of the difference between the channel
power and the predefined threshold. In case the channel
power is far below or above the threshold, a higher

Normal

Normal

Normal

Vacant Normal

Normal Occupied

Vacant Vacant Normal Normal

Normal Normal | Occupied | Occupied

\

Figure 9 An example for the state matrix of the ID algorithm for a 3-stage FWT sensing.
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Figure 10 ID algorithm performance versus the normal FWT algorithm for three decomposition stages in an AWGN channel at -5 dB

SNR and FWT sensing duration of 0.5 ms.

- Confidence Metric Algorithm 2 uses the square of
the difference between the channel power and the

weight is given to the corresponding state which is
predefined threshold.

vacant or occupied, respectively.
Two different weights are defined:
Figure 13 shows the performance of the confidence

- Confidence Metric Algorithm 1 uses the difference
metric algorithm added to the ID algorithm. From the

between the channel power and the predefined

threshold,
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Figure 11 ID algorithm performance versus the normal FWT algorithm for three decomposition stages in an AWGN channel at -5 dB

SNR and FWT sensing duration of 0.5 ms in case of a regular pattern for LTE channel occupancy.
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Figure 12 ID algorithm performance versus the normal FWT algorithm for three decomposition stages in an EPA channel, 5 Hz
Doppler at -5 dB SNR and FWT sensing duration of 0.5 ms in case of a regular pattern for LTE channel occupancy.

figure, one can conclude the following: higher P4 is more important than lower Py, as in
case of a missed detection this will lead to collision
- For higher P4, the confidence metric algorithm with the primary user, which is unacceptable for CR
gives better results. In case of spectrum sensing, systems.
<
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Figure 13 Confidence metric algorithm performance after being added to the original ID algorithm in an AWGN channel at -5 dB SNR
and FWT sensing duration of 0.5 ms in case of an irregular pattern for LTE channel occupancy.
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Table 3 A global comparison between FWT and FFT coarse sensing methods

FWT

FFT

Better at obtaining a higher P4 which is important to satisfy the required
primary user QoS. Used when the primary user QoS is of higher concemn

The sensing resolution could be simply increased to reach RB resolution
by applying further FWT decompositions

An ID algorithm could be applied at each wavelet decomposition stage
to reduce the number of FWT operations with an acceptable
performance

In case the LTE receiver is an SDR and has a programmable FFT core, we
lose the option of reusing this core which is used in the LTE OFDM
receiver to perform spectrum sensing

Better at obtaining a lower Pr which is important to achieve better
spectral efficiency. Used when the spectral efficiency is of higher
concern

To increase the sensing resolution we need to increase the FFT size

The ID algorithm is not applicable to FFT where the operation is
performed in one stage

When the receiver is an SDR with a programmable FFT core, we can
simply reuse the same FFT core used in the LTE OFDM receiver to
perform spectrum sensing thus reducing complexity

- In case of lower probability of false alarm, using
confidence metric algorithm gives a worse perfor-
mance than the normal algorithm. This observation
may vary according to the values of the chosen
thresholds. In case we choose different threshold
values, we could end up with the algorithm being
better in case of lower probability of false alarm.
The optimal calculation of the thresholds is out of
scope of this study and could be added in the future
study.

- In general, using algorithm 1 is better than algo-
rithm 2 where using the square of the difference
enlarges the large differences and reduces the small
differences, which might lead to false decisions as
compared to using the difference alone without
squaring.

After discussing the optimizations done to the FWT
algorithm in order to reduce the algorithm complexity
and after comparing FWT versus FFT in terms of the
number of computations done in each operation for a
given performance in Section 2.2, we can now have a
more global view in Table 3 regarding when we should
use FWT for the coarse sensing stage and when to use
it from a practical perspective as well.

3. LTE fine spectrum sensing

Referring to the main system flow chart in Figure 4, we
have shown that the coarse sensing module mainly con-
centrates on quick detection of empty spaces to be used
by the CR user. But in order to have a more reliable
detection for the empty spaces, we need to perform fine
sensing on them. In this section, two fine sensing algo-
rithms are proposed; one of them uses the cyclic shift
property of the LTE OFDM signal while the other one
uses one of the LTE synchronization signals. A detailed
explanation is given for the two proposed fine sensing
algorithms along with their results and enhancements.
Finally, the end-to-end system results are shown in case
of different coarse and fine sensing module pairs.

3.1 Cyclic prefix correlation sensing
3.1.1 Normal CP algorithm
In this algorithm, CP correlation using a sliding window
is performed over a number of OFDM symbols. The
peak indices are then investigated and the decision for
LTE signal existence is based on a majority vote for the
number of peaks. The normal cyclic prefix configuration
is assumed where the first OFDM symbol in the slot has
a CP composed of 160 samples compared to 144 sam-
ples for the remaining 6 OFDM symbols.

Assuming the following:

- Input signal is X(n)

- The correlator output is Y(n)

- The correlation window size is 160 which is the
maximum CP length. The FFT size is denoted by
the symbol Ngpr. It is important to note here that if
the window size is taken to be 144, the algorithm
will be suboptimum in case of the first OFDM sym-
bol in the slot because the first symbol has a CP of
length 160 samples, while for the other symbols, the
CP length is 144 samples. In that case, we are not
making use of the whole 160 samples in the CP of
this symbol. For the remaining symbols, the correla-
tion will be optimum in case of a 144 length window
because we shall use the whole 144 CP samples in
the correlation.

The CP correlation is as follows:
n=Window Size

Y(sample) = Z

n=1

X(sample + n) x X*(sample + n + NFFT) (3)

Every tick (time sample), the sliding window is shifted
by one sample and the new correlator output is com-
puted. The peaks of the correlator output are compared
against a predefined threshold after which a decision is
made whether an LTE signal is present or not. From an
implementation point of view, the above algorithm
could be further simplified as follows: instead of per-
forming 160 multiplications and additions for each
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Figure 14 ROC for CP correlation sensing in different wireless LTE channel models.

correlator output, one can simply add one sample and
subtract one sample using an iterative equation. In this
case, we have only two additions and multiplications per
output sample excluding the first correlator output sam-
ple. In other words, in case of the first output sample
(sample = 0), the correlator output is given by:

n=Window Size

Y(0)= > X(n) x X*(n+ NFFT)

n=1

(4)
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Figure 15 ROC for CP correlation with folding versus without folding in an ETU channel at -8 dB SNR with 70 Hz Doppler frequency.
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While in case of the other samples greater than zero:

Page 15 of 19

there are 504 cell IDs which are divided into 168 group
IDs, where each group contains three identities. The

Y(sample) = Y(sample — 1) + X(sample + Window Size}; 53 g1oups are encoded into the S-SCH whereas the D-

x X*(sample + Window Size + NFFT) (5)

— X(sample — 1) x X*(sample — 1 + NFFT)

In our simulations, the second approach is used due
to its reduced complexity. In Figure 14, the ROC is
shown for CP correlation sensing. The algorithm was
tested in case of the following LTE channel models:
Extended Typical Urban (ETU), Extended Vehicular A-
model, and Extended Pedestrian A-model (EPA) at dif-
ferent noise levels.

3.1.2 CP algorithm with folding

In this algorithm, we use the same CP correlation
method but instead of inserting the correlator results in
a buffer equal to the input signal length, the buffer size
this time is chosen to be equal to Nppr + correlation
window size. The correlation output for the current
symbol is folded with that of the previous symbol and
so on. The input-output relation will be as follows:

n=Correlation Window Size
Y(output sample) = Z X(input sample + n) x X*(input sample + n + NFFT) (6)
=
where
output sample = mod (input sample, correlation buffer size) (7)

correlation buffer size = NFFT + correlation windoi®)siz

Figure 15 compares the performance of the two CP
correlation algorithms. The figure shows an obvious
improvement for using the folding algorithm against
without folding especially in multipath fading channels
like the ETU channel. In addition to the better perfor-
mance, this algorithm requires a smaller correlation buf-
fer size which means lower hardware complexity as well.

3.2 Primary sync correlation sensing

In LTE, there are three known signals transmitted in the
downlink: the Primary synchronization signal (P-SCH),
the Secondary synchronization signal (S-SCH), and the
reference signals (Pilots). Our main target in this section
is to design an algorithm that detects the LTE signal
reliably and with the least possible complexity using the
above mentioned known signals. We can simply corre-
late the received signal with a replica from the synchro-
nization signals and compare the correlation peak
against a certain threshold to indicate the existence of
an LTE signal. The question now is which one of the
above three signals could be used. As for the P-SCH,
although it is generated as an OFDM signal, it could be
entirely detected in the time-domain with no need for
an FFT operation. The S-SCH, however, is typically
detected in the frequency domain. Moreover, in LTE,

e

SCH signal index determines the identity within the
group [32].

It is clear from the above that using P-SCH is much
simpler than the S-SCH for two reasons:

1- Only three correlations need to be carried out
instead of 168 correlations if S-SCH is used.

2- Detection could be performed in the time domain
with no need for FFT processing before correlation.

Using the LTE Reference signals (pilots) for fine sen-
sing will be very difficult as it requires the knowledge of
the slot and symbol index in addition to the whole cell
ID. That is why the P-SCH is chosen to perform the
fine sensing algorithm for LTE.

In LTE, several bandwidths (up to 20 MHz) are sup-
ported and the minimum system bandwidth (1.25 MHz)
corresponds to six RBs. With 15 kHz subcarrier spacing,
the synchronization signal may occupy at most 72 sub-
carriers to comply with the minimum bandwidth in the
LTE bandwidth sets. It would typically be generated by
a 128-point FFT. However, to allow matched filter
implementations with lengths shorter than 128 samples,
the P-SCH signals are defined as OFDM signals with up
to 64 subcarriers, including the DC subcarrier. Such a
signal can be detected by a matched filter of length 64.
In the frequency domain of the P-SCH, 62 active sub-
carriers are used, centered around the null DC subcar-
rier as follows:

oun(n+1)

j
e 63 ,n=0,1,2,...,30

Qun+1)(n+2) ©)
=]
¢ 63 n=31,32,.,61

du (n) =

Numerous investigations were done in 3GPP for the
selection of the sequence indices u. It was concluded
that the sensitivity to large frequency offsets was smal-
lest when the indices are selected close to half the
sequence length. The sequence indices have been cho-
sen as u = 25, 29, and 34. Also it can easily be proved
that the signal obtained from # = 29 is a complex conju-
gated version of u = 34, this property will lead to a
reduction in the matched filter complexity as the two
corresponding matched filters can be implemented with
the multiplication complexity of just one filter as shown
below:

Assume that the received signal ‘r’ shall be correlated
with a locally generated replica of the P-SCH ‘s’

rxs=Re {r} x Re {s} —Im {r} x Im {s} +j(Re {r} x Im {s} x Re {s})

(10)
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1 X sk = Re {r} x Re {s} + Im {r} x Im {s} +j(Im {r} x Re {s} — Re {r} x Im {s})

(11)

We can see from the above equations [33] that the
difference lies only in the signs and that we can perform
the multiplications only once. The P-SCH signal is also
centrally symmetric, which means that the number of

multiplications in the corresponding matched filter
could be reduced. There are 62 centrally symmetric
samples of the P-SCH signal. These sample pairs can be
added prior to multiplication, so the matched filter can
be implemented by almost half the multiplications
required in the direct implementation.

—85—ETU 300Hz -5dB CP Sensing (0.5msec)
——ETU 300Hz -15dB Prim Sync Sensing (10msec)
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Pfa
Figure 17 ROC of the P-SCH correlation algorithm versus CP correlation sensing in an ETU channel.

0.6 0.8 1




Abdelmonem et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:6 Page 17 of 19

http://jwcn.eurasipjournals.com/content/2012/1/6

To conclude, complexity reduction is done in two
ways:

1- Minimizing the number of multiplications by half
for each matched filter through addition of sym-
metric samples.

2- Making it possible to detect the three P-SCH sig-
nals with a multiplication complexity corresponding
to only two matched filters.

Figure 16 shows the performance of the P-SCH corre-
lation algorithm in different LTE channel models. Also
Figure 17 compares the performance of the P-SCH cor-
relation algorithm against CP correlation. Regarding the
performance of the P-SCH correlation sensing algorithm
in multipath fading channels, the simulation results
show that the algorithm is quite immune against delay
spread, Doppler spread and noise. It also outperforms
the CP correlation algorithm even when the P-SCH
algorithm is operating at an SNR lower than that of the
CP algorithm. However, it is important to note that the
sensing duration is 10 ms where the P-SCH signals are
5 ms apart. On the other hand, although the perfor-
mance of the CP correlation algorithm is not as good as
P-SCH sensing, the sensing duration could be reduced
to as low as 0.5 ms. So, there exists a compromise
between the sensing performance and sensing duration.
Increasing the sensing duration of the CP correlation

sensing algorithm to 10 ms is not practical as this will
mean performing too many unnecessary CP correlations
(Number of OFDM symbols per slot (7) x number of
slots (20) = 140 CP correlations), while in case of P-
SCH sensing, we have only two P-SCH signals in a 10
ms duration.

3.3 End-to-end system results

In this section, we show some results of the proposed
end-to-end LTE spectrum sensing architecture proposed
including both the coarse and fine sensing modules col-
lectively. Figure 18 compares between using an FFT
coarse sensing module alone versus using the fine CP
correlation sensing after the coarse sensing. It is quite
clear that the fine sensing module has improved the
spectrum sensing performance. It also shows the gain of
using the P-SCH correlation fine sensing module after
the coarse FWT sensing module versus using the coarse
sensing module alone in an AWGN channel. Finally Fig-
ure 19 shows the performance of the FWT and P-SCH
correlation modules collectively in case of multipath fad-
ing LTE channel models.

4. Conclusions

In this article, spectrum sensing is performed for an
LTE signal in two stages; a coarse stage and a fine stage.
An algorithm is proposed that uses the wavelet packet
transform algorithm to perform the coarse sensing stage

0.2

0.1

—— FWT alone

—&— FWT + P-SCH Correlation
----- FFT + Fine CP correlation
—&—FFT alone b

it
0 0.2 0.4

Figure 18 A graph showing the effect of FFT coarse sensing module alone versus using the fine CP correlation sensing after the
coarse sensing for a 2.5 m sensing duration. FWT coarse sensing module is also investigated alone versus using the fine P-SCH correlation
sensing after the coarse sensing for a 10-ms sensing duration. Both simulations are done in an AWGN channel, -5 dB SNR.
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assuming that the primary signal is an LTE signal. The
challenges associated with the proposed algorithm are
mentioned as well as a comparison with FFT-based
coarse detection in terms of both performance and com-
plexity has been introduced. The comparison shows that
FWT and FFT have almost the same performance.
Simulations have shown that reducing the sensing reso-
lution of the FWT algorithm to an RB requires sharp fil-
ters and is impractical, that is why sensing is done at
multiples of an RB. Also, a new ID algorithm has led to
a further reduction in the FWT complexity where we
provide a stopping criterion for the normal FWT algo-
rithm based on environmental parameters and pre-
defined thresholds, this provides FWT sensing with an
advantage over FFT sensing as the algorithm is not
applicable to FFT. The results of this algorithm have
shown that a compromise has to be made between the
FWT complexity and the required probability of detec-
tion and false alarm. Optimally setting the thresholds of
this algorithm is a subject of future research. A confi-
dence metric has been added to the ID algorithm which
mainly applies a weighted average of the sensed channel
states to arrive at the final decision. This weight is a
function of the difference between the channel power
and the predefined threshold. The confidence metric
algorithm outperforms the normal one in case high Py
is required, which is the most important parameter in
case of spectrum sensing for CR systems.

In the fine sensing stage, two algorithms are proposed.
The first algorithm is the CP correlation sensing. An
iterative structure with fewer multiplications is com-
pared versus the normal structure in terms of complex-
ity where both algorithms provide the same
performance. Also, simulations results have shown that
using folding in CP correlation reduces the correlation
buffer size and increases the sensing gain especially in
multipath channels. The second proposed fine sensing
algorithm requires one of the known LTE synchroniza-
tion signals, we have shown that using the P-SCH is the
most suitable as the S-SCH and pilots require far more
complexity. The P-SCH correlation algorithm was
proved to be more reliable than the CP correlation algo-
rithms in different LTE channel models. Finally, the
end-to-end system results show the gain obtained in
case of using the fine sensing module after the coarse
one versus using the coarse module alone for different
coarse and fine module pairs.
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