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Abstract

To determine the capacity of distributed wireless networks (i.e., ad hoc networks), the random access transport
capacity was proposed as the average maximum rate of successful end-to-end transmission in the distance. In this
article, we consider the random access transport capacity for multihop relaying to find the end-to-end throughput of
a wireless ad hoc network, where each node relays the signal using an amplify-and-forward (AF) strategy. In particular,
we analyze the exact outage probability for multihop AF relaying in the presence of both co-channel interference and
thermal noise, where interferers are spatially distributed following a Poisson distribution. In our numerical results, it is
observed that the maximum random access transport capacity is achieved at a specific spatial density of transmitting
nodes due to the throughput-reliability tradeoff as the number of transmitting nodes (=interferers) increases. We
compute the optimal spatial density of transmitting nodes that maximize their random access transport capacity. As a
result, we can obtain the actual random access transport capacity of multihop AF relaying and predict the maximum
number of transmitting nodes per unit area to maximize their performance.

Keywords: Amplify-and-forward (AF), Multihop relaying, Interference, Random access transport capacity,
Poisson network, Throughput-reliability tradeoff

1 Introduction
Cooperative communication is a promising and emerg-
ing technique for enhancing the coverage and reliability in
wireless networks [1,2]. In particular, dual-hop transmis-
sion systems employing amplify-and-forward (AF) relay-
ing, where a relay simply retransmits a scaled version
of the received signal to the destination, are being spot-
lighted, due to their low complexity and delay benefits.
In addition, the performance analysis of dual-hop AF sys-
tems has been an important area of research in recent
years [3-5]. However, since dual-hop transmission over
long distances requires a very high transmission power,
multihop transmission in which a source communicates
with a destination via a number of relays has been pro-
posed as an effective method of establishing connectivity
between the nodes of a network [6,7]. More recently, the
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multihop transmission with AF strategy has drawn con-
siderable attention in the literature [8-10]. In [8,9] exam-
ined the ergodic capacity and outage probability of multi-
hop transmission with AF strategy using Jensen’ inequality
and the inequality between the harmonic and geometric
means. [10] computed the optimal number of hops for lin-
ear multihop AF relaying with equal resource allocation in
terms of the random coding error exponent. All of these
previous works onmultihop AF relaying focused on noise-
limited fading environments for ideal configurations with-
out interference. Since network interference is inevitable
in practical wireless networks, due to spectral reuse, AF
relaying in the presence of co-channel interference has
been studied [11-14]. However, [11,12] considered only
dual-hop transmission and [11-13] neglected either noise
or interference at each node for analytical tractability. Fur-
thermore, most of the prior works on AF relay networks,
including [14], analyzed the outage probability using some
approximation methods, such as the harmonic mean, and
assumed that the locations of the network nodes are
deterministic without spatial randomness.
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Meanwhile, under the assumption that the interferer
locations are random, there have been some state-of-
the-art works on the ad hoc network capacity [15-23].
In [15], the transmission capacity was proposed as the
maximum allowable density of transmitting nodes to sat-
isfy the data rate and outage probability constraints. The
transmission capacity framework has been successfully
used to characterize the physical layer on the ad hoc
networks [15-20], such as through the use of multiple
antennas [17], interference cancellation [18] and spec-
trum sharing in tiered cellular networks [20]. [21] fur-
ther studied the tradeoffs of the transmission capacity
between the throughput, delay, and reliability in wireless
ad hoc networks. However, since most of the prior works
on computing the transmission capacity were limited to
single hop transmission without noise, [22] derived the
transmission capacity of dual-hop relaying while consid-
ering the thermal noise. Recently, to account for multiple
hops and retransmissions, [23] developed a new met-
ric for quantifying the end-to-end throughput termed
random access transport capacity. The random access
transport capacity was defined as the average maxi-
mum rate of successful end-to-end transmissions over
some distance.
In this article, we consider a realistic communication

environment in wireless ad hoc networks where all of the
transmitting nodes are randomly scattered and uncoor-
dinated following a Poisson law over a plane. For decen-
tralized wireless networks, we consider the random access
transport capacity to find the overall end-to-end through-
put for multihop AF relaying. To compute the random
access transport capacity, we analyze the exact outage
probability of multihop transmission with AF strategy
in a Poisson field of interferers without neglecting the
noise at all of the nodes. From our numerical results,
we observe that even when the number of transmitting
nodes increases, the overall throughput of multihop relay-
ing does not increase consistently due to interference. In
other words, the random access transport capacity has
a maximum value at a certain spatial density of trans-
mitting nodes, due to the throughput-reliability tradeoff,
and shows that the increase in the throughput is inversely
proportional to the reliability as the number of transmit-
ting nodes(=interferers) increases. Thus, in this article, we
compute the optimal spatial density of transmitting nodes
that maximize their random access transport capacity,
and this helps us to predict and manage the maximum
available number of transmitting nodes per unit area to
maximize their performance. Moreover, since each relay
node amplifies the interference, as well as the thermal
noise, our results show that the performance of multi-
hop AF relaying can be degraded due to the accumu-
lated interference caused by the increasing number of
transmission hops.

The remainder of this article is organized as follows.
Section 2 presents the system model with channel model
and interference model. We analyze the random access
transport capacity of multi-hop AF relaying with both
noise and Poisson interference in Section 3. Section 4
presents the optimal density of transmitting nodes to
maximize their random access transport capacity. Section
5 compares the simulation results with the analytical
results. Finally, Section 6 concludes this article.

2 Systemmodel
We consider a large wireless ad hoc network where source
node S drawn from a homogeneous poisson point process
(PPP) on a plane of intensity λ wishes to communicate
with a destination node D that is at a distance dSD away
in a random direction. Each source node communicates
with its assigned destination node via intermediate relay
nodes R which transmit their received data using an AF
strategy to their respective successor nodes by means of
a process called linear multihop relaying, as illustrated
in Figure 1. Thus, as all transmitters (sources or relays)
in each hop communicate with their assigned receivers
(relays or destinations) in a random direction, all of the
transmitting nodes are randomly distributed following a
Poisson distribution with spatial density λ due to the ran-
dom translation invariance property of PPP [24]. In this
article, as it is difficult to compute the overall throughput
in a general model for ad hoc networks, three assump-
tions are made to make the calculation more tractable.
First, we assume that each source transmits a single packet
at a time slot along the entire multihop path: no intra-
route spatial reuse. Second, all of the nodes in the nth
hop transmit data to their own assigned receivers using
the same power Pn. Finally, we assume that all of pairs
of transmitters-receivers in the nth hop are the same
distance apart dn

(∑K
n=1 dn = dSD

)
. This is obviously a

simplification, but it constitutes an important special case
of general ad hoc networks, and these assumptions allow a
closed-form for the end-to-end throughput in terms of the
key network parameters. In this article, all of the nodes are
assumed to have a single antenna operating in a common
frequency band and to be in half-duplex mode.

2.1 Channel model
We consider a channel model with small scale fading and
large scale path loss for a practical scenario. Therefore,
the square of the instantaneous channel response between
any pair of nodes located at x1 and x2 can be rewritten as

|h12|2 = F12 · l(‖x1 − x2‖), (1)

where F12 captures the small scale fading which obeys a
Rayleigh fading model and l(‖x1 − x2‖) = ‖x1 − x2‖−α

characterizes the effect of large scale path loss with path
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Figure 1 Amultihop relay network consisting of source, relays, and destination in a wireless ad hoc networks. The sets of nodes can be
divided into multiple different pairs for each transmission hop. The dashed lines represent interference which is generated by sources and relays in
each transmission hop.

loss exponent α. In this article, we consider 2 < α <

5 for the main physical range of interest for path loss
exponent in wireless networks. We assume that the chan-
nel responses for all of the nodes are independent and
quasi-static.

2.2 Interference model
We consider a slotted ALOHA transmission without cen-
tralized scheduling [19,22,23], where all of the transmit-
ters which cause interference are randomly scattered and
uncoordinated. Since all of nodes are drawn from a homo-
geneous 2-D PPP of intensity λ, all nodes generating
interference at the nth hop transmission are also modeled
as a homogeneous PPP with λ. Then, the sets of interferers
in each hop are denoted as I := {Ixn, n ∈ N}. In partic-
ular, we define the interferer set as �In := {In} where In
is the location of interferers. In the case of the transmis-
sion power, we assume that all of the interferers in the

nth hop use the same power PIn . Moreover, as the only
α > 2 for which the aggregate interference has a distri-
bution expressible in closed-form is for α = 4 [19,25],
we assume a large wireless ad hoc network where each
multihop branch is located relatively far away with each
other.

3 Random access transport capacity of multihop
AF relaying

In this section, we consider the random access trans-
port capacity, defined as the average maximum rate of
successful end-to-end transmission over some distance.
Unlike the conventional capacities of wireless ad hoc net-
works, the random access transport capacity is a suitable
metric to measure the overall throughput of the trans-
mitting nodes in a decentralized wireless network. For
computing the random access transport capacity of wire-
less ad hoc networks, while [23] considered the multihop
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transmission in the presence of retransmissions, we focus
on the mutltihop AF relaying the most popular proto-
col due to low complexity and no retransmission. The
definition of the random access transport capacity is

C = λd log (1 + ζ ) ps (bps/Hz/m) (2)

where ps is the probability that the packet is successfully
decoded by the destination D, λ is the density of trans-
mitting nodes (=interferers), ζ is the target SINR, and d
is end-to-end distance. To compute the success probabil-
ity of the random access transport capacity, the outage
probability of multi-hop AF relaying should be analyzed
first.
In the first transmission hop, the relay nodes receive the

signal transmitted from the source nodes and the received
signal y1 at the relay can be expressed as

y1 = h1s0 +
∑
i∈�I1

liwi + n1 (3)

where s0 is the transmitted symbol with E[ |s0|2]= P1,
h1 is the channel of the first transmission hop, and n1 is
the additive white Gaussian noise with an average power
of σ 2

1 . In this article, we regard the aggregate of interfer-
ence in Poisson field

∑
i∈�I1

liwi as a shot noise [15-23,26]
where the relay node R1 is affected by its interferers
located in a homogenous PPP �I1 and wi denotes the
transmitted symbol of interferer i. In addition, the aver-
age transmit power of an interferer is E[ |si|2]= PI1 and
{li}i∈�S are the channels from the interferer i to the first
relay node R1. Using the AF strategy, the received signal at
the second hop can be written as

y2 = h2G2y1 +
∑
j∈�I2

ljwj + n2 (4)

where h2 is the channel of the second transmission hop
and n2 is the additive white Gaussian noise with an aver-
age power of σ 2

2 . {lj}j∈�I2
are the channels from the

interferer j to the respective successor node and the aver-
age transmit power of an interferer in the second hop is
E[ |wj|2]= PI2 . In the AF strategy, as the amplification
process consists of a simple normalization of the total
received power without further processing in the analogue
domain, the amplification factor G2 of AF relaying with
interference [11] can be expressed as

G2 =
√

P2
||y1||2 =

√
P2

P1|h1|2 +∑i∈�I1
|li|2PI1 + σ 2

1
.

(5)

From the above results, the received signal yn at the nth
hop is given by

yn = hnGnyn−1 +
∑
j∈�In

ljwj + nn, for n = 2, . . . ,K

(6)

where Gn =
√

Pn
||yn−1||2 .

Theorem 1 (End-to-end SINR). The end-to-end SINR
of multihop AF relaying in the presence of both noise and
interference can be written as

γeq = 1∏K
n=1

(
1 + 1

γn

)
− 1

(7)

where the SINR of each hop γγγ n is given by

γn = |hn|2Pn∑
i∈�In

|gi|2PIn + σ 2
n
, for n = 1, 2, . . . ,K . (8)

Proof 1. See Appendix 1.

Based on the above end-to-end SINR, the overall achiev-
able rate Req can be written as

Req = βn log2
(
1 + γeq

)
(9)

where βn is the fraction of time for the nth hop and is allo-
cated equally with βn = 1

K in this article. Then, the outage
probability of multihop AF relaying can be written as

Pout(R)=P

{
1
K

log2
(
1 + γeq

)
< R
}

=P

{
γeq < 2KR − 1

}
(10)

where R is the spectral efficiency. From the outage prob-
ability, we can also obtain the target SINR, ζ = 2KR − 1,
in the random access transport capacity. To compute the
outage probability of multihop AF relaying, since the end-
to-end SINR is composed of each single transmission hop,
the probability density function (PDF) and cumulative
density function (CDF) of each hop [22] can be obtained
as

Fγn (x) = 1 − exp

⎡
⎣−
⎛
⎝dα

nσ 2
n

Pn
x + π2erf

(√
r
)
λ

2

√
dα
nPIn
Pn

x

⎞
⎠
⎤
⎦ ,

pγn (x) =
(
dα
nσ 2

n
Pn

+ π2erf
(√

r
)
λ
√
dα
nPIn

4
√
Pnx

)

exp

⎡
⎣−
⎛
⎝dα

nσ 2
n

Pn
x + π2erf

(√
r
)
λ

2

√
dα
nPIn
Pn

x

⎞
⎠
⎤
⎦ , x ≥ 0

(11)

where dn is the distance of each hop, the error function
is erf(x) � 2√

π

∫ x
0 e−t2dt, and r denotes the radius of the
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interference area. Let
(
1 + 1

γn

)
be Xn and the PDF of Xn is

given by

pXn (x) = 1
(x − 1)2

(
dα
nσ 2

n
Pn

+ π2erf
(√

r
)
λ
√
dα
nPIn (x − 1)

4
√
Pn

)

× exp
[
−
(

dα
nσ 2

n
Pn (x − 1)

+π2erf
(√

r
)
λ

2

√
dα
nPIn

Pn (x − 1)

)]
, x ≥ 1.

(12)

Theorem 2 (Outage probability of multihop AF relay-
ing). The exact outage probability of multihop AF relay-
ing in the presence of both interference and noise can be
written as

Pout(R)

=
∫ 2KR−1

0

∫ 1+ 1
s

1

∫ xK−1

1
· · ·
∫ x2

1

1
s2

[K−1∏
n=1

1
xn

pXn
(

xn
xn−1

)]
pXK
(
s + 1
sxK−1

)
dx1 · · · dxK−1ds

(13)

where x0 = 1.

Proof 2. See Appendix 2.

In contrast to above result, the conventional outage
probability of multihop AF relaying without approxima-
tion methods [13,14] can be expressed as

Pout(R) =
∫

· · ·
∫∫
γeq

pγ1 (x1) · · ·γn (xn) dx1 . . . dxn

(14)

where pγn (xn) is the PDF of nth hop. In this case,
the complexity of computing the exact outage probability
increases as the number of hops increases, because setting
the interval of integration for each variable from (7) is very
difficult. However, from our result (13), we can obtain the
exact outage probability of multihop AF relaying with low
complexity by using only the pXn (x).

Corollary 1 (Special case: Dual-hop AF relaying). The
outage probability of dual-hop AF relaying can be written
as

Pout(R) = 1 −
∫ ∞

ε

(
B + D

2√y

)

exp
[
−
(
A
(

ε(y + 1)
y − ε

)
+By + C

√
ε(y + 1)
y − ε

+ D√y
)]

dy

(15)

where

ε = 22R − 1, A = dα
1σ 2

1
P1

, B = dα
2σ 2

2
P2

,

C = π2erf
(√

r
)
λ

2

√
dα
1PI1
P1

, D = π2erf
(√

r
)
λ

2

√
dα
2PI2
P2

.

(16)

Proof 3. See [26].

Based on the outage probability, the random access
transport capacity of multihop AF relaying CAF can be
written as

CAF = λ log (1 + ζ ) dSD [1 − Pout(R)] (bps/Hz/m)

(17)

where 1 − Pout(R) is the success probability, λ is the den-
sity of interferers, ζ is the target SINR with 2KR − 1,
and dSD is the distance between the source and destina-
tion. From the above random access transport capacity, we
can find the spatial density of successful transmissions at
rate log (1 + ζ ) that spans a distance dSD when each node
relays its data using the AF strategy.

4 Optimal spatial density of transmitting nodes
for multihop AF relaying

From numerical results, intriguingly, it is found that
the actual random access transport capacity does not
increase continuously as the density of transmitting
nodes increases, because the interference will increase
with increasing number of transmitting nodes. This phe-
nomenon is due to the tradeoff between the through-
put and reliability that involves decreasing reliability
with increasing throughput as the number of transmit-
ting nodes (=interferers) increases. Moreover, this means
that the maximum random access transport capacity is
achieved at a specific spatial density of transmitting nodes.
Thus, in this section, to maximize their random access
transport capacity, we compute the optimal spatial den-
sity of transmitting nodes for multihop AF relaying in a
wireless ad hoc network. However, since the exact out-
age probability of multihop AF relaying (13) is very hard
to deal with, we approximate the end-to-end SINR in
the form of (7), using the following properties which are
widely used in the literature [10,14] as

γeq = 1∏K
n=1

(
1 + 1

γn

)
− 1

≤ 1∑K
n=1

1
γn

≤ min (γ1, γ2, . . . , γK ) = γ
upp
eq , for all γn ≥ 0.

(18)

Since we have already obtained the actual random access
transport capacity of multihop AF relaying, this upper
bound is used only to compute the optimal spatial density
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of transmitting nodes. Using (18), the outage probability
of multihop AF relaying can be written as

Pout(R) = P

{
1
K

log2
(
1 + γγγ

upp
eq
)

< R
}

= 1 − P

{
γ1 > 2KR − 1, . . . , γK > 2KR − 1

}

= 1 −
K∏

n=1

[
1 − Fγn

(
2KR − 1

)]
(19)

where the CDF of each single hop transmission Fγn (x)
was already obtained in (11). Therefore, the approximated
outage probability of multihop AF relaying is given by

Pout(R) = 1 − exp
[
−
{ K∑
n=1

(
dα
nσ 2

n
Pn

(
2KR − 1

)
+ π2erf

(√
r
)
λ

2√
dα
nPIn
(
2KR − 1

)
Pn

⎞
⎠
⎫⎬
⎭
⎤
⎦ .

(20)

Based on the above results, the upper bound of the ran-
dom access transport capacity for multihop AF relaying
can be written as

Cupp
AF =λ log (1 + ζ ) dSD

exp
[
−
{ K∑
n=1

(
dα
nσ 2

n
Pn

(
2KR − 1

)

+π2erf
(√

r
)
λ

2

√
dα
nPIn
(
2KR − 1

)
Pn

⎞
⎠
⎫⎬
⎭
⎤
⎦ .
(21)

Before computing the optimal density of transmitting
nodes, we prove that the random access transport capac-
ity is concave in terms of the spatial density λ. To use the
property of concave ∂2Cupp

AF
∂2λ

< 0, ∂2Cupp
AF

∂2λ
can be expressed as

∂2Cupp
AF

∂2λ
= log (1 + ζ ) dSD

exp
[
−
{ K∑
n=1

(
dα
nσ 2

n
Pn

(
2KR − 1

)

+π2erf
(√

r
)
λ

2

√
dα
nPIn
(
2KR − 1

)
Pn

⎞
⎠
⎫⎬
⎭
⎤
⎦

×
⎛
⎝ K∑

n=1

π2erf
(√

r
)

2

√
dα
nPIn
(
2KR − 1

)
Pn

⎞
⎠

×
⎛
⎝ K∑

n=1

π2erf
(√

r
)
λ

2

√
dα
nPIn
(
2KR − 1

)
Pn

− 2

⎞
⎠ .

(22)

Then, the random access transport capacity of multi-
hop AF relaying will be concave under the following
conditions:

λ ≤ 4

π2erf
(√

r
) (∑K

n=1

√
dα
nPIn(2KR−1)

Pn

) = λmax
opt .

(23)

On the contrary, in the region of λ > λmax
opt , the random

access transport capacity is a monotonic decreasing func-
tion due to ∂3Cupp

AF
∂3λ

< 0. Thus, the optimal spatial density
of transmitting nodes exists in the region of λ ≤ λmax

opt .
Using the upper bound for multihop AF relaying, the

optimal density of transmitting nodes λ
upp
opt which maxi-

mizes the random access transport capacity can be written
as

λ
upp
opt = argmax

λ
Cupp
AF . (24)

Applying (21), the optimization problem after eliminating
the constant can be rewritten as

λ
upp
opt = argmax

λ
λ exp
[
−
{ K∑
n=1

(
π2erf
(√

r
)
λ

2√
dα
nPIn
(
2KR − 1

)
Pn

⎞
⎠
⎫⎬
⎭
⎤
⎦

= argmin
λ

f (λ) (25)

where

f (λ) =
K∑

n=1

⎛
⎝π2erf

(√
r
)
λ

2

√
dα
nPIn
(
2KR − 1

)
Pn

⎞
⎠− ln λ.

(26)

In conclusion, we can obtain the optimal density of trans-
mitting nodes λ

upp
opt when f ′

(λ) = 0 as

λ
upp
opt = 2

π2erf
(√

r
)√(

2KR − 1
)
⎛
⎜⎝ 1∑K

n=1

√
dα
nPIn
Pn

⎞
⎟⎠ .

(27)

Using this bound (27), we can predict and manage the
maximum number of nodes per unit area that maximizes
their random access transport capacity of multihop AF
relaying.

5 Numerical results
In this section, we present some numerical results
concerning the outage probability and random access
transport capacity for multihop AF relaying with both
interference and noise in a Poisson network. To illus-
trate our analytic and simulated results, we consider a
Rayleigh fading channel having equal resource allocation
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with equal transmission power Pn = PT , equidistance
dn = dSD/K , identical interference power PIn = PINF , and
fixed noise variance σ 2

n = 1. Moreover, we consider 30
randomly distributed nodes following a Poisson distribu-
tion for each hop with the radius of the interference region
r =
√

30
πλ

, where λ is the density of transmitting nodes
(=interferers).

5.1 Outage probability
Figure 2 shows the analytic and simulated outage proba-
bility as a function of the transmission power of each hop
PT for multihop AF relaying with K = 2 and 3 consid-
ering both noise and interference in a Poisson network.
This figure represents the outage probability with end-to-
end spectral efficiency R = 0.5 bps/Hz for two different
distances between source and destination, dSD = 3 and
5, with spatial density of interferers λ = 0.01 and path
loss exponent α = 4. In addition, we assume that the
interference power also increases at a rate of 0.05 as the
transmitting power increases, where PINF = PT × 0.05.
From this figure, multihop AF relaying with K = 3 has
better outage performance than dual-hop relaying. Like-
wise, in a relay network without interference, this figure
reveals that the outage probability of multihop AF relay-
ing decreases rapidly as the transmission power increases.
However, in the high-transmission power regime, the rate
of a decline slows and an error floor phenomenon occurs,
due to the increasing interference effect on the multihop
transmission with increasing interference power. As the
interference signals are included in the received signal,
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Figure 2 Outage probability of multihop AF relaying withK= 2
and 3 as a function of PT for different distance between source
and destination intensity of interferers dSD= 3 and 5 at the
end-to-end spectral efficiency R= 0.5 bps/Hz in Rayleigh fading
channel with path loss exponent α= 4, interference power
PINF= 0.05×PT , and density of transmitting nodes λ= 0.01.

it is noted that the AF strategy amplifies the interfer-
ence as well as thermal noise. In addition, we can see
from Figure 2 that this analysis agrees exactly with the
simulation results.

5.2 Random access transport capacity
To identify the throughput-reliability tradeoff, Figures 3
and 4 represent the actual random access transport capac-
ity of multihop AF relaying in a Rayleigh fading channel
with distance between source and destination dSD = 5
at an end-to-end spectral efficiency R = 0.5 bps/Hz. In
Figure 3, we plot the random access transport capacity of
multihop AF relaying with K = 3 as a function of the
interference power PINF for different densities of interfer-
ers, λ = 0.05, 0.1, and 0.2 with transmission power PT =
20 dB and path loss exponent α = 3. Obviously, the ran-
dom access transport capacity decreases continuously as
the interference power increases. Interestingly, although
some interference is present, the region of PINF < 5 dB
(solid circle) indicates that multihop AF relaying with a
relatively high spatial density, λ = 0.1 and 0.2, has a higher
overall throughput than that with λ = 0.05, because the
effect of interference on the multihop relaying is insignif-
icant in the low interference power regime. However, the
multihop relaying with the lowest density λ = 0.05 has
the largest random access transport capacity in the high
interference power regime.
From a different viewpoint, Figure 4. presents the ran-

dom access transport capacity of multihop AF relaying
with K = 2 and 4 as a function of the spatial density of
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Figure 3 Random access transport capacity of multihop AF
relaying withK= 3 as a function of interference power PINF for
different spatial density λ= 0.05, 0.1, and 0.2 at the end-to-end
spectral efficiency R= 0.5 bps/Hz in Rayleigh fading channel
with path loss exponent α= 3when transmission power
PT= 20dB, and distance dSD= 5.
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Figure 4 Random access transport capacity of multihop AF
relaying as a function of spatial density λ for different number of
hopsK= 2 and 4 at the end-to-end spectral efficiency
R= 0.5bps/Hz in Rayleigh fading channel with path loss
exponent α= 3when transmitting power PT= 15dB and
distance between source and destination dSD= 5.

transmitting nodes λ for two different interference pow-
ers PINF = 2 dB and 5 dB with the fixed transmission
power PT = 15 dB. This figure also shows that multihop
AF relaying with K = 4 can achieve higher end-to-end
throughput than dual-hop relaying. Meanwhile, the gen-
eral overall throughput of ad hoc networks increases when
many nodes transmit data simultaneously, but the random
access transport capacity does not increase consistently
owing to the increasing interference as the spatial density
of transmitting nodes increases. Especially, in Figure 4, the
random access transport capacity has the maximum value
at the certain spatial density, because the effect of increas-
ing throughput is larger than that of decreasing reliability
in the relatively low-spatial density regime. In both figures,
we observe that there is a tradeoff between the throughput
and reliability and a need to compute the optimal density
of transmitting nodes for the purpose of maximizing the
random access transport capacity.

5.3 Optimal spatial density of transmitting nodes
For the numerical results, since we assume equal resource
allocation Pn = PT , dn = dSD/K , and PIn = PINF , the
upper bound for the optimal density of transmitting nodes
(27) can be simplified as follows:

λ
upper
opt = 2

√
PT

π2erf
(√

r
)
K1− α

2

√
dα
SDPINF

(
2KR − 1

) . (28)

Using the above results, to verify the tightness of our
upper bound in terms of the optimal density of transmit-
ting nodes, the actual random access transport capacity

and its upper bound for multihop AF relaying with K = 3
are plotted as a function of the spatial density λ for dif-
ferent transmission powers PT at an end-to-end spectral
efficiency R = 0.5 in Figure 5. As the maximum random
access transport capacity is considered, we plot it in the
relatively low spatial density regime λ ≤ 0.2 when the dis-
tance dSD = 4 and the interference power PINF = 3 dB.
Although there is a big difference between the actual and
upper bound values, both values have amaximum random
access transport capacity at a similar spatial density. It is
because our upper bound is derived to obtain the opti-
mal spatial density of transmitting nodes. For example,
the gap between the exact optimal density of transmit-
ting nodes and its upper bound decreases from 0.06 to
0.05 as the transmission power decreases. Since it is very
difficult to make closed form using another approxima-
tion method based on the PDF and CDF (11), we cannot
find more tight bound to satisfy both optimal spatial den-
sity and actual random access transport capacity in this
article yet. However, from this figure, we note that the
optimal spatial density of nodes to maximize their per-
formance can be predicted easily by using our upper
bound.
Now, focusing on the upper bound, Figure 6 shows

the optimal density of transmitting nodes as a function
of the distance between the source and destination dSD
for different path loss exponents α and spectral effi-
ciencies R, when the transmission power PT = 15 dB
and PINF = 5 dB. As the end-to-end distance dSD
increases, this figure reveals that not only the random
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Figure 5 The exact and upper bound for random access
transport capacity of multihop AF relayingK= 3 as a function of
spatial density λ for different transmission power PT= 17 and
20dB at the end-to-end spectral efficiency R= 0.5bps/Hz in
Rayleigh fading channel with path loss exponent α= 4, noise
variance σ 2= 1, distance between source and destination
dSD = 4, and interference power PINF= 3dB.
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Figure 6 The optimal density of transmitting nodes for multihop
AF relaying withK= 5 as a function of distance between source
and destination dSD for different end-to-end spectral efficiency
R= 0.5 and 1bps/Hz and path loss exponent α= 3 and 4 in
Rayleigh fading channel with noise variance σ 2= 1, transmission
power PT= 15dB, and interference power PINF= 5dB.

access transport capacity, but also the optimal spatial
density of transmitting nodes decreases due to the atten-
uation caused by the transmission over a long distance.
Furthermore, as expected, the optimal density of trans-
mitting nodes for multihop AF relaying with a low end-
to-end spectral efficiency and path loss exponent is higher
than that with a high spectral efficiency and path loss
exponent.
Finally, the upper bound for the optimal density of trans-

mitting nodes as a function of the number of hops K at
an end-to-end spectral efficiency R = 0.5 bps/Hz is plot-
ted in Figure 7 for different end-to-end distances dSD and
interference powers PINF , when the transmission power
PT = 20 dB and path loss exponent α = 4. In this figure,
since the Poisson interference accumulates with increas-
ing number of transmission hops in the AF relay networks,
we observe that the maximum optimal spatial density is
achieved at a specific number of hops K. In addition, since
the performance degradation caused by attenuation can
be the most negative factor, this figure reveals that the
effect of interference on the AF relaying is considered rel-
atively small when the multihop transmission over long
end-to-end distances.

6 Conclusion
This article considered a multihop transmission with AF
strategy in the simultaneous presence of both noise and
interference, allowing the use of a Poisson interference
model. In particular, as all of the nodes are randomly dis-
tributed in a wireless ad hoc network, we considered a
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Figure 7 The optimal density of transmitting nodes for multihop
AF relaying as a function of number of hopsK for different
interference power PINF and distance dSD at end-to-end
spectral efficiency R= 0.5bps/Hz in Rayleigh fading channel
with path loss exponent α= 4, noise variance σ 2= 1, and
transmission power PT= 20dB.

metric termed random access transport capacity of decen-
tralized wireless networks, to measure the maximum rate
of successful end-to-end transmission over some distance
in wireless ad hoc networks. Moreover, to compute the
random access transport capacity, we derived the exact
outage probability of multihop AF relaying, because the
performance gap between the conventional bounds and
the exact value increases as the number of hops increases.
The analytic and simulated results showed that multihop
transmission with the AF strategy amplifies the interfer-
ence as well as the thermal noise and causes an error floor
phenomenon in terms of the outage probability. In addi-
tion, since there is a tradeoff relationship between the
throughput and reliability in terms of the random access
transport capacity, we computed the optimal spatial den-
sity of transmitting nodes in wireless ad hoc networks.
From this article, we can obtain the actual random access
transport capacity and predict the maximum number
of transmitting nodes per unit area to maximize their
performance.

7 Appendix 1
7.1 Proof of end-to-end SINR
Using our results in [22], the SINR after dual-hop trans-
mission K = 2 can be written as

γeq = γ1γ2
γ1 + γ2 + 1

= 1
1
γ1

+ 1
γ2

+ 1
γ1γ2

= 1(
1 + 1

γ1

) (
1 + 1

γ2

)
− 1

(29)
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where each nth SINR is given by γn = |hn|2Pn∑
i∈�In

|gi|2PIn+σ 2
n
for

n = 1 and 2. Then, the SINR for multihop AF transmission
with K = 3 can be written as

γeq =
(

γ1γ2
γ1+γ2+1

)
γ3(

γ1γ2
γ1+γ2+1

)
+ γ3 + 1

= γ1γ2γ3
γ1 + γ2 + γ3 + γ1γ2 + γ1γ3 + γ2γ3 + 1

= 1(
1 + 1

γ1

) (
1 + 1

γ2

) (
1 + 1

γ3

)
− 1

. (30)

Expanding the above results, we can obtain the end-to-
end SINR of multihop AF relaying (7).

8 Appendix 2
8.1 Proof of outage probability of multihop AF relaying

Using the random variable Xn =
(
1 + 1

γγγ n

)
, the end-to-

end SINR of multihop AF relaying can be rewritten as

γeq = 1∏K
n=1

(
1 + 1

γn

)
− 1

= 1∏K
n=1 Xn − 1

. (31)

Then, we can obtain the PDF of ZK = ∏K
n=1 Xn using the

Jacobian of the transformation as

pZK (xK ) =
∫ xK

1

1
xK−1

pZK−1 (xK−1) pXK(
xK
xK−1

)
dxK−1, for K ≥ 2 (32)

where
pZK−1 (xK−1)=

∫ xK−1
1

1
xK−2

pZK−2 (xK−2) pXK−1

(
xK−1
xK−2

)
dxK−2.

Using pZ1 (x1) = pX1 (x1), the PDF of ZK = ∏K
n=1 Xn

can be rewritten as

pZK (xK ) =
∫ xK

1
· · ·
∫ x3

1

∫ x2

1

(K−1∏
n=1

1
xn

)
[ K∏
n=1

pXn
(

xn
xn−1

)]
dx1dx2 . . . dxK−1for K ≥ 2

(33)

where x0 = 1.
Finally, using following property

Y = 1
X

→ pY
(
y
) = 1

y2
pX
(
1
y

)
, (34)

we can obtain the exact outage probability (13) from the
following PDF of multihop AF relaying γγγ eq = 1

ZK−1 :

pγeq (s) = 1
s2
pZK
(
1 + 1

s

)
. (35)
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