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Abstract

In order to improve bandwidth efficiency and error performance, a new training scheme is proposed for bit-
interleaved-coded modulation in multiple-input multiple-output (BICM-MIMO) systems. Typically, in a block-fading
channel, the training overhead used for obtaining channel knowledge is proportional to a power of 2 of the
number of transmit antennas. However, this overhead can be reduced by embedding pilot symbols within data
symbols before precoding. The values, positions, and the number of pilot symbols are found by minimizing the
Cramer-Rao bound on the channel estimation error. Computer simulations are presented to demonstrate the
advantage of the proposed scheme over other training methods, in terms of both the mean-square-error of the
channel estimation and the system’s frame-error-rate.

Keywords: BICM-MIMO, block fading, channel estimation, training design, pilot symbols, Cramer-Rao bound, itera-
tive receiver

1 Introduction
The pioneering work on multiple-input multiple-output
(MIMO) systems [1] shows that a MIMO system can
provide a multiplexing gain and accordingly high spec-
tral efficiency over slow fading channels. On the other
hand, to achieve a high diversity order, space-time trans-
mission techniques can be implemented at the transmit-
ter [2,3]. To achieve both high diversity order and
coding gain in coded modulation systems, the concept
of space-time transmission has also been applied [4,5].
In such systems, space-time transmission is typically
implemented using a linear space-time matrix, or
equivalently a linear precoder, so that a single modula-
tion symbol is efficiently transmitted across multiple
transmit antennas. Among many research works on pre-
coder design for coded modulation systems with multi-
ple antennas, the design that considers all the relevant
components of the transmitter, namely precoding, mod-
ulation, and interleaver, can be found in [5-7]. Specifi-
cally, a full-rate precoder with any size and for any
number of transmit antennas is designed in [6] to maxi-
mize the achievable diversity order and coding gain in
MIMO block-fading channels.

It is shown in [6] that the maximum achievable diver-
sity order can be realized by an iterative receiver that
employs a soft-input soft-output detector [5] and under
the assumption of having the perfect channel state infor-
mation (CSI) at the receiver. In practice, however, CSI
has to be estimated using a channel estimator and it is
never perfect. Two types of channel estimators have
been used for MIMO block-fading channels in coded
modulation systems, i.e., training-based and semi-blind
channel estimators [8,9]. In both types of channel esti-
mators, known signals are used to estimate the CSI at
the first iteration of the iterative receiver.
Conventionally, for block-fading channels, known sig-

nals or the training sequence is included at the begin-
ning of each data block, which is called time-
multiplexed training or pilot symbol-assisted modulation
(PSAM) scheme [10]. This scheme however reduces
bandwidth efficiency of MIMO systems, since the
amount of training overhead needed is at least a power
of 2 of the number of transmit antennas [11] to ensure
the identifiability of the MIMO channel. A straightfor-
ward application of the PSAM scheme to a BICM-
MIMO system would be time-multiplex data informa-
tion with the training information after the precoder.
As an alternative to the above conventional PSAM

scheme, a potential benefit can be sought by time-
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multiplexing data information with the training informa-
tion before the precoder in the transmitter. This new
approach shall reduce the required training overhead
compared to the conventional PSAM, since the trans-
mitted training symbols are spread over more time peri-
ods; thanks to the precoder. This approach shall be
referred to as precoded PSAM (PPSAM). Investigating
power and time allocations of the training symbols in
PPSAM scheme is the main objective of this article.
Moreover, by multiplexing the training sequence

before precoder, training symbols can be exploited in
both the initialization and iteration phases of the itera-
tive channel estimation process. This is different from a
conventional iterative channel estimator using PSAM
scheme, in which training sequence is only used at the
initialization phase. A natural question is whether the
optimal training design for the initialization phase using
PPSAM scheme is still optimal for subsequent iterations
of an iterative channel estimator. On the one hand, the
channel estimation error at the initialization phase
translates to an SNR shift in the BER performance [8].
On the other hand, the channel estimation error from
the last iteration of the iterative estimator has a strong
impact on the error floor of the BER performance [12].
Therefore, optimal training sequence should be designed
carefully that considers both initialization and iteration
phases.
One of different criteria that have been used to design

training sequences is the minimization of the Cramer-
Rao bound (CRB) of the channel estimation error [10].
This criterion shall be used in this article due to two
main reasons. First, it is directly related to the channel
estimation error. Second, since the CRB is a lower
bound on the mean-squared-error (MSE) of any
unbiased estimator, designing training sequences using
this criterion would be applicable to many estimation
algorithms. Other design criteria, such as maximizing
the channel capacity [8] and minimizing the outage
probability [13], are based on some specific channel esti-
mation algorithms.
The article is organized as follows. The system model

of BICM-MIMO is presented in Section 2. In Section 3
a lower bound on the MSE of the channel estimator is
obtained and the training sequence is designed by mini-
mizing this bound. Section 4 provides numerical results
and comparisons. Section 5 concludes the article.

2 System model
Figure 1 shows the block diagram of a BICM-MIMO
system under consideration. At the transmitter, a chan-
nel encoder with a rate-r error-correcting code converts
the vector of information bits b into a codeword c. The
coded bits are then interleaved by a random interleaver
as described in [6] to produce the interleaved codeword

c̃ . The interleaved codewords are segmented into
groups of (Nnt - Np) × m bits, where N is the spreading
factor of the precoder, nt is the number of transmit
antennas, Np is the number of pilot symbols in Nnt pre-
coded symbols and m is the number of bits carried by
one symbol of a QAM constellation whose size is |Ω| =
2m. Next, the coded bits are mapped to (Nnt - Np)
QAM constellation points. In this step, Np known pilot
symbols are inserted in every segmented group of (Nnt -
Np) data symbols to produce N super-symbols. Here,
each super-symbol refers to a group of nt consecutive
symbols. Investigating the positions and the number of
pilot symbols (i.e., Np) to be used in each Nnt symbols
is the main objective of this article.
Every group of N super-symbols is then spread over N

time periods using a linear precoder G. The Nnt × Nnt
matrix G multiplies a vector of Nnt QAM symbols at
the precoder input, and generates Nnt symbols to be
transmitted over nt antennas, over N time periods.
This is illustrated in Figure 2. Let

xk = [x(k−1)Nnt+1, x(k−1)Nnt+2, . . . , x(k−1)Nnt+Nnt ] be the
kth vector to be precoded. Then, xkG gives the precoded
symbols. Here, xi’s are complex data or pilot symbols
belonging to the 2m-QAM constellation Ω. It is assumed
that the data symbols xi’s are i.i.d with variance σ 2

x . After
precoding, precoded symbols are transmitted through nt
transmit antennas over a block-fading channel.
With nt transmit antennas and nr receive antennas,

the channel is modeled by an nt × nr matrix. For fre-
quency-flat Rayleigh fading, coefficients of the channel
matrix are i.i.d. zero-mean circularly symmetric complex
Gaussian random variables with variance σ 2

h . The chan-
nel is assumed to be block fading with nc different chan-
nel realizations during each codeword. For the kth
symbol to be precoded, xk, the Nnt × Nnr extended
channel matrix, Hk, can be written as

Hk = diag

⎧⎪⎨
⎪⎩H[1]

k , . . . ,H[1]
k ,︸ ︷︷ ︸

N/ns

H[2]
k , . . . ,H[2]

k , . . . ,H[ns]
k , . . . ,H[ns]

k

⎫⎪⎬
⎪⎭ , (1)

where ns is the number of distinct channel realizations
during N time periods of each codeword. To simplify
the notation it is also assumed(a) that ns divides N. For
example, if the length of a codeword is 64 and nc = 32,
then choosing N = 2 would make ns = 1, whereas

choosing N = 4 gives ns = 2. Notation H[t]
k

refers to the

nt × nr complex matrix k that defines the tth channel
realization included in ns channel realizations. The
extended channel input/output relationship is expressed
by

yk = xkGHk +wk (2)
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where yk = [y(k−1)Nnr+1, y(k−1)Nnr+2, . . . , y(k−1)Nnr+Nnr ]
is the received vector at the kth precoding time per-
iod and wk is the noise vector with size 1 × Nnr

whose components are i.i.d zero-mean circularly

symmetric Gaussian random variables with variance
N0. It is noted from (2) that although both data and
pilot symbols are precoded, the part of the precoder
that multiplies the pilot symbols depends on the posi-
tions of the pilot symbols in xk . Equivalently, the
design of the pilot symbols is governed by the proper-
ties of the precoder used. Since this study adopts the
transmission framework and precoder design in [6], it
is useful to review the properties of the precoder pro-
posed in [6].
In general, the properties of the precoder in [6] are

established by the maximum-likelihood decoding analy-
sis and an assumption of ideal channel interleaving. Spe-
cifically, this linear precoder which achieves full diversity
order and maximum coding gain satisfies the following
two conditions:

• A genie condition, which guarantees orthogonal
and equal norm sub-rows in the linear precoding
matrix. Each sub-row has size nt in a precoding
matrix with size Nnt × Nnt.
• Dispersive nucleo algebraic (DNA) condition, which
is based on Proposition 2 in [6], forces null and
orthogonal nucleotides with size s’ = N/ns. Nucleo-
tides refer to subparts of sub-rows with size s’.
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A linear precoder that satisfies the above two sets of
conditions is called DNA-cyclo precoder and has the
best performance in terms of achieving diversity and
coding gains with low complexity receiver when N ≤ nt.
It is suggested in [6] that to generate one class of such a
precoder, a Ns’ × Ns’ cyclotomic rotator, denoted by F,
that satisfies the genie condition is first selected. Then
the orthogonal nucleotides are placed inside an Nnt ×
Nnt matrix and they are separated with null nucleotides.
Therefore, the DNA-cyclo precoder matrix can be
expressed by subparts of a cyclotomic rotator as follows:

G =

⎡
⎢⎢⎢⎣

Int/s′ ⊗ �[1] [1] · · · Int/s′ ⊗ �[N] [1]

Int/s′ ⊗ �[1] [2] · · · Int/s′ ⊗ �[N] [2]

...
. . .

...
Int/s′ ⊗ �[1] [Ns′] · · · Int/s′ ⊗ �[N] [Ns′]

⎤
⎥⎥⎥⎦ (3)

where F[i ] [j] is the ith sub-row of the jth row of F
with size 1 × s’, In is an identity matrix with size n × n
and ⊗ denotes the Kronecker product.
The properties that shall be useful for the problem

considered in this article, which are implied directly
from the genie and DNA conditions, are FFH = INs ‘

and �[i] [t](�[j] [t])H = 1
N δ(i − j) . It is also useful to point

out that each component of F has an exponential form

with a scaling factor of 1√
N s′ .

The iterative receiver is also shown in Figure 1. The
channel estimator produces an estimate of the channel
using the minimum MSE (MMSE) criterion based on
the training sequence. Details about channel estimation
with the proposed method of inserting training sequence
shall be given in Section 3. After channel estimation is
performed using the training signal, the soft-input soft-
output demodulator uses the MMSE criterion to demo-
dulate the data. The soft-output MMSE demodulator
computes the extrinsic information for the interleaved

bits, {�(c̃l)
ext }, from the received symbols. To obtain Λ-

values, the demodulator exploits the a priori informa-

tion of the coded bits coming from the decoder, {�(c̃l)
ap },

and the channel estimate Ĥk . In the first iteration, the
demodulator assumes that the a priori Λ-values are
zero, except for the pilot symbols. For the corresponding
bits of the pilot symbols, the demodulator uses a large
number, say ±100 as their a priori Λ-values. The de-

interleaved outputs, i.e., {�(cl)
ap }, become the a priori Λ-

values used in the channel decoder shown in Figure 1
after removing the information of pilot symbols. The
channel decoder uses the maximum a posteriori prob-
ability (MAP) algorithm to compute the extrinsic Λ-

values {�(cl)
ext }. for all coded bits, which are used again in

the next iteration in the demodulator. In subsequent

iterations, soft information from the decoder is used to
improve the performance of the channel estimator. The
detailed operation of the iterative channel estimator is
discussed in the following sections.

3 Training design and channel estimator
As discussed before, the criterion used for training
design in this article is the CRB on the channel estima-
tion error. The bound states that the MSE of any
unbiased estimator is lower bounded by the trace of
inverse of complex Fisher information matrix (FIM)
[14]. To derive FIM, the relation between the channel
input and channel output during one block-length, i.e.,
N/ns time periods, whose corresponding channel matrix

is H[t]
k , is of interest. In the following, index k is

omitted, since it suffices to consider the transmission of
a single precoded symbol for the purpose of channel
estimation. With the previously described structure of
the precoder, the channel output during one super-sym-
bol time is given by

y[i,t] =

(
Inr ⊗

(
N s′∑
τ=1

x[τ ] ⊗ �[i,t] [τ ]

))
h[t] +w[i,t]; t = 1, . . . ,ns, i = 1, . . . , s′ (4)

where y[i,t] = y[(t-1)s’+i] represents the ((t - 1)s’ + i)th
received symbol during N time periods, with size nr × 1.
Moreover, h[t] is the column vector formed by vertically
stacking the columns of an nt × nr channel realization
matrix H[t] and x[τ]’s are constructed by splitting x in
Ns’ sub-vectors with size 1 × nt/s’. In the following, we
call these sub-vectors x[τ]’s nucleo symbols.
It is quite obvious from (4) that, to have all the

received super-symbols, y[i,t], contain training informa-
tion, there should be at least one pilot nucleo (i.e., nt/s’
pilot symbols) in each group of Ns’ nucleos to be
precoded.
With the above structure of the proposed training

sequence, the number of pilot symbols in Nnt trans-
mitted symbols would be Np = np × nt/s’, where np
nucleo symbols in a symbol to be precoded are assigned
to training sequence. Therefore, (4) can be rewritten as

y[i,t] =

⎛
⎝Inr ⊗

⎛
⎝∑

τ∈Id

x[τ ]d ⊗ �
[i,t] [τ ]
d +

∑
τ∈Ip

x[τ ]p ⊗ �
[i,t] [τ ]
p

⎞
⎠

⎞
⎠h[t] +w[i,t], (5)

where Id and Ip are sets of indexes from {1, . . . ,
Ns’}, that are assigned to data and pilot nucleos, respec-
tively, and |Id| + |Ip| = (N s′ − np) + np = N s′ . Note that
the subscripts “d” and “p” are used to differentiate
between data and pilot nucleos. For convenience, the

notations �
[i,t] [τ ]
p and �

[i,t] [τ ]
d

are used to refer to sub-

rows of F that are multiplied by pilot and data nucloes,

i.e., x[τ ]p and x[τ ]d
, respectively. Furthermore, in the
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following the notation T[i,t] is used for

Inr ⊗
(∑

τ∈Ip
x[τ ]p ⊗ �

[i,t] [τ ]
p

)
.

The derivation of FIM is given in the next section.
Pilot symbols are exploited at the initialization phase
and in subsequent iterations considering the special
structure of the training sequence. In general, training
design can be investigated for these two phases sepa-
rately. However, for the precoder adopted in this article,
the optimal training design obtained for the initialization
phase turns out to also be optimal for the iteration
phase. Nevertheless, the optimal numbers of pilot
nucleos in these two phases of channel estimation are
not the same.

3.1 Fisher information matrix
The key steps in deriving the FIM in the initialization
phase are now given. Without loss of generality we drop
superscript t in (5) and perform all the derivations for
the first block period (i.e., t = 1). Collecting all the
observations during the first block period of length s’ in
a vector �, the FIM for the channel estimation problem
at the initialization phase is defined and computed as

FIMinit(np, xp, Ip) = Eϕ,h

{[
∂ ln p(ϕ,h)

∂h∗

] [
∂ ln p(ϕ,h))

∂h∗

]H
}

= Eh

{
Eϕ

{[
∂ ln p(ϕ|h)

∂h∗

] [
∂ ln p(ϕ|h)

∂h∗

]H
∣∣∣∣∣h

}}

+ Eh

{[
∂ ln p(h)

∂h∗

][
∂ ln p(h)

∂h∗

]H
} (6)

where FIMinit(np, xp, Ip) shows the dependency of
FIM on those parameters of interest. Using the i.i.d.
assumption on noise and data, p(�|h) can be approxi-
mated as a complex normal distribution with mean
μ = [μT

1, . . . , μT
s′ ]

T and covariance R� = diag[R1, . . . ,

Rs ‘]. Moreover, it follows from (5) that μi = E� {y[i]|h} =
T[i]h and

Ri = H
(

σ 2
x Int/s′ ⊗ ((�[i]

d )
T
(�[i]

d )
∗
)
)
HH +N0Inr (7)

where H = (H[1])T and �
[i]
d

is the ith sub-matrix of F
with size (N s’ - np) × s’ that is assigned to data symbols.
The i.i.d. assumptions on noise and data make the

FIM additive. Specifically,

FIMinit(np, xp, Ip) =
∑s′

i=1
FIMinit

i . The quantity FIMinit
i

is obtained as follows:

FIMinit
i = Eh

{
Ey

{
∂ ln p(y|h)

∂h∗

(
∂ ln p(y|h)

∂h∗

)H
∣∣∣∣∣h

}}
+ σ−2

h Intnr .

We know that

ln p(y|h) = Constant − ln |Ri | − (y − μi)HR−1
i (y − μi). (8)

and ∂ ln |Ri|
∂h∗

l
= trace

(
R−1
i

∂Ri
∂h∗

l

)
. Therefore,

∂Ri

∂h∗
l

= H
(

σ 2
x Int/s′ ⊗ ((�[i]

d )
T
(�[i]

d )
∗
)
)

�T
l (9)

where ∑l is an nr × nt null matrix with only a single
element of 1 at position(⌊

l−1
nt

⌋
+ 1, (l − 1 mod nt) + 1

)
. The derivative of the

third term in (8) is

∂(y − μi)
HR−1

i (y − μi)

∂h∗
l

= −∂μH
i

∂h∗
l

R−1
i (y − μi) + (y − μi)H

∂R−1
i

∂h∗
l

(y − μi)

where ∂R−1
i

∂h∗
l
= −R−1

i
∂Ri
∂h∗

l
R−1
i and ∂Ri

∂h∗
l
is given by (9). In

addition,

∂μH
i

∂h∗
l

=
∂hH

∂h∗
l

(T[i])H = eTl (T
[i])H

where el is an ntnr × 1 null vector with a single ele-
ment 1 at position l.
Using all the above equations and after some manipu-

lations, one has

(FIMinit
i )l,j = Eh{eTl (T[i])HR−1

i T[i]ej

+ tr(R−1
i HA[i]�T

l R
−1
i �j(A[i])HHH)} + σ−2

h δ(l − j),

where A[i] ≡
(

σ 2
x Int/s′ ⊗ ((�[i]

d )
T
(�[i]

d )
∗
)
)
.

Using the fact that tr (ABC) = tr (CAB) and summing

over s’ quantities FIMinit
i , the total FIM is given by,

FIMinit(np, xp, Ip) = Eh

{
s′∑
i=1

R−1
i ⊗ ((X[i]

p )
H
X[i]
p ) + R−1

i ⊗ Qi

}
+ s′σ−2

h Intnr (10)

where X[i]
p =

∑
τ∈Ip

x[τ ]p ⊗ �
[i][τ ]
p , and

Qi = (A[i])THTR−1
i H∗(A[i])∗ .

For designing training sequence, (10) can be simplified
further using numerical calculation. Using numerical
calculation, it is observed that for a Rayleigh-distributed

channel, the matrix Eh{R−1
i } in (10) is approximately a

diagonal matrix(b), αInr . This observation means that Eh
{Qi} can be approximated by nrασ 2

h (A
[i])T(A[i])∗ . Then,

by performing the expectation operation and using the
factorization property of the Kronecker product, (10)
can be represented as
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Eh

{
s′∑
i=1

αInr ⊗
(
(X[i]

p )
H
X[i]
p

)
+ αInr ⊗ nrασ 2

h (A
[i])

τ
(A[i])

∗
}
+ s′σ−2

h Inr ⊗ Int =

Inr ⊗
(

s′∑
i=1

α

(
(X[i]

p )
H
X[i]
p

)
+ nrα2σ 2

h (A
[i])

τ
(A[i])

∗
+ s′σ−2

h Int

)

Moreover, using the property of the Kronecker pro-
duct (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), it follows that

(X[i]
p )HX[i]

p =
∑

τ∈Ip

∑
τ ′∈Ip

((x[τ ]p )
H
x[τ

′]
p ) ⊗ ((�[i] [τ ]

p )
H
�

[i] [τ ′]
p ).

Therefore (10) can be further simplified to

FIMinit(np, xp, Ip) = Inr⊗⎛
⎝α

∑
τ∈Ip

∑
τ ′∈Ip

(x[τ ]p )
H
x[τ

′]
p ⊗

s′∑
i=1

(�[i] [τ ]
p )H�

[i] [τ ′]
p + nrα

2σ 2
h

s′∑
i=1

(A[i])τ (A[i])
∗
+ s′σ−2

h Int

⎞
⎠ (11)

In general, the second term in (11) depends on Ip ,
but not on the training symbols, whereas the first term
depends on both xp and Ip . Although both terms
depend on np, how FIMinit depends on np is determined
by Ip . Therefore, in the following Ip and xp are first

optimized. Then np is determined for the optimized Ip .
For the iteration phase, specifically the last iteration,

estimation and detection are implemented using infor-
mation about the data symbols as well as the pilot sym-
bols. Thus, the parameter of interest in deriving FIM is

θ = [hTxd]T . Moreover,

μi = Eϕ{y[i]|θ} = (
Inr ⊗ (∑

τ x
[τ ] ⊗ �[i] [τ ]

))
h and

Ri = N0Inr . By replacing θ in (6) for h and after some
manipulations, the FIM for channel estimation in the
iteration phase is given by

FIMiter(np, xp, Ip) = N−1
0 Inr⊗⎛

⎝Ns′ − np
N

σ 2
x Int +

∑
τ∈Ip

∑
τ ′∈Ip

(x[τ ]p )
H
x[τ

′]
p ⊗

s′∑
i=1

(�[i] [τ ]
p )H�

[i] [τ ′]
p

⎞
⎠ + s′σ−2

h Intnr .
(12)

3.2 Optimization of training symbols and their positions
This section is first concerned with minimizing the CRB
expression for the initialization phase. The minimization
is under a constraint on the power budget for the train-
ing sequence. Such a constraint is expressed as

∑
τ∈Ip

(
x[τ ]p ⊗ �

[i] [τ ]
p

) (
(x[τ ]p )

H ⊗ (�[i] [τ ]
p )

H
)

≤ Pt. (13)

Using the properties of the precoder employed in this
study, the above constraint can be simplified to

s′
N

∑
τ ′∈Ip

x[τ ]p (x[τ ]p )
H ≤ Pt . The other obvious constraint

is that the training symbols should be selected from
QAM constellation Ω. Then, the training symbols, xp’s
and their positions, specified by Ip , are obtained by sol-
ving the following constrained optimization problem:

min
xp,Ip

CRBinit(np, xp, Ip) = min
xp,Ip

tr (FIMinit(np, xp,Ip)−1)

s.t.

⎧⎨
⎩

s′
N

∑
τ∈Ip

x[τ ]p (x[τ ]p )
H ≤ Pt

(x[τ ]p )j ∈ �, j = 1, . . . , nt /s′, τ ∈ Ip

(14)

where (x[τ ]p )j is the jth pilot symbol in the τth pilot

nucleo and the FIM is given in (11).
To proceed, lets consider two separate cases for pro-

blem (14): np = 1 and np ≥ 2. Case 1 (np = 1): In this
case the FIM is simplified to

Inr ⊗
(

α

(
(x[τ ]p )

H
x[τ ]p

)
⊗

s′∑
i=1

(
(�[i] [τ ]

p )
H
�

[i] [τ ]
p

)

+nrα2σ 2
h

s′∑
i=1

(A[i])τ (A[i])
∗
+ s′σ−2

h Int

)
,

(15)

Because of the shift-invariant property of (15) with
respect to τ, τ can be any value in the set {1, 2, . . . ,
Ns’}. For simplicity, set τ = 1 and the superscript τ is
omitted. Using the fact that if X >0 then tr (X-1) ≥ ∑i 1/
(X)i,i, the original optimization problem is simplified by
minimizing the lower bound of the objective function.

On the other hand,
∑s′

i=1

((
�

[i] [τ ]
p

)H
�

[i][τ ]
p

)
= 1

N Is′ ,∑s′
i=1(A

[i])T(A[i])∗ = σ 4
x
s′

(
(Ns′−1

N )
2
+ ( 1

N )
2
)
Int and the

constraint is s′
N xpx

H
p = s′

N

∑nt/s′
j=1 |(xp)j|2 . Therefore, it is

not hard to see that the solution of the simplified opti-
mization problem is

|(xp)1|2 = |(xp)2|2 = · · · = |(xp)nt/s′ |2 = NPt
nt
. It means

that all pilot symbols should have the same power. For
example, one can select corner points of the QAM con-
stellations for the training symbols.
Case 2 (np ≥ 2): In this case there are two options

for the placements of pilot nucleos. The first option is
to group all pilot nucleos in one single cluster and the
second option is to spread pilot nucleos. It can be
shown that the CRB is invariant with respect to a shift
of the placements of pilot nucleos in both options.
Therefore, it suffices to select one cluster or one
spread placement. However, the precoder has been
designed such that the soft-output demodulator works
with uncorrelated inputs and putting pilot nucleos
between data nucleos may violate this condition. That
condition is satisfied when A[i] has a diagonal form.
The implication of this property is to place pilot
nucloes equi-spaced in xk and
Ip = {i0 + kn; k = 0, . . . , np − 1} , where n = Ns’/np
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and i0 Î {1, . . . , n}, which leads to A[i] = σ 2
x
Ns′−np
Ns′ Is′ .

In this selection it is supposed that np is divisible by
Ns’.
Then the FIM in (11) can be represented by

Inr ⊗
⎛
⎝ 1
N

α
∑
τ∈Ip

(x[τ ]p )Hx[τ ]p ⊗ Is′ + nrα
2σ 4

x σ 2
h
1
s′
(
Ns′ − np

N
)
2

Int + s′σ−2
h Int

⎞
⎠ (16)

To obtain the above expression of the objective func-
tion, the following property has been used:(

s′∑
i=1

(�[i] [τ ]
p )H�

[i] [τ ′]
p

)
n,l

=
{ 1

N , τ = τ ′; n = l
0, otherwise (17)

Moreover, the only term that depends on the training

symbols is
∑

τ∈Ip
(x[τ ]p )Hx[τ ]p in (16). Finally, using the

constraint on training power, which can be written as

s′

N

∑
τ∈Ip

nt/s′∑
j=1

|(x[τ ]p )j|2 ≤ Pt, (18)

the solution is given by∑
τ |(x[τ ]p )j|2 = NPt

nt
; j = 1, . . . ,nt/s′ .

Now consider the training design for the iteration
phase. Observe that all the terms in (12) have diagonal
forms with equal diagonal elements, except∑

τ∈Ip

∑
τ ′∈Ip

(x[τ ]p )
H
x[τ

′]
p ⊗ ∑s′

i=1(�
[i] [τ ]
p )H�

[i] [τ ′]
p . This

means that the solution of problem (14), but with

FIMinit(np, xp, Ip) replaced by FIMiter(np, xp, Ip) , is
to choose equal diagonal elements for this term. There-
fore, the training sequence designed for the initialization
is also optimal for the iteration phase.
In summary, by selecting pilot nucleos such that the

sum of the powers of their corresponding pilot symbols
with the same indexes are equal, the bound on CRB is
minimized. The above condition can give different selec-
tions for pilot symbols from a two-dimensional constel-
lation. It should be pointed out, however, that not all
selections guarantee that pilot symbols belong to stan-
dard QAM constellations.

3.3 Determination of the number of the training symbols
For block-fading channels, the number of pilot nucleos,
i.e., np, should be as small as possible that meets the
power constraint. Using a larger value for np wastes
bandwidth and does not change the system
performance.
The optimum numbers of the training symbols in the

initialization phase and iteration phase are not the same.
This is explained as follows. At the initialization, by
looking at (7), it is observed that the first term in (11) is

an increasing function of np. However, the second term
is a decreasing function of np that is multiplied by nr.
Therefore, np that minimizes the CRB are determined
by the summation of these two terms, which is also
determined by the value of nr. Table 1 gives several
examples of optimal np for different sets of nt, nr and N.
For the iteration phase, the expression in (12) means
that the CRB in the iteration phase always increases by
increasing np. Since it is assumed that there is perfect
information about the data symbols in the iteration
phase, which is not the case in reality, it is most appro-
priate to select np considering only the initialization
phase.
To demonstrate the optimal training design, Figure 3

shows a graphical structure for a simple example, where
Pt = 4σ 2

x ,np = 2,N = 2, nt = 4 and nr = 2. In this exam-
ple, ns = 1. Then the size of pilot nucleos should be nt/
s’ = 2, where s’ = N/ns = 2.

3.4 Channel estimation
For the channel estimation task, one can view the
received vector during one block length as

ϕ[t] = [(y[1,t])T , (y[2,t])T , . . . , (y[s
′ ,t])T]T .

At the initialization, the mean and covariance matrix
of this vector are given in Section 3.1. By treating the
data symbols as nuisance parameters, the MMSE chan-
nel estimate can be found as [14]

ĥ
[t]

= σ 2
h T

H(σ 2
h TT

H + Rϕ[t] )ϕ[t] (19)

where T = [(T1)T, . . . , (T[s’])T]T.
In the subsequent iterations, soft information from the

decoder is used to improve the performance of the
channel estimator. The channel estimator uses such
information to compute new estimates of the channel
coefficients using expected values of the data symbols.

Therefore, the interleaved {�(cl)
ext } from the decoder are

fed back to the estimator to calculate the expected
values of the data symbols, i.e., E{xd}. The entries of E

{xd} are calculated using {�(c̃l)
ap } at each iteration by E

{(xd)i} = ∑xÎΩ x · p((xd)i = x). The detailed derivations
of the probability p((xd)i = x) from Λ-values are given in

Table 1 Optimum np for several sets of parameters {nt,
nr, N}

nt nr N np

2 2 2 1

4 2 2 2

4 2 4 4

4 4 2 1

4 4 4 1
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[15] (note that the calculation depends on the mapping
rule in Ω).
To verify the results obtained in this section, Section 4

compares numerically the MSE performance of the
above channel estimator obtained with the optimal and
suboptimal training sequences.

4 Illustrative results
In this section, the frame-error-rate (FER) and MSE per-
formances of BICM-MIMO systems using a MMSE
iterative channel estimator are presented. The space-
time precoder is the DNA-cyclo precoder that satisfies
the properties outlined in Section 2. We consider quad-
rature phase-shift keying (QPSK) modulation with Gray
mapping.

The MSE performance of a BICM-MIMO for a
codeword length of 4 × 1024 bits is shown for a 4 × 2
block-fading MIMO channel in Figure 4, when nc = 2.
In this figure, Eb is the energy per information bit.
The code used is the 16-state convolutional code with
generator polynomials (23, 35) in octal form. In Fig-
ure 4, the MSE curves are obtained after 1 and 5
iterations of the iterative channel estimation/demodu-
lation/decoding, with the following cyclotomic rotator
[16]:

� =
1
2

⎡
⎢⎢⎣

1 1 ej6π/15 −ej6π/15

ej2π/15 jej2π/15 −ej8π/15 jej8π/15

ej4π/15 −ej4π/15 ej10π/15 ej10π/15

ej6π/15 −jej6π/15 −ej12π/15 −jej12π/15

⎤
⎥⎥⎦

Data symbols before pilot insertion

Pilot symbols

Symbol to be precoded

Pilot and data symbols after precoding

Training part

Data part

2N

4tn

)( x

Figure 3 Structure of the proposed scheme for the training sequence-when N = 2, nt = 4, nr = 2 and np = 2
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and when the setting for N, ns, np and Pt in Figure 3
are used. The channel is generated randomly and is
assumed to be Rayleigh distributed. For the purpose of
comparison, the results for MSE performances of the
optimal PPSAM, denoted by O-PPSAM and the subop-
timal PPSAM, denoted by SO-PPSAM as well as the
CRB are shown in Figure 4. For SO-PPSAM, two pilot
nucleos are inserted as one cluster in front of data
nucleos in a symbol to be precoded. In contrast, in the
case of O-PPSAM, the optimized training sequence
embeds the pilot nucleos at the first and third positions
of Ns’ = 4 positions for nucleos. The MSE curves show
that the performance of the optimal scheme is better
than the sub-optimum scheme for the first iteration (i.e.,
initialization). In fact the MSE performance of the pro-
posed scheme closely approaches the CRB at high Eb/N0

after 5 iterations.

In Figure 5, the FER performance of the system with
the PPSAM schemes is compared with the conventional
PSAM training scheme for the same system parameters
as in Figure 4. The top curve is the FER performance of
the system with the conventional PSAM training
scheme. Note that for a fair comparison, the training
scheme in PSAM also meets the training power con-

straint as trace (XpXH
p ) = Pt , where Xp is the training

matrix placed at the beginning of each block of the pre-
coded symbols. The optimal option for PSAM scheme
in terms of minimizing the FER as proposed in [11] is
to select Xp to have orthogonal columns. The simplest

option is
√
2 × σ 2

x /ntInt =
√

σ 2
x Int , which results in the

same power budget as that of the proposed scheme.
As can be seen from Figure 5, the O-PPSAM scheme

offers 0.5 dB performance gain as compared to the SO-

2 3 4 5 6 7 8
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−4

10
−3

10
−2

10
−1

Eb/N0 (dB)

M
SE

 

 

1st iter. SO-PPSAM
1st iter., O-PPSAM
CRBinit

5th iter. SO-PPSAM
5th iter., O-PPSAM
CRBiter

Figure 4 Comparison of MSE performance obtained with the optimal PPSAM and the sub-optimal PPSAM-over a 4 × 2 block-fading
channel with nc = 2, when N = 2 and np = 2 after 1 and 5 iterations of iterative channel-estimation/demodulation/decoding.
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PPSAM scheme at FER = 10-2. In comparison with
PSAM, the performance of the PSAM scheme is about
0.5-1.5 dB worse than the proposed scheme depending
on Eb/N0 after 5 iterations. This is expected because the
pilot information is embedded in the precoded symbols
for the proposed scheme and not for the PSAM scheme.
In this way, the demodulator can also make use of this
information. Note, however, that for the first iteration,
since there is no information about data, PSAM works
the best. More importantly, while the proposed scheme
uses a little bandwidth for training information (for the
system considered in this figure the training overhead is
np × nt/s’ = 4), the training overhead of PSAM scheme
is nt × nt = 16, which is quadruple. To investigate the
effect of the number of transmit antennas, two different
systems, one with 2 × 2 channel and one with 4 × 2
MIMO channel, are compared in Figures 6 and 7 in

terms of MSE and FER, respectively. For both channels,
np = 2 and the optimum scheme are used when N = 2,
while other system parameters are the same as those
used for Figure 4. As can be seen from Figure 6, the
MSE of the channel estimation increases when increas-
ing the number of transmit antennas. This is expected
because there are more channels to be estimated for the
same amount of training information and power as
done in the comparison. Nevertheless, the gain in diver-
sity by using more antennas can still improve the overall
FER performance as seen in Figure 7.

5 Conclusion
In this article, a new training design for a BICM-MIMO
system over a block-fading channel has been proposed.
The design inserts pilot symbols into the data symbols
before precoding. The new training sequence improves

2 3 4 5 6 7 8
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−4
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10
−2

10
−1

10
0

Eb/N0(dB)

F
E

R

 

 

PSAM
SO-PPSAM
O-PPSAM
Perfect CSI

1st iteration

5th iteration

Figure 5 Comparison of FER performance obtained with the optimal PPSAM, sub-optimal PPSAM and PSAM scheme-over a 4 × 2
block-fading channel with nc = 2, when N = 2 and np = 2 after 1 and 5 iterations of iterative channel-estimation/demodulation/
decoding.
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Figure 6 Comparison of MSE performance obtained with the optimal PPSAM for 2 × 2 and 4 × 2 block-fading channels with nc = 2,
when N = 2 and np = 2 after 5 iterations of iterative channel-estimation/demodulation/decoding.
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Figure 7 Comparison of FER performance obtained with the optimal PPSAM for 2 × 2 and 4 × 2 block-fading channels with nc = 2,
when N = 2 and np = 2 after 5 iterations of iterative channel-estimation/demodulation/decoding.
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bandwidth efficiency as compared to the conventional
PSAM scheme and can also be used by the demodulator
in the receiver. In order to design the optimal training
symbols and their positions, the CRB on the channel
estimations at the initialization and at the iteration
phases are minimized. Compared to PSAM, perfor-
mance improvement achieved with the proposed train-
ing is about 1.5 dB at a FER level of 10-2.

Endnotes
aIn practice, since ns is typically an approximated value over
some range and since N can be selected, such an assump-
tion can be fulfilled. bUsing the matrix inversion lemma,
one has R−1

i = (HA[i]HH +N0Inr )
−1 = N−1

0 Inr +N−2
0 HA[i]HH(Inr +N−1

0 HA[i]HH)−1 .

Therefore, for high SNR, E{R−1
i } can be approximated by

N−1
0 Inr .
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