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Abstract

The proliferation of wireless networks has been remarkable during the last decade. The license-free nature of the
ISM band along with the rapid proliferation of the Wi-Fi-enabled devices, especially the smart phones, has
substantially increased the demand for broadband wireless access. However, due to their open nature, wireless
networks are susceptible to a number of attacks. In this work, we present anomaly-based intrusion detection
algorithms for the detection of three types of attacks: (i) attacks performed on the same channel legitimate clients
use for communication, (ii) attacks on neighbouring channels, and (iii) severe attacks that completely block
network’s operation. Our detection algorithms are based on the cumulative sum change-point technique and they
execute on a real lightweight prototype based on a limited resource mini-ITX node. The performance evaluation
shows that even with limited hardware resources, the prototype can detect attacks with high detection rates and a
few false alarms.

Keywords: lightweight intrusion detection, jamming, signal-to-interference-plus-noise ratio, cumulative sum algo-
rithms, performance evaluation, prototype

1 Introduction
Wireless networks’ proliferation has been remarkable
during the last decade as the license-free nature of the
ISM band and the rapid proliferation of the Wi-Fi com-
patible devices, especially the smart phones, have offered
ubiquitous broadband wireless internet access to mil-
lions of users worldwide. However, due to their open
nature, wireless networks are susceptible to a number of
attacks. Adversaries can exploit vulnerabilities in the
medium access and physical layers and heavily disrupt
the network operation (e.g., see [1-5]). The traditional
methods of protecting the networks by using firewalls
and encryption software are not sufficient, and for this
reason, several intrusion detection algorithms have been
proposed by the research community in order to address
these issues.
In general, intrusion detection techniques fall into two

main categories: misuse (or signature-based) detection

and anomaly-based detection. The former is based on
known signature attacks, it has low false alarm rates
(FARs) but it lacks the ability to detect new types of
attacks. The latter may have higher FARs but it has the
potential ability to detect unknown types of attacks. In
this article, we study the performance of anomaly-based
intrusion detection.
In our previous studies [6,7], we investigated the per-

formance of several algorithms for the detection of phy-
sical-layer jamming attacks. This type of attacks can be
launched by adversaries through the generation of inter-
ference in neighbouring channels. We proposed intru-
sion detection algorithms that considered several
metrics using two types of algorithms: simple threshold
and cumulative sum (Cusum). The performance evalua-
tion, in terms of the detection probability (DP), FAR,
and the robustness to different detection thresholds,
showed that Cusum Max-Min, a Cusum type of algo-
rithm, has the best performance among all algorithms.
The attack model we considered was based on a modi-
fied IEEE 802.11 node that violated several mechanisms
(backoff, spectrum sensing, etc.), emitting energy on the
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neighbouring channel legitimate nodes used for
communication.
In this article, we extend our previous contribution in

order to detect attackers (jammers) who follow different
attack strategies. Such an attacker can for example emit
energy on the same channel legitimates nodes use. For
the detection of this type of attack, we consider a metric
based on the ratio of the corrupted packets over the
correctly decoded packets.
Furthermore, more powerful jammers based on soft-

ware defined radio can completely block wireless net-
work’s operation. In this case, a metric based on the
SINR or error-based metrics are not useful as no pack-
ets are transmitted at all. We detect this type of attack,
called as blocking attack, using a metric based on the
number of beacon packets transmitted by the access
point (AP) in a pre-defined time window.
Based on these metrics we implemented anomaly-

based intrusion detection algorithms running in a real
limited resource prototype. This work presents in detail
the functional blocks of the prototype and shows its
operation in a real infrastructure-based IEEE 802.11
wireless network. We evaluate the performance of the
algorithms in terms of the DP, the FAR, and their
robustness to different detection thresholds. Our main
contributions are listed below:

• we consider anomaly-based intrusion detection
algorithms for the detection of different types of
attacks,
• we develop a real lightweight prototype executing
and evaluating the intrusion detection algorithms in
realistic conditions,
• we show that even with limited hardware
resources, the prototype gives high detection rates
and low FARs,
• we introduce the term robustness to describe algo-
rithms’ performance stability under different detec-
tion threshold values.

The evaluation shows that all types of the attacks can
be detected with a high DP and low FARs.
The remainder of this article is organised as follows.

In Section 2, we describe the related work. In Section 3,
we present the network layout for testing our prototype
and the attack models used. The intrusion detection
algorithms and their associated metrics are analysed in
Section 4. The structure of the prototype and its func-
tionalities are given in Section 5. In Section 6, we
describe the evaluation methodology and then we pre-
sent the performance results. Finally, conclusions appear
in Section 7.

2 Related work
There are several significant contributions made by the
research community in the area of the intrusion detec-
tion in communication networks. The work presented
in [8] evaluates two types of algorithms for the detection
of SYN attacks. The evaluation shows that the simple
detection algorithm has satisfactory performance for the
high intensity attacks but it deteriorates for the low
intensity attacks. The Cusum algorithm, on the other
hand, has robust performance for different types of
attacks. This is consistent with the findings of this work;
however, we perform measurements at the physical and
medium access layers.
The authors of [9] describe and evaluate methods for

anomaly detection and distributed intrusion detection in
mobile adhoc networks, focusing on two routing proto-
cols. They use a two-layer hierarchical system, where
anomaly indexes are combined using an averaging or
median scheme, with the averaging scheme having
higher performance.
Peng et al. [10] present an information sharing model

for distributed intrusion detection. A Cusum algorithm
is used to collect statistics at local systems, while a
learning algorithm decides when information has to be
shared among the nodes, in order to minimise detection
delay and reduce the communication overhead. Data are
fused using the sum rule.
In [11], the authors describe a distributed change-

point detection scheme for the detection of DDoS
attacks over multiple network domains. At each router,
a Cusum algorithm executes, raising alerts that are sent
to a central server. Then, the server creates a subtree
displaying a spatiotemporal vision of the attack. In a
second hierarchy level, a global picture of the attack is
created by merging all subtrees together.
The so-far described related contributions focus on

local, distributed or collaborative schemes for attack
detection at higher network layers (e.g. IP, TCP),
whereas this work focuses on detecting jammers at the
physical and medium access layers.
A similar work studying jamming at the physical layer

appears in [12], where the authors describe several types
of jammers and propose two types of detection algo-
rithms, considering metrics such as the packet delivery
ratio, the bad packet ratio and the energy consumption
amount. The basic algorithm tries to detect jamming by
using multiple if-else statements on the aforementioned
metrics, while the advanced algorithm uses a distribu-
tion scheme where information is collected from neigh-
bouring nodes. The evaluation shows high detection
rates, but trade-offs regarding the FAR versus the DP or
the robustness of the algorithms is not presented.
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In [13], techniques that detect anomalies at all layers
of a wireless sensor network are proposed. The authors
show how the DP increases when the number of the
nodes running the proposed procedure increases, but
they do not show the trade-off with the FAR.
The authors of [14] show how the errors at the phy-

sical layer propagate up the network stack, presenting
a distributed anomaly detection system based on
simple thresholds. A method for combining measure-
ments using the Pearson’s product moment correla-
tion coefficient is also presented. A disadvantage of
this method is that “raw” RSSI measurements by sev-
eral sniffers are needed. This could generate a high
volume of traffic flowing from the sniffers to a main
node where the algorithm executes. In contrast, our
proposal is based on passive monitoring performed by
a single node.
Several adversarial models are presented in [15], all

focusing on RF jamming attacks. One of the proposed
algorithms, applies high order crossings a spectral discri-
mination mechanism that distinguishes normal scenarios
from two types of the defined jammers. The authors
introduce two detection algorithms based on thresholds
that use signal strength and location information as a
consistency check to avoid false alarms.
The authors of [16] present a cross layer approach to

detect jamming attacks. Jamming is performed at the
physical layer by using RF signals, and at the MAC layer
by targeting the RTS/CTS and NAV mechanisms of the
IEEE 802.11 protocol. Jamming detection is split into
two phases. In the first phase, simple threshold algo-
rithms are deployed using metrics such as the physical
carrier sensing time, the number of RTC/CTS frames,
the duration of channel idle period and the average
number of retransmissions. The second phase is trig-
gered if there are threshold violations.
The authors of [17] describe ARES, an anti-jamming

reinforcement system for 802.11 networks which tunes
the parameters of rate adaptation and power control to
improve the performance in the presence of jammers.
However, ARES should be present in every wireless
node in order to regulate rate and power while our sys-
tem consists of a prototype based on passive measure-
ments and no modifications are needed for the wireless
clients. Furthermore, they consider a Jammer that cre-
ates interference (so it operates on neighbouring chan-
nels), while our prototype can also detect jammers
emitting energy on the same channel, as well as detect-
ing blocking attacks performed by powerful jammers
that completely block the communication within their
transmission range.
Cardenas et al. [5] consider the sequential probability

ratio test. However, their work is about detecting MAC-
layer misbehaviours and not attacks.

Wood et al. [18] propose DEEJAM, a MAC-layer pro-
tocol for defending against stealthy jammers using IEEE
802.15.4-based hardware. Nevertheless, as the authors
note, against a powerful and more sophisticated jammer,
DEEJAM cannot effectively defend the wireless network.
The authors of [19] propose a lightweight intrusion

detection system that is however used for sensor net-
works and their related attacks (e.g. sinkhole attack),
while our prototype is for infrastructure networks and
different attack types.
Finally in [20], the authors describe a lightweight

intrusion detection system for wireless mesh networks.
Nevertheless, they study attacks (port scanning, con-
sumption attacks, spam detection, etc.) that are not
wireless-specific as those we studied in this article.

3 Network layout and jamming model
The network layout we use for testing our prototype is
shown in Figure 1. This consists of off-the-shelf IEEE
802.11 devices that communicate through a wireless AP.
The monitor node (MN) and the display server (DS)
comprise our prototype for jamming detection. These
two devices are inter-connected through a wired local
area network (LAN) over a secure VPN tunnel. Jammer
is a device that emits energy at pre-defined intervals,
aiming to disrupt network operation.
Regarding the jamming attacks, there is always the

trade-off between jamming intelligence and cost. An
intelligent jammer can cause severe DoS attacks with a
low energy consumption but its cost can be significantly
high (e.g. [21]). On the other hand, a less sophisticated
Jammer based on off-the-shelf hardware can cause sig-
nificant performance degradation, although consuming
more energy but it costs less and it can also be used by
individuals with any specialised knowledge about net-
work protocols and functionalities. We experiment with
two types of jammers. The first one is based on a mini-
ITX board that carries 512MB of RAM and an 80 GB
hard disk (Figure 2a). This board is also equipped with
an Atheros CM9-GP mini-PCI card, controlled by
Ath5k, an open source IEEE 802.11 driver [22] running
on Gentoo Linux. Two types of jamming are performed
using this device:

• energy emission on the same channel (we call it as
main channel in the rest of the article) legitimate
nodes use for communication,
• energy emission on neighbouring channels.

In order to make the off-the-shelf node operate as
Jammer, we modified the values of several hardware reg-
isters (through Ath5k) that are part of the Atheros wire-
less card, disabling the back-off and the clear channel
assessment (CCA) mechanisms of IEEE 802.11. By
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disabling these mechanisms, Jammer becomes a non-
compliant IEEE 802.11 node that is immune to the
energy radiated by the legitimate nodes, thus it can
freely perform jamming.
The second type of Jammer we use is based on the

universal software radio peripheral (USRP), a family of
hardware for making software radios (Figure 2b). The
term software radio refers to re-programmable devices
that can change their radio-frequency (RF) characteris-
tics (e.g. carrier frequency, modulation, etc.) through
software means. Popular software for modifying the
USRP RF characteristics is GNU Radio [23] and Matlab
[24]. This type of Jammer has several enhanced charac-
teristics compared to the off-the-shelf type as: (i) it can
emit signals in any carrier frequency, (ii) the transmis-
sion power granularity is smaller and more stable, and
(iii) energy emission is possible without following any
MAC-layer protocol (e.g. IEEE 802.11). We use this type
of Jammer in order to launch blocking attacks, making
the network completely inoperable. The rest of the
attacks are launched using the off-the-shelf Jammer, as
we want to demonstrate that this device can also cause
severe network performance degradation. Nevertheless,
our prototype can detect jamming regardless the type of
the Jammer used.
Depending on the spectrum distance from the main

channel Jammer operates, we define a number of differ-
ent attacks. Table 1 shows these attacks (and subse-
quently the attacks our prototype can detect), and the
hardware used (column 4 is discussed in Section 5).

In order to demonstrate how network performance
deteriorates by Jammer’s presence, we conduct an
experiment using the network layout shown in Figure 1.
The off-the-shelf Jammer broadcasts UDP traffic with a
transmission rate of 5 Mbps on channel 40, in a peri-
odic fashion (10 s of traffic transmission followed by 20s
of inactivity). Furthermore, on channel 44 Node 1 con-
tinuously transmits UDP traffic (using iperf [25]) with a
transmission rate of 27 Mbps to Node 2 (we used UDP
as the transport protocol to avoid TCP’s congestion
control mechanism). MN is set to promiscuous mode
recording the SINR in a per packet basis, only for the
packets transmitted by the AP. The packet loss and
throughput (for the flow between Nodes 1 and 2) are
provided by iperf. Figure 3 shows how the SINR,
throughput, and packet loss are affected during the jam-
ming attacks (these are depicted by the orthogonal
boxes). SINR drops about 50%, throughput degradation
is over 85%, while the packet loss increases more than
50%.

4 Jamming detection
In our previous works ([6,7]), we investigated several
algorithms for jamming detection, all based on the
SINR. Among all, Cusum Max-Min (Cmm) has the best
performance in terms of the DP, FAR, and robustness
(the term robustness is analysed in Section 6). Cusum
belongs to the category of the Cusum algorithms,
detecting changes of a certain distribution (change-point
detection), and it has been widely used in the literature

Attacker
(Jammer)

Wi-Fi Hotspot

LANAccess Point Monitor
Node
(MN)

Display
Server
(DS)

VPN Tunnel

Node 1

Node 2

Figure 1 Experimental network layout.
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for anomaly-based intrusion detection (e.g. [5,11,26-28]).
In general, there are two types of Cusum algorithms: (i)
parametric and (ii) non-parametric. Parametric Cusums
are used when a parametric model for {x}, where x is an

independent and identically distributed (i.i.d) random
variable, is known. Using the parametric model, a
Cusum algorithm can detect whenever a change to {x}
takes place. On the other hand, non-parametric Cusums

Figure 2 Types of jammers.
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are used when the model of {x} cannot be known. This
is the case for our jamming detection techniques and
their associated metrics, where the distribution of {x}
cannot be known in advance. Therefore, Cmm is a non-
parametric Cusum algorithm defined using the following
formula:

yn =
{
yn−1 + Zn − a if yn ≥ 0
0 if yn < 0

(1)

Zn is the expectation of a specific metric that changes
whenever jamming takes place, and a Î R+ controls its
drift. Cmm that executes on MN aims to detect these
changes signalling the appropriate alarms whenever yn
exceeds a pre-defined detection threshold h. As an
example, Figure 4 shows how the metrics expectations
(Zn) are affected during each different attack using an
experimental test-bed with six wireless nodes, the AP
and the Jammer.

At this point, we provide the rationale behind the
metrics we consider for jamming detection (shown in
Table 1). For the detection of Jam1, where the Jammer
emits energy on neighbouring channels, we consider the
SINR. SINR drops when Jammer is on, as intereference
(and/or the noise) increases. MN computes the SINR
for the beacon packets transmitted by the AP.
Jam2 takes place when the Jammer manages to com-

pletely block the communication between the wireless
nodes. As we have verified from several experiments,
the USRP Jammer (Figure 2b) can easily block the wire-
less communications when its carrier frequency is close
to that of the main channel. This happens because when
Jammer is on, all nodes (including the AP) defer from
transmission either because the channel is continuously
occupied, or the noise level is above their CCA level.
During this attack, SINR or any metric based on the
received packets cannot be used, as no packets are

Table 1 Jamming attacks

Symbolic
name

Description Type of
jammer

Metric for detection

Jam1 Jammer emits energy on neighbouring channels of the main channel Off-the-shelf SINR

Jam2 Jammer emits energy on the main channel or neighbouring channels
completely blocking the network operation (blocking attack)

Software
defined radio

Beacons loss

Jam3 Jammer emits energy on the main channel Off-the-shelf Ratio of the corrupted packets over the
correctly decoded packets
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Figure 3 Jamming effect on the SINR, throughput, and packet loss.
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transmitted; therefore, no packets can be recorded by
MN. To overcome this limitation we consider as metric
the beacon loss. Beacon loss is estimated using the
number of the received beacons within a time window,
and the number of the beacons that should have been
received within that period (AP transmits beacons in a
pre-defined interval). During the blocking attacks bea-
con loss can reach 100%.
When Jammer operates on the main channel (Jam3),

SINR does not drop because Jammer’s signal is not
regarded as interference. However in this case, the num-
ber of corrupted packets increases as Jammer does not
perform any spectrum sensing and/or backoff, hence the
probability of collision substantially increases. For this
reason, we use as metric the ratio of the corrupted
packets over the correctly received packets. Both types
of packets are measured in the wireless interface of MN
that is configured for the main channel.
In total, there are three different metrics one for the

detection of the three types of attacks. MN uses three
different threads applying the Cmm algorithm indepen-
dently for each metric, signalling the appropriate alarm.
Each Cmm’s functionality is based on two sliding win-
dows: a short one and a long one. For the measured
value xn for sampling n, the maximum-minus-minimum
value of the x is computed within the short window as

D(n) = max
n−K+1<i≤n

xi − min
n−K+1<i≤n

xi,

where K is the length of the short window. Next, the
average maximum-minus-minimum x is estimated in
the long time window as:

D̄(n) =

∑n
i=n−M+1 D(i)

M
,

where M is the length of the long window. Now, Zn is
given by Zn = D(n) − D̄(n) and finally from Equation
(1), an alarm is raised if yn ≥ h.
For the different attacks we consider different values

for the long and short windows. For Jam1, we choose K
= 10 and M = 100. As our AP transmits beacons every
100 ms, the short and long windows are equivalent to 1
and 10 s, respectively. For Jam2 and Jam3, we use K = 1
and M = 10, as the monitoring periods for the cor-
rupted/correct packets and the beacon packets are set to
1 s.

5 Prototype implementation
This section describes the prototype implementation for
attack detection (Figure 1). MN performs passive mea-
surements in the wireless network, it executes Cmm for
the metrics described in Section 4 (shown in Table 1),
and reports its findings (metric values, output of the
detection algorithms) to DS that is exclusively used for
displaying purposes.

5.1 The monitor node
Monitor node is implemented using a mini-ITX board
with a VIA Esther processor 1,300 MHz and 512MB of
RAM (Figure 2a) with Gentoo Linux and Ath5k as the
wireless driver. It splits into two main software parts:
the kernel module and the user-space module (Figure
5). The kernel module contains the code of the Ath5k
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driver and several software functions we have imple-
mented within it for the collection of information
regarding the SINR values, the PHY (physical) and cyc-
lic-redundancy-check (CRC) errors, and the beacon loss.
PHY errors are related to errors monitored at the physi-
cal layer of the medium, while CRC are the errors at the
MAC layer. Packets with these errors are characterised
as corrupted. The required information is collected with
the aid of Ath5k using our three kernel threads, each
assigned with a specific task.
The first thread monitors the number of the CRC and

PHY errors (these are reported by the driver), as well as
the correctly decoded packets captured by the interface
that is configured for the main channel and set to pro-
miscuous mode. Every 1s, it reports to the error-CMM
thread, residing in user-space, the ratio of the corrupted
packets (due to CRC or PHY errors) over the correctly
decoded packets.

The second thread computes the SINR every time a
beacon packet is captured by MN’s main interface (this
is the wireless card configured to listen to the main
channel in promiscuous mode). Ath5k reports signal-to-
noise ratio (SNR) values and not SINR. However, as we
have verified from several experiments, SNR drops when
the USRP Jammer is used, emitting energy without fol-
lowing the IEEE 802.11 protocol, but it does not drop
when energy is emitted following it. This is also the case
when the off-the-shelf Jammer is used. On the other
hand, SINR should drop in all cases, as either the noise,
or the interference level increase when a Jammer is pre-
sent. In order to measure the SINR based on Ath5k’s
reporting, we use the following method.
Ath5k can report signal and noise values indepen-

dently for each configured wireless interface. MN is
equipped with five wireless interfaces so we are firstly
able to measure the signal Sm and the noise Nm in the
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Thread

Ath5k Driver

SINR-
Cmm

Error-
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Network
Module

To Display
Server

User space
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Figure 5 Software layout of the MN.
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main interface. Moreover, by setting the rest four inter-
faces in the immediately adjacent and next adjacent
channels, and taking into account that we experiment in
an IEEE 802.11a network where the channel separation
is 20 MHz, we can monitor the signal levels in five con-
secutive channels. Therefore, we compute the SINR in
the main channel based on the measurements from
these five interfaces. However, no more than five inter-
faces are required because as our experiments (and the
related literature) have shown that energy emitted using
a channel 60 MHz or more far from the main channel
does not have any impact on network’s performance.
According to [29] the leakage of the immediately adja-

cent channels (IACs) to the main channel is X1 = 22.04
dB, while for the next adjacent channels (NACs) is X2 =
39.67 dB. Based on these values, we assume that the
interference generated by a signal of S dBm in the IACs
is S - X1 dB, while for the NACs is S - X2 dB. Based on
these, the total interference-plus-noise power on the
main channel is calculated as follows:

I Nm(dB) = 10×
⎡
⎣log10

⎛
⎝10

S+1 − X1

10 + 10

S−1 − X1

10 + 10

S+2 − X2

10 + 10

S−2 − X2

10 +Nm

⎞
⎠

⎤
⎦ (2)

The signals referred to the four neighbouring channels
(NACs+IACs) Si, i Î [-2, -1, +1, +2], are the average sig-
nals estimated on each channel within a pre-defined
time window (5 ms). Nm is the noise measured in the
main interface. Finally, SINR is given by

SINR = Sm − I Nm, (3)

where Sm is the signal measured in the main interface
(per received beacon). The SINR values are then
reported to the SINR-CMM thread that resides in user-
space.
The last kernel thread counts the number of the bea-

con packets received within a time period (1s) by MN’s
main interface. Then, it computes the beacon loss based
on this number and the known expected number of
beacons. For example, our AP broadcasts 1 beacon
every 100 ms, captured by the wireless main interface.
The estimated beacon loss is then reported to the Bea-
con-CMM thread.
The above information is collected in kernel-space

with the use of several functions of the Ath5k driver
and then it is asynchronously transmitted to the user-
space modules through the netlink socket interface. In
user-space, the reception thread receives the acquired
data and stores them into a software queue. Data are
de-multiplexed out by the associated threads for further
processing. SINR-CMM, Error-CMM and Beacon-CMM
are independent threads executing in the multi-threaded
environment of Linux, reading data from the data
queue, so as the reception of the new data coming from

the kernel-space is not blocked by the user-space
operations.
Each of the threads executes the Cmm algorithm using its

associated metric and then, through the network module,
sends the output of the algorithm along with the current
value of the metric to DS for displaying. Consequently,
MN provides the following information to DS:

• the SINR values in a per (received beacon) packet
basis,
• the output of the SINR-CMM thread that can sig-
nal the Jam1 attack detection,
• the beacon loss percentage estimated within a pre-
defined time window,
• the output of the Beacon-CMM thread that can
signal the Jam2 attack detection,
• the ratio of the corrupted packets over the cor-
rectly decoded packets estimated within a pre-
defined time window,
• the output of the Error-CMM thread that can sig-
nal the Jam3 attack detection.

The communication between MN and DS is per-
formed using a protocol we have designed that runs
over UDP. Furthermore, we use a VPN tunnel between
these hosts in order to provide enhanced authentication
and encryption functionalities, securing the data flowing
between them.

5.2 The display server
The DS mainly provides display functionalities to a net-
work administrator and it consists of two threads. The
first thread opens a UDP socket waiting for data from
the MN. Any received information is stored into a soft-
ware queue. The second thread reads data from this
queue and displays them through the Gtk interface [30].
Figure 6 shows a snapshot of the DS monitor. The

upper three boxes show the metrics computed in MN’s
kernel-space with the aid of Ath5k’s functions, while the
lower boxes show the outputs of the Cmm algorithms.
For demonstration purposes, we launched the three
types of possible attacks (Table 1) one after the other.
During Jam1, Figure 6 shows that SINR reduces from
40 to 15 db, while the output of the corresponding Cmm

algorithm significantly increases (Equation 1). Similarly
for Jam2, the beacon loss goes to 100%, and for Jam3
the error ratio increases up to 35%, while the outputs of
the corresponding Cmms substantially increase.

6 Experimental results and performance
evaluation
In the previous section, we described the layout of our
lightweight prototype and the associated information
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displayed through DS; however, DS does not generate or
display alarms. An alarm is signalled whenever the out-
put yn of a Cmm algorithm (Equation 1) exceeds a pre-
defined detection threshold h. The challenge is to select
the optimum value of h as well as of a, the value that
controls the drift of expectation Zn (Figure 4). We name
a as drift coefficient throughout the rest of the article.
In this section, we investigate the performance of the

prototype for the three different types of jamming attacks
in terms of the DP, FAR and its robustness to different
detection threshold values. DP is defined as the number
of the detected attacks over the total number of the
attacks. FAR is the ratio of the number of false alarms
over the total duration of the experiment, in minutes.

6.1 Robustness
Traditionally, performance evaluation is presented by
showing the trade-off points between FAR and DP (e.g.

[8,11,31-33]). The performance of an algorithm
increases when its associated trade-off points are closer
to the left top corner of each graph (higher DP with a
lower FAR). Although this is a significant method for
performance evaluation, it is not complete as it provides
no information regarding the robustness of the algo-
rithms. By robustness we mean how the performance in
terms of the DP and FAR varies, when the detection
threshold changes. Moreover, this simplistic approach is
not appropriate when the number of the algorithms
under evaluation, or the experimental data increase, as
it is predicated on subjective criteria. We define that an
algorithm is robust if the metric we consider that com-
bines the DP and FAR changes no more than 20%,
when the detection threshold changes by more than
20%. This metric (we name it as score) is given by:

S = b ∗ (c − d), (4)

Jam1 Jam2 Jam3

Figure 6 Display server.
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where d =
√
FAR2 + (1 − DP)2 is the distance of a

trade-off point (for a specific threshold h) from the opti-
mum point (DP = 1 and FAR = 0), and b,c Î ℝ+.
We evaluate the performance of the Cmm algorithms

in two steps: (i) we filter the robust DP, FAR trade-off
points and we calculate the maximum scores for the dif-
ferent values of a using Equation (4) and (ii) based on
the maximum scores we select the optimum value of a,
then we re-evaluate the algorithm for the different
detection threshold values for the specific value of a,
and finally we present the associated trade-off points.
Algorithm 1 describes how the maximum score values
are computed.

6.2 Experiments
For the evaluation, we conducted a number of experi-
ments using the layout shown in Figure 1, varying the
number of the wireless clients, the channel Jammer is
operating and the attack intensity. We also use the Airl-
ive WLA-5000AP as AP. For Jam1 and Jam3 we use the
off-the-shelf Jammer, while for Jam2 the USRP. In all
experiments Jammer emits energy for 10s followed by
20s of inactivity. Jamming intensity changes by varying
the throughput of the Jammer. Based on the throughput
degradation, delay, delay jitter and loss increase in the
wireless network, we define three attack intensities:
high, medium and low. Both legitimate and jamming
traffic are transmitted using iperf, and UDP as the trans-
port protocol. Legitimate nodes transmit traffic of 1.5
Mbps and logs are collected in DS for further proces-
sing. Table 2 shows the conducted experiments.

6.3 Performance evaluation
A key issue for the performance evaluation is the selec-
tion of the optimum drift coefficient a. This is per-
formed running Algorithm 1 for the three types of Cmm

algorithm, and for all experiments. Selecting b = 5 and c
= 4 in Equation (4), the maximum score an algorithm
can have (when DP = 1 and FAR = 0) is 20. We make
the selection of the optimum value of a using several
criteria. SINR_CMM is used to detect attacks when
Jammer operates on NACs or IACs, while
ERROR_CMM is for jamming detection when Jammer
operates on the main channel. BEACON_CMM is for
the detection of blocking attacks. For these reasons,
SINR_CMM should have high detection and low FARs
in NACs and IACs, while at least low FARs if Jammer is
present on the main channel. Similarly, ERROR_CMM
should have high detection and low FARs when Jammer
is on the main channel, while at least low FARs if it is
on NACs and IACs. Finally, BEACON_CMM should
have high detection and low FARs when Jammer com-
pletely blocks the communication, regardless the

channel Jammer operates on, while it should have at
least low FAR in all other situations.
Using Algorithm 1 we compute the maximum scores

against a for all algorithms, and for all the experiments.
Indicatively, Figure 7 shows the maximum score values
for ERROR_CMM when Jammer emits energy on the
main channel. Based on these graphs, we select a for
each Cusum algorithm according to our pre-defined cri-
teria (we finally select a = 3 for the SINR_CMM, a = 8
for the ERROR_CMM, and a = 0.5 for the BEA-
CON_CMM). Further work can include the automated
selection of a based on more criteria. For example,
Equation (4) assigns the same score to DP and FAR.
However, a network operator could classify FAR as
more important than DP; hence, different weights
should be used for the score computation. Nevertheless,
our results show that all algorithms have high DP and
low FAR.
6.3.1. Performance evaluation of the ERROR_CMM
algorithm
We begin by presenting the evaluation of
ERROR_CMM; the algorithm that aims to detect attacks
launched by jammers operating on the main channel.
Having selected a = 8, Figure 8 shows DP versus FAR,
for different values of the detection threshold, and when
the (off-the-shelf) Jammer operates on the main chan-
nel. Recall that these are the robust trade-off points
selected using Algorithm 1. The three upper graphs
show that for the high intensity attack (Jammer’s
throughput is 5 Mbps), ERROR_CMM detects all
attacks with zero false alarms. For the medium intensity
attack (middle graphs), all attacks are detected with zero
false alarms, except for Exp_2_1 where FAR = 0.2 (false
alarms per minute) that is however a low FAR. For the
low intensity attack, for Exp_3_2 and Exp_3_3,
ERROR_CMM detects no attacks and has no false
alarms; therefore, the corresponding graphs are blank.
For Exp_3_1, both DP and FAR are low. The miss
detections for the low intensity attacks cannot be
regarded as a significant issue, as the impact of these
attacks on network’s performance is negligible. When
Jammer operates on the NAC or IAC, ERROR_CMM
detects no attacks and has zero false alarms.
Summarizing, based on these experiments and by

choosing h = 10 and a = 8, ERROR_CMM can detect
all attacks launched by the Jammer operating on the
main channel with a maximum FAR of 0.2 false alarms
per minute (Figure 8). For the rest two attacks (Jam1,
Jam2) it has zero false alarms and zero attacks are
detected.
6.3.2. Performance evaluation of the SINR_CMM algorithm
Next we present the evaluation of SINR_CMM, the
algorithm aiming to detect attacks caused by jammers
operating on NACs or IACs. Repeating the procedure
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Table 2 Experiments

Experiment id Number of clients Channel of jammer Jammer throughput (Mbps) Attack intensity

Exp1_1 6

Exp1_2 4 Main 5 High

Exp1_3 2

Exp2_1 6

Exp2_2 4 Main 3 Medium

Exp2_3 2

Exp3_1 6

Exp3_2 4 Main 1.5 Low

Exp3_3 2

Exp4_1 6

Exp4_2 4 Immediately adjacent 5 High

Exp4_3 2

Exp5_1 6

Exp5_2 4 Immediately adjacent 3 Medium

Exp5_3 2

Exp6_1 6

Exp6_2 4 Immediately adjacent 1.5 Low

Exp6_3 2

Exp7_1 6

Exp7_2 4 Next adjacent 5 High

Exp7_3 2

Exp8_1 6

Exp8_2 4 Next adjacent 3 Medium

Exp8_3 2

Exp9_1 6

Exp9_2 4 Next adjacent 1.5 Low

Exp9_3 2
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Figure 7 Maximum score versus the drift coefficient for the ERROR_CMM when jammer operates on the main channel.
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with Algorithm 1, we select a = 3. Based on this
value, Figure 9 shows the evaluation for the experi-
ments Jammer emits energy in the IAC. For all the
experiments and attack intensities, SINR_CMM
detects all attacks with zero false alarms, except in

the case of Exp_5_3 and Exp_6_3, where all attacks
are detected with a maximum FAR of 0.2 false alarms
per minute.
In Figure 10, we show the evaluation when Jammer

operates on the NAC. Again, it can detect all attacks
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with zero false alarms, except in three cases (Exp_7_3,
Exp_8_3, Exp_9_1), where FAR can increase up to 0.2.
These results show that the SINR-based metric we

consider can achieve high detection rates with low false
alarms when Jammer emits energy in neighbouring

channels. However, it is important to investigate its per-
formance when Jammer emits energy on the main chan-
nel. As Figure 11 shows, SINR_CMM has low FAR (less
than 0.2). Also, DP is low; however, this is not an issue,
as the ERROR_CMM can detect this type of attack.
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Figure 10 Performance evaluation of the SINR_CMM when Jammer operates on the next adjacent channel.
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6.3.3. Performance evaluation of the BEACON_CMM
algorithm
BEACON_CMM is used for the detection of blocking
attacks; attacks launched by powerful jammers that
completely block network’s operation. During a blocking
attack, AP is unable to transmit packets, hence beacon
loss reaches 100%. This algorithm uses as metric the
estimated beacon loss within a time window.
Figure 12 shows BEACON_CMM’s score versus the

drift coefficient a when the off-the-shelf Jammer emits
energy on the main channel. From this figure it is
obvious that with a proper selection of a, BEA-
CON_CMM can detect attacks in the main channel of
high or medium intensity, as it can reach the maximum
score (20). For the low intensity attack, its performance
deteriorates. However, when Jammer operates on the
IAC, BEACON_CMM’s performance deteriorates for the
low intensity attacks (Figure 13), and it further deterio-
rates when Jammer is on the NAC for all intensities
(Figure 14). Low scores can indicate low DP and/or high
FAR. As we aim to detect blocking attacks, the selection
of a should satisfy two requirements: (i) BEA-
CON_CMM shall have high DP and FAR for the block-
ing attacks and (ii) BEACON_CMM shall not give high
FAR for the rest of the attacks. The second requirement
can be satisfied by selecting a > 70 as, Figures 12, 13
and 14 show that BEACON_CMM will not trigger any
alerts, so no false alarms will be generated. Using our
USRP Jammer (Figure 2b) we conducted a number of

blocking attacks, aiming to select the optimum value for
a. When a = 70, BEACON_CMM can detect all block-
ing attacks with zero false alarms. For the rest two
attacks it has zero false alarms and zero DP.

7 Conclusions-Further work
In this work, we described and evaluated anomaly-based
intrusion detection algorithms executing on real light-
weight prototype. The algorithms use the Cusum
change-point detection technique seeking for changes
using three different metrics: SINR, ratio of corrupted
over correctly decoded packets and beacon loss; trying
to detect three different types of jamming attacks.
We introduced the term of robustness that shows if

DP and FAR remain relatively stable as the detection
threshold increases. We also proposed an algorithm that
filters the robust trade-off points and assists a network
administrator to select the optimum value of the drift
coefficient.
We evaluated the algorithms collecting traces from a

real experimental network. The evaluation of
SINR_CMM shows that it can detect all Jam1 attacks
(attacks on neighbouring channels) with a maximum
FAR of 0.2. For Jam3 it detects no attacks and it has a
maximum FAR of 0.2. BEACON_CMM can detect all
Jam2 attacks (blocking attacks) with zero false alarms.
For Jam1 and Jam3 it detects no attacks and has zero
false alarms. ERROR_CMM can detect all Jam3 attacks
(attacks on the main channel) with zero false alarms.
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Figure 12 Score versus the drift coefficient for BEACON_CMM when Jammer operates on the main channel.
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For Jam1 and Jam2 it detects no attacks and has zero
false alarms.
Further work includes the selection of the drift coeffi-

cient based on more criteria that will also allow a net-
work administrator to assign different weights to DP

and FAR. Furthermore, we will build a notification
mechanism (e.g. through emails) so as a network admin-
istrator is alerted when the outputs of the Cmm algo-
rithms exceed the detection thresholds.
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Figure 13 Score versus the drift coefficient for BEACON_CMM when Jammer operates on the immediately adjacent channel.
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Figure 14 Score versus the drift coefficient for BEACON_CMM when Jammer operates on the next adjacent channel.
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Algorithm 1
Max-score computation
Variables:
amin the minimum value of drift coefficient a
amax the maximum value of drift coefficient a
astep: the step that evaluation process proceeds from

amin to amax

thrmin: the minimum value of the detection threshold
thrmax: the maximum value of the detection threshold
thrstep: the step that evaluation process proceeds from

thrmin to thrmax

n: the number of the robust trade-off points
METRIC: the metric under consideration (Table 1)
score: array that contains the scores of the robust

trade-off points
DP: array that contains the detection probability for

the different detection thresholds
FAR: array that contains the false alarm rate for the

different detection thresholds
DP_rob: array that contains the detection probability

for the different detection thresholds that the algorithm
is robust
FAR_rob: array that contains the false alarm rate for

the different detection thresholds that the algorithm is
robust
S: the final score assigned to the algorithm
INIT_EVAL: the function that evaluates the algorithm

based on the detection threshold h and expectation a
Filter_Robust: the function that filters the robust

trade-off points
Compute_Score: the function that computes the

scores (e.q. 4)
Algorithm:
1:
2: for j = amin to j = amax with step = astep do
3:
4: for i = thrmin to i = thrmax with step = thrstep

do
5: k = k+1
6: DP(k), FAR(k) = INIT_EVAL(i,j)
7: end for
8: DP_rob, FAR_rob = Filter_Robust(DP, FAR)
9:
10: for i = 1 to i = n do
11: score(n) = Compute_Score(DP_rob(n),

FAR_rob(n))
12: end for
13: S(j)= max(score)
14: end for
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