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Abstract

Gamal et al. (IEEE Trans. Inform. Theory 52:2568–2592, 2006) showed that the end-to-end delay is n times the
end-to-end throughput under centralized time division multiple access scheduling. In our other work (IEEE Trans.
Mobile Computing, in press), it was proved that the relationship between the end-to-end throughput and the
end-to-end delay of Gamal et al. still holds under the IEEE 802.11 distributed coordination function (DCF) when the
carrier sensing range and the packet generation rate are jointly optimized. The main purpose of this study is to
determine whether the result in our other work is achievable when the transmission range is adjusted instead of the
carrier sensing range. To this end, we revise the transport capacity by reflecting a queue at each node and optimize
the revised transport capacity by jointly controlling the transmission distance and the packet generation rate. Under

our systemmodel, it is shown that the end-to-end throughput and the end-to-end delay scale are�
(
1/
√
n log n

)
and �

(√
n/ log n

)
, respectively, where n is the number of nodes in the network. That is to say, the result that the

end-to-end delay is n times the end-to-end throughput under the DCF mode is also estabilished while jointly
optimizing the transmission range and packet generation rate.

Keywords: Wireless multihop networks, IEEE 802.11 DCF, Transport capacity, End-to-end throughput, End-to-end
delay, Transmission range control, Scaling law

1 Introduction
Wireless multihop networks (WMNs) have received con-
siderable attention because of their ability to enhance
the spectrum and energy efficiency. To exploit such
advantages, researchers have attempted to use various
approaches at all levels of communication protocols. The
key performance metric in a WMN is the end-to-end
throughput, referring to the number of packets that can be
transported successfully from a given source to its desti-
nation. As the node density increases, each node transmits
packets to its nearest node. In the seminal work in this
area [1], Gupta and Kumar proved that themaximum end-
to-end throughput scales as �

(
1/
√
n logn

)a
, where n is

the number of nodes in the network.
The end-to-end delay, i.e., how fast a packet is trans-

ported from a given source to its destination, depends
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on the end-to-end throughput. Because a node delivers
its packet to the nearest node, the number of hops to
the destination increases. Thus, more transmissions are
needed to transport one packet from a source to the des-
tination. In [2], Gamal et al. showed that the end-to-end
delay is n times the end-to-end throughput under central-
ized time division multiple access (TDMA) scheduling.
In our other work [3], we proved that the relationship
between the end-to-end throughput and the end-to-end
delay [2] still holds when the IEEE 802.11 distributed
coordination function (DCF), a representative practical
medium access control (MAC), is utilized. We defined the
delay-constrained capacity as the maximum end-to-end
throughput satisfying the end-to-end delay requirement.
Given the end-to-end delay requirement, we maximized
the delay-constrained capacity by jointly controlling the
carrier sensing range and the packet generation rate and
proved that the delay-constrained capacity is the end-to-
end delay requirement divided by n.
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
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When multiple IEEE 802.11 networks coexist, control-
ling the transmission range is more secure than control-
ling the carrier sensing range. Tuning the carrier sensing
range of one network may significantly degrade the per-
formance of the other networks [4]. Provided that the
carrier sensing range of one network decreases, the nodes
in the network have more chances to access the wireless
medium whereas the nodes in the other networks do not
have. These nodes receive excessive interference because
the distance to the nearest interfering node becomes
shorter than they estimated. On the other hand, adjusting
the transmission range of one network does not increase
the interference temperature significantly because the car-
rier sensing range, which determines the transmission
opportunity, is not changed. The objective of our study
is to determine whether the relationship between the
end-to-end throughput and the corresponding end-to-
end delay [3] is established when the transmission range is
adjusted instead of the carrier sensing range. When con-
trolling the transmission range, two different phenomena
occur. As the transmission range increases, the number of
transmissions to deliver one packet from a given source to
its destination is reduced. On the other hand, the quality
of each wireless link deteriorates. These phenomena can
be explained by the transport capacity, which is defined
as the product of the transmission rate and the transmis-
sion distance [1]. The original definition of the transport
capacity does not contain the queuing delay at each node,
which is a key factor to determine the performance of the
WMN when the IEEE 802.11 DCF is used as a MAC pro-
tocol. We revise the transport capacity by incorporating
a queuing delay at each node. This is referred to as the
revised transport capacity throughout this paper. In [5],
the authors defined the random access transport capacity
to analyze the end-to-end throughput and the end-to-end
delay of a WMN. However, the authors did not take into
account the queue of each node.
In this paper, we start with maximizing the revised

transport capacity of the WCM, where the IEEE 802.11
DCF MAC protocol is adopted. One way to increase the
revised transport capacity is to minimize the number of
hops by increasing the transmission distance. However,
with a long transmission distance, the waiting time at the
queue of each node will grow. When the transmission
distance increases, fewer bits are transported to ensure
reliable reception andmore bits remain in the queue. Such
a queuing delay affects the revised transport capacity as
perceived by the receiver node. Reflecting such aspects,
we optimize the revised transport capacity by jointly con-
trolling the transmission distance and the packet gener-
ation rate. As a result, it is shown that under the IEEE
802.11 DCF, the end-to-end throughput and the end-to-
end delay scale are �

(
1/
√
n log n

)
and �

(√
n/ log n

)
,

respectively. This indicates that adjusting the transmission
range and choosing the proper packet generation rate can
establish the tradeoff relationship between the end-to-end
throughput and the end-to-end delay [2].
The rest of this paper is organized as follows: In

Section 2, we summarize related works. In Section 3, our
system model is described. In Section 4, we introduce the
revised transport capacity and optimize it with respect to
the transmission range and the packet generation rate. In
Section 5, we derive the scaling laws of the throughput
and the end-to-end delay. Finally, we conclude the paper
in Section 6.

2 Related works
In a random network, it is a critical problem as to how
the end-to-end throughput and the end-to-end delay scale
with the number of nodes, n. In [1], the authors showed
that the end-to-end throughput scales as �

(
1/

√
n
)
or

�
(
1/
√
n log n

)
, depending on whether the network is

arbitrary or random. The end-to-end throughput gap
between an arbitrary and a random network is caused
by the network connectivity characteristics. In a random
network, there is the additional cost of tuning the trans-
mission range, which degrades the performance on the
order of

√
log n as compared with an arbitrary network.

When the end-to-end throughput is �
(
1/
√
n log n

)
, the

corresponding end-to-end delay becomes �
(√

n/ log n
)

[2]. On the other hand, a different study [6] derived the
end-to-end throughput of �(1/

√
n) in a random network

using what is known as percolation theory.
Supporting node mobility can improve the end-to-end

throughput. In [7], it was claimed that when all nodes
move around the network, the end-to-end throughput
becomes independent of n, as described by the scaling law
�(1). The mobile nodes communicate with each other
only when they are very close. It was assumed that each
node uniformly moves over the entire network area. In
[8], the authors analyzed the end-to-end throughput scal-
ing laws under various mobility models. Scaling laws in
[7,8] are derived under a loose delay constraint, in which
the speed of mobile movement is significantly slower than
the delay requirement. In [2,9-11], the authors explained
the tradeoff relationship between the end-to-end through-
put and the end-to-end delay of mobile networks. In
[12], it was proved that the average delay scales with
�(n), for both the stationary and mobile nodes. Seol
and Kim [13,14] claimed that controlling the mobility
can decrease the end-to-end delay while maintaining the
constant throughput scaling law.
Most previous works [1,2,6-14] tend to simplify the

MAC influencing the end-to-end throughput and the end-
to-end delay. Some studies have attempted to verify the
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performance of a WMN when a practice MAC is uti-
lized. Hwang and Kim [15] found that the result [1] is
a reasonable throughput estimation for networks with
ALOHA-like MAC. In [16,17], it was proved that IEEE
802.11 DCF cannot achieve the �

(
1/
√
n log n

)
end-to-

end throughput because of the randomness of the DCF.
In [3], we jointly optimized the carrier sensing range and
the packet generation rate and showed that the trade-
off relationship between the end-to-end throughput and
the end-to-end delay occurs in spite of utilizing the DCF
mode.

3 Preliminaries
3.1 Transmission rate and range
Consider a WMN in a finite area that adopts a common
frequency channel of unit bandwidth. There are n nodes
located randomly in the area. Each node is equipped with
an omnidirectional single antenna and cannot transmit
and receive packets simultaneously. A node transmits with
constant power P. Given the distance between transmitter
i and receiver j as di,j, the signal-to-interference ratio (SIR)
at receiver j, γi,j, is

γi,j = Pd−θ
i,j∑

k �=i Pd
−θ
k,j

= d−θ
i,j∑

k �=i d
−θ
k,j

, (1)

where θ (>2) denotes the path loss exponent. We neglect
fast fading and only consider the path loss here. All the
mathematical notations are summarized in Table 1.
The MAC protocol permits selected nodes to access

the channel. The MAC protocol in this paper is IEEE
802.11 DCF [18], where carrier sense multiple access
with collision avoidance (CSMA/CA) is adopted. Under
CSMA/CA, two transmitters, between which the distance
is less than the carrier sensing range D, cannot transmit
simultaneously. Provided that the density of nodes is high,
each distance to the nearest transmitting node becomesD
and the location of the transmitting nodes is a honey-grid
lattice, as shown in Figure 1. In this study, R is the single-
hop transmission range (0 ≤ R ≤ D

2
b). The SIR, γi,j, is

then expressed in terms of R and D [19,20]:

γi,j(R,D) = γ
honey grid
i,j (R,D)

= R−θ

6(D)−θ + 12(2D)−θ + 18(3D)−θ + · · ·

=
(D
R
)θ

6ζ (θ − 1)
. (2)

Here, ζ(s) ≡ ∑∞
j=1 j−s is the Riemann zeta function.

Given that each node adopts capacity-achieving codes, we

Table 1 Notations

Notations Description

θ Path loss exponent

n Number of nodes

D Carrier sensing range

R Single-hop transmission range

C(R,D) Transmission rate

m(R,D) Maximum number of packets by single-hop transmission

M Unit packet size

λ Packet incoming rate

E[H] Average number of hops between a source-destination
pair

T Time needed for one transmission

E[ dq] Average queueing delay at each node

v(R,�) Packet velocity

de(R,�) End-to-end delay

� Packet generating rate (end-to-end throughput when
de(R,�) is finite)

�max(R) Throughput capacity

CT (R,�) Revised transport capacity

R∗(�) Optimal transmission range when the packet generation
rate is fixed to�

�∗(R) Optimal packet generation rate when the transmission
range is fixed to R

�opt Optimal packet generation rate (end-to-end throughput)

assume that the transmission rate C at receiver j follows
the Shannon formula:

C(R,D) = log2
(
1 + γi,j(R,D)

) = log2

(
1 +

(D
R
)θ

6ζ (θ − 1)

)
.

(3)

The maximum number of packets deliverable by a
single-hop transmission,m(R,D), is determined by

m(R,D) =
⌊
C(R,D)

M

⌋
=
⌊
log2

(
1 +

(D
R
)θ

6ζ (θ − 1)

)
/M

⌋
,

(4)

where M denotes the unit packet size (in bits), and the
function �x	 indicates the largest integer not greater than

x. It is understood that
⌊
log2

(
1 +

(D
R
)θ

6ζ (θ−1)

)
/M
⌋

pack-

ets are certainly delivered by a single transmission. As the
transmission range R increases,m(R,D) decreases. There
is a tradeoff between how many packets are transmitted
and how far the packets are transported.
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Figure 1 Interference model under physical carrier sensing
with D.

3.2 Queuing delay in each node
A pair of source and destination nodes is given randomly.
Each node generates� packets per second. Let us define λ

as the rate of incoming traffic including the self-generated
�. It is assumed that there are on an average E[H] hops
per routing path. Thus, there are E[H]−1 relay nodes
between a source-destination pair. Given that there are
n nodes in the network, the probability that one node
becomes a relay node for a source-destination pair is
(E[H]−1)/(n− 1) and the expected amount of relay traf-
fic from a source node is �(E[H]−1)/(n − 1). Because
any node can be the relay for n − 1 other nodes, the
expected amount of the total relay traffic from other nodes
is�(E[H]−1) [19]. Therefore, the packet incoming rate λ

is expressed as the sum of � and �(E[H]−1):

λ = � + �(E[H]−1) = �E[H] . (5)

Let us assume that the density of nodes is significantly
high.When a shortest-path routing is utilized, the average
number of hop counts, E[H], is L/R, where L is the average
distance between a source and a destination. Therefore,
we have

λ = �E[H]= �
L
R
. (6)

Under the DCF, a typical protocol that utilizes carrier
sensing, the average time needed for one transmission
T is composed of the random back-off time, the frozen

durationc, and the actual transmission time. In [16], the
author analyzed T as follows:

T =
1
ξ

+ Tt

1 − nπD2λTt
. (7)

In the equation, 1
ξ
is the average duration of the back-off

timer, and Tt is the fixed time required to transmit. With
the number of packets in the single-hop transmission
m(R,D), the average service time for one packet is

1
μ

= T
m(R,D)

= M · T
log2(1 + γi,j(R,D))

. (8)

Assuming that the queue of each node is modeled as
M/M/1, the average waiting time at the queue, E[ dq], is
given as

E[ dq]= 1
μ − λ

=
( log2(1 + γi,j(R,D))

M · T − � · L
R

)−1
.

(9)

The average queuing delay (E[ dq]) is dependent on the
number of nodes (n), the sensing range (D), the transmis-
sion range (R), and the packet generation rate (�). The
average queuing delay E[ dq] is a key factor that is used to
express the performance of the IEEE 802.11 DCF. In the
following section, we will define some performance met-
rics in terms of E[ dq] and show how these metrics are
affected by n, D, R, and �.

4 Optimization of the transport capacity
4.1 Revised transport capacity of WMN
In [3], we defined the following terms:

Definition 1. (Packet velocity) The packet velocity v is
the average speed of the packet as it moves from its source
to its destination:

v(R,�) = R
E[ dq]

= R ·
( log2(1 + γi,j(R))

M · T − � · L
R

)
.

(10)

Definition 2. (End-to-end delay) The end-to-end delay
of a packet de is the expected time required to deliver it
from its source to its destination:

de(R,�) = L
v(R,�)

= L
R
E[ dq]= E[H] E[ dq] . (11)

Definition 3. (Feasible end-to-end throughput) The
end-to-end throughput of� packets per second for a node
is feasible when the end-to-end delay is finite.



Ko and Kim EURASIP Journal onWireless Communications and Networking 2013, 2013:110 Page 5 of 11
http://jwcn.eurasipjournals.com/content/2013/1/110

Note that the packet generation rate � is equivalent to
the end-to-end throughput when its corresponding end-
to-end delay is finite. In other words, the destination node
can receive packets with rate �.

Definition 4. (Throughput capacity) For a given R, the
throughput capacity �max is the supremum of the feasible
end-to-end throughput:

�max(R) = sup {� : de(R,�) < ∞}
= sup {� : v(R,�) > 0}
= sup

{
� : R ·

( log2(1 + γi,j(R))

M · T − � · L
R

)
> 0
}
.

(12)

Example 1. Let us calculate the packet velocity and the
throughput capacity when the transmission range is fixed
to D/2. From (2), (7), and (10), the packet velocity of the
network is

v(D/2,�) = D
2E
[
dq
]

= D
2

⎧⎨
⎩
log2

(
1+ 2θ

6ζ (θ−1)

)
M ·

(
1
ξ

+ Tt
) (1−nπD2�

L
D/2

Tt

)
−�

L
D/2

⎫⎬
⎭

=
log2

(
1 + 2θ

6ζ (θ−1)

)
M ·

(
1
ξ

+ Tt
) (

D
2

− nπD2�LTt

)
− � · L

=
D · log2

(
1 + 2θ

6ζ (θ−1)

)
2 · M ·

(
1
ξ

+ Tt
)

−
⎧⎨
⎩
log2

(
1 + 2θ

6ζ (θ−1)

)
nπD2LTt

M ·
(
1
ξ

+ Tt
) + L

⎫⎬
⎭�. (13)

The throughput capacity �max(D/2) is derived by find-
ing the packet generation rate � that makes the packet
velocity (13) zero:

�max(D/2) =
D · log2

(
1 + 1

6ζ (θ−1)2
θ
)

2
(
log2

(
1+ 1

6ζ (θ−1)2θ
)
nπD2LTt+LM

(
1
ξ
+Tt

)) .
(14)

Throughput capacity �max(D/2) (14) is achieved by
forcing the packet velocity to be very close to zero. How-
ever, this is accomplished at the cost of the infinite delay.
In [1], the authors defined the transport capacity as the
product of the transmission rate and the transmission dis-
tance of a single hop. The main motivation is to grasp the
end-to-end throughput and the end-to-end delay within
one framework. In a WMN, one node processes multiple
source-destination pairs in a WMN and the correspond-
ing queuing delay appears. Under the DCF mode, the

queuing delay is an important factor to determine the
end-to-end throughput and the end-to-end delay owing
to its randomness property. The original transport capac-
ity did not take into account the queuing delay. Therefore,
we revise the transport capacity to consider the queuing
delay in each node. We divide the transport capacity by
the average queuing delay, E[ dq] at each node, as follows:

Definition 5. (Revised transport capacity) The revised
transport capacity CT (R,�) is the product of the end-to-
end throughput and the packet velocity:

CT (R,�) = M · � · v(R,�)

= M · � · R
E[ dq]

= M · � · R
( log2(1 + γi,j(R))

M · T − � · L
R

)
(15)

From (13), the revised transport capacity of the network
with the transmission range of D/2 is as follows:

CT (D/2,�) = M · � ·
⎛
⎝D · log2

(
1 + 1

6ζ (θ−1)2
θ
)

2 · M ·
(
1
ξ

+ Tt
)

−
⎛
⎝ log2

(
1 + 1

6ζ (θ−1)2
θ
)
nπD2LTt

M ·
(
1
ξ

+ Tt
) + L

⎞
⎠�

⎞
⎠ .

(16)

The optimal packet generation rate of �∗(D/2) maxi-
mizing the revised transport capacity (16) can be derived
by differentiating (16) and finding � that makes it zero:

�∗(D/2) =
D · log2

(
1 + 1

6ζ (θ−1)2
θ
)

4
(
log2

(
1+ 1

6ζ (θ−1)2θ
)
nπD2LTt+LM

(
1
ξ

+ Tt
)) ,
(17)

and the corresponding packet velocity v(D/2,�∗(D/2)) is
given by

v(D/2,�∗(D/2)) =
D · log2

(
1 + 1

6ζ (θ−1)2
θ
)

4 · M ·
(
1
ξ

+ Tt
) . (18)

4.2 Cross-layer optimization for maximizing the revised
transport capacity

Our objective in this subsection is to determine the opti-
mal transmission range and packet generation rate that
maximize the revised transport capacity CT (R,�). We
begin by finding the optimal transmission range R∗(�)

that maximizes CT (R,�) (maximizing the packet veloc-
ity v) when � is fixed. The number of nodes that have at
least one packet to transmit (nD2λ = nD2� L

R ) depends on
transmission range R, as given in (6). One way to decrease
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the transmission time T of (7) is to increase R and thus
reduce the number of incoming packets λ (see also (6)).
On the other hand, an excessive increase in the transmis-
sion range R may increase E[ dq] by reducing the number
of packets,m(R,D), as noted in (4) and (9).

Proposition 1. For a given packet generation rate (end-
to-end throughput) �, the optimal transmission range,
R∗(�) that maximizes the revised transport capacity is a
function of n, D, and �:

R∗(�) = min

[
D
2
,
D
2 − A1

A2
· � + A2

]
, (19)

where

A1 = lim
�→0

R∗(�) = D · θ

√
1

6ζ (θ − 1) (eθ − 1)
(20)

A2 = inf
{
� > 0 : R∗(�) = D

2

}

=
2θ ·θ

6ζ (θ−1) − ln
(
1 + 2θ

6ζ (θ−1)

) (
1 + 2θ

6ζ (θ−1)

)
2nπDLTt · 2θ θ

6ζ (θ−1)

. (21)

Proof 1. Appendix.

Figure 2 shows how the optimal transmission range
R∗(�) varies according to the packet generation rate (end-
to-end throughput) �. The solid and dotted lines depict

the numerical search and our analytic results from Propo-
sition 1, respectively. Note that the optimal transmission
range R∗(�) should be smaller than D/2 to avoid the
hidden node problem in CSMA. The optimal transmis-
sion range increases almost linearly until � satisfies the
following inequality:
Note that (23) is derived from Proposition 1 (19), where

the optimal transmission range becomes D/2 when (23)
is satisfied with equality. The linear increase in R∗(�) is
attributed to the packet incoming rate λ. From (7), (9),
and (10), λ is related to the packet velocity. According to
(7), if λ becomes greater than 1

nπD2Tt
, the time required to

transmit one packet, T, becomes negative. This makes the
packet velocity negative, and the end-to-end throughput
� is then infeasible. Remind that the packet incoming rate
λ is a function of � and R (see (5)). Therefore, the opti-
mal transmission range R∗(�) should be bounded by the
following equation:

�
L

R∗(�)
<

1
nπD2Tt

R∗(�) > �nπD2TtL. (22)

As � increases, the optimal transmission range R∗(�)

should linearly increase to maintain the constraint (22).
Figure 3 shows the relationship between the packet

velocity v(R∗(�),�) and the packet generation rate (end-
to-end throughput) � when the optimal transmission
range of Proposition 1 is utilized. These curves determine

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

0.2
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0.3

0.35

0.4

0.45

0.5

End−to−end throughput Λ (packet/sec)

R
*  
(Λ

)/
D

Full search

Proposition 1

Figure 2 The optimal transmission range R∗(�) as a function of packet generation rate�.
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Figure 3 The end-to-end throughput as a function of the packet
velocity v(R∗(�),�). The path loss component θ is 3, 4, 5, or 6. In
each point, the optimal transmission range of Proposition 1 is used.
The number of nodes is 1,000 and the sensing range D is set to

2
√

log n
n [1]. The packet bit rateM is log2

(
1 + 1

6ζ (θ−1) 2
θ
)
.

the boundaries of the packet velocity (i.e., the inverse of
the end-to-end delay) and the end-to-end throughput.
The points at which the packet velocity is zero correspond
to the end-to-end throughput capacity �max(R∗(�)) of
Definition 4. As the packet velocity increases, the end-
to-end throughput decreases. An interesting feature is
that �max(R∗(�)) increases as the path loss exponent
increases. This is attributed to the fact that the interfer-
ence from neighbors is filtered by the high path loss, as
well as to the fact that the single-hop transmission rate
increases.

� ≤
2θ θ

6ζ (θ−1) − ln
(
1 + 2θ

6ζ (θ−1)

) (
1 + 2θ

6ζ (θ−1)

)
2nπDLTt · 2θ θ

6ζ (θ−1)

. (23)

Our next question is how to find the optimal packet
generation rate � when the optimal transmission range
R∗(�) is utilized. Reminding that the packet generation
rate is equivalent to the end-to-end throughput unless the
end-to-end delay is infinite, finding the optimal packet
generation rate is the same as deriving the optimal end-to-
end throughput. Figure 4 shows how the revised transport
capacity CT (R∗(�),�) varies with the packet velocity
v(R∗(�),�). Noting that the revised transport capacity
is a product of � and v(R∗(�),�), Figure 4 is directly
obtained from Figure 3. There is an optimal point maxi-
mizing CT (R∗(�),�), which is given as follows:
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Figure 4 The revised transport capacity CT (R∗(�),�) as a
function of the packet velocity v(R∗(�),�). The path loss
component θ is 4. In each point, the optimal transmission range of
Proposition 1 is used. The number of nodes is 1,000 and the sensing

range D is set to 2
√

log n
n .

Proposition 2. The optimal end-to-end throughput
(packet generation rate), �opt maximizing the revised
transport capacity is

�opt =
−A1B1

A2
−B2B3+L

(
1
ξ
+Tt
)
−
√

− 3A1B1B2B3
A2

+
{
A1B1
A2

+B2B3−L
(
1
ξ
+Tt
)}2

3B1B3
A2

,

(24)

where

B1 = m
(
D
2
,D
)

− m (A1,D)

=
log2

(
1 + 2θ

6ζ (θ−1)

)
M

− θ

ln 2 · M , (25)

B2 = m (A1,D) + c = θ

ln 2M
+ c, (26)

B3 =
D
2 − A1

A2
− nπD2LTt

=
(
D
2 − D θ

√
1

6ζ (θ−1)(eθ−1)

)
2nπDLTt

2θ θ
6ζ(θ−1)

2θ ·θ
6ζ (θ−1) − ln

(
1 + 2θ

6ζ (θ−1)

) (
1 + 2θ

6ζ (θ−1)

)
− nπD2LTt , (27)

and c is an arbitrary constant value.

Proof 2. Appendix.

Figure 5 shows the relationship between the end-to-end
throughput, the packet velocity, and the revised transport
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Figure 5 The end-to-end throughput (packet generation rate)�
as a function of the packet velocity. The path loss component θ is
4. In each point, the optimal transmission range of Proposition 1 is
used. The solid and dotted line represent the cases when the optimal
transmission range R∗(�) is used and the transmission range R is
fixed to D/2, respectively. The number of nodes is 1,000 and the

sensing range D is set to 2
√

log n
n .

capacity. The solid and dotted lines represent cases in
which the optimal transmission range R∗(�) is used and
where the transmission range R is fixed at D/2, respec-
tively. A higher end-to-end throughput consequently
makes the packet velocity slower. The regions under the
curves denote the set of feasible end-to-end throughput
for both cases. When the packet velocity is low, there is
no gap between the two regions. This is explained by the
fact that the optimal transmission range R∗(�) is D/2
when the end-to-end throughput � is high (see Figure 5).
As the packet velocity increases, on the other hand, the
gap becomes larger. We conclude that there is end-to-end
throughput enhancement caused by the optimally con-
trolled transmission range R∗(�) (Proposition 1) as the
packet velocity becomes faster, and the end-to-end delay
becomes shorter.
The optimal end-to-end throughput �opt (Proposi-

tion 2) exists on the solid curve. To express the meaning
of optimal packet generating point �opt, let us denote two
arbitrary points, (x, y) and (x′, y′), in the feasible through-
put region. Point (x, y) is a reference coordinate. We can
define the gain of the packet velocity and end-to-end
throughput at point (x′, y′) as

Gv = x′

x
, G� = y′

y
.

The total gain G is defined as a product of Gv and G�:

G = Gv · G�

= x′y′

xy

The total gain G of point (v(R∗(�opt),�opt),�opt) is
always higher than any reference coordinate in the feasible
region.

5 Scaling laws of end-to-end throughput and
delay

In the case of a WMN, we expect that the end-to-
end throughput decreases and that the end-to-end delay
increases as the node density increases. An important
problem is how to quantify these relationships.

Proposition 3. The scaling laws of the end-to-end
throughput and the corresponding packet velocity are

�opt = �

(
1√

n log n

)
, (28)

v(R∗(�opt),�opt) = �

(√
log n
n

)
. (29)

Proof 3. Appendix.

The results of Proposition 3 are identical to those of
the random network when centralized TDMA schedul-
ing is utilized [2]. Let us recall the results of Example 1,
where the transmission range is D/2. When the sensing

rangeD decreases at the rate of
√

log n
n

d
, the scaling laws of

the optimal end-to-end throughput �∗(D/2) (17) and the
corresponding packet velocity v(D/2,�∗(D/2)) (18) are

�∗(D/2)

=
√

log n
n · log2

(
1 + 2θ

6ζ (θ−1)

)

4

(
log2

(
1+ 2θ

6ζ (θ−1)

)
nπ

(√
log n
n

)2
LTt+LM

(
1
ξ
+Tt
))

= o

(
1√

n log n

)
, (30)

v(D/2,�∗(D/2)) =
√

log n
n · log2

(
1 + 2θ

6ζ (θ−1)

)
4 · M ·

(
1
ξ

+ Tt
)

= �

(√
log n
n

)
. (31)
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Note that when the transmission range is fixed to
D/2, the scaling law of the end-to-end throughput (30)
is lower than the results in [2]. This occurs as a result
of the difference between centralized TDMA schedul-
ing and distributed MAC (IEEE 802.11 DCF). However,
controlling the transmission range and the packet gen-
eration rate fully compensates for the gap between the
two. Figures 6 and 7 prove that Proposition 3 is well
matched.

6 Conclusions
In [2], Gamal et al. proved that the end-to-end delay
is n times the end-to-end throughput by controlling the
carrier sensing range and the packet generation rate under
centralized TDMA scheduling. In this paper, we veri-
fied whether IEEE 802.11 DCF can establish this tradeoff
relationship by jointly controlling the transmission range
and the packet generation rate. To this end, we rede-
fined the transport capacity in [1] by considering the
average queuing time at each node. There are interde-
pendencies among the transmission range, the maximum
data rate by a single-hop transmission, and the average
waiting time in the node queue. Increasing the trans-
mission range plays a key role in decreasing the hop
count, which in turn shortens the packet delay. On the
other hand, increasing the transmission range reduces the
number of packets that can be transmitted by a single-
hop transmission, which therefore increases the average
packet waiting time. Therefore, there exists an optimal
transmission range suitable to minimizing the end-to-
end delay. In this study, we analyzed the optimal revised
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transport capacity by controlling the transmission range
and by choosing the appropriate packet generating rate.
Finally, it is proved that the scaling laws of the end-to-
end throughput and end-to-end delay are �

(
1/
√
n log n

)
and �

(√
n/ log n

)
, respectively, which are equivalent to

the results in [2]. Note that when the transmission range
is fixed, the scaling law of the end-to-end throughput is
o
(
1/
√
n log n

)
. This means that the performance degra-

dation by using IEEE 802.11 DCF instead of centralized
TDMA scheduling is mitigated by adjusting the trans-
mission range and the corresponding packet generating
rate.

Endnotes
aWe recall the following notations:

• f (n) = �(g(n)) ⇒ ∃c1, c2, n0 > 0 s.t.
c1g(n) ≤ f (n) ≤ c2g(n), ∀n ≥ n0.

• f (n) = O(g(n)) ⇒ ∃c, n0 > 0 s.t. 0 ≤ f (n) ≤ cg(n),
∀n ≥ n0.

• f (n) = o(g(n)) ⇒ ∃c, n0 > 0 s.t. 0 ≤ f (n) < cg(n),
∀n ≥ n0.

bThe transmission range (R) should be less than D/2 to
avoid the hidden node problem [16].

cThe back-off timer stops if any node in the sensing
range is transmitting.

d D cannot shrink faster than
√

log n
n to maintain the

connectivity of the nodes [1].
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Appendix
Proof of Proposition 1
Packet velocity v(�,R) (10) is expressed as follows:

v(�,R) =
R · log2

(
1+ 1

6ζ (θ−1)
(D
R
)θ)

M
(
1
ξ

+ Tt
) (

1−nπD2�
L
R
Tt

)
−�L

=
log2

(
1 + 1

6ζ (θ−1)
(D
R
)θ)

M
(
1
ξ

+ Tt
) (R − nπD2�LTt) − �L.

(32)

In order to find the optimalR∗(�), we formulate a differ-
ential equation by partially differentiating packet velocity
v(�,R) (32) by R:

∂

∂R
v(�,R) ≡ ∂

∂R
log2

(
1+ 1

6ζ (θ−1)

(
D
R

)θ
)

(R−nπD2�LTt)

= −
1

6ζ (θ−1)
(D
R
)θ · θ · (R − nπD2�LTt)

R ·
(
1 + 1

6ζ (θ−1)
(D
R
)θ)

+
log2

(
1 + 1

6ζ (θ−1)
(D
R
)θ)

ln 2
= 0. (33)

The closed-form solution of the differential equation
(33) cannot be found. Hence, we use a linear interpola-
tion. When � is zero, the corresponding R that satisfies
the differential equation (33) is

R = D ·
(

1
6ζ (θ − 1) (exp(θ) − 1)

)1/θ
≡ A1. (34)

Next, we substituteD/2 for R in the differential equation
(33). Then, we can find the corresponding� as follows:

� =
2θ ·θ

6ζ (θ−1) − ln
(
1 + 2θ

6ζ (θ−1)

) (
1 + 2θ

6ζ (θ−1)

)
2nπDLTt · 2θ θ

6ζ (θ−1)

≡ A2.

(35)

The optimal transmission range R∗(�) passes from
point (� = 0,R∗ = A1) to point (� = A2,R∗ = D/2).
We linearly interpolate two points. This line is described
by the following equation:

R∗(�) = D/2 − A1
A2

� + A1, (36)

which is equivalent to the result of Proposition 1.

Proof of Proposition 2
When the optimal transmission range R∗(�) (19) is
adopted, the revised transport capacity of the WMN is as
follows:

CT (R∗(�),�)

= �

⎛
⎝m(R∗(�),D)(

1
ξ

+ Tt
) (

R∗(�) − nπD2�LTt
)− �L

⎞
⎠

= �

{
m(R∗(�),D)

( 1
ξ

+ Tt)

(
D/2 − a

b
� + a − nπD2�LTt

)
−�L

}
.

(37)

To find the optimal packet generation rate �opt that
maximizes the above equation, we need to use a poly-
nomial form. For this purpose, m(R∗(�),D) should be
approximated to a polynomial form. When � is 0 and A2

(35),m(R∗(�),D) becomes θ/ ln 2 · M and
log2

(
1+ 2θ

6ζ (θ−1)

)
M ,

respectively. We approximatem(R∗(�),D) into the linear
equation of ˆm(R∗(�),D):

ˆm(R∗(�),D) =
log2

(
1+ 2θ

6ζ (θ−1)

)
M − θ

ln 2M
b

� + θ

ln 2M
+ c.

(38)

Here, c is a parameter that minimizes the mean square
error (we set c to 0.3 when θ is 4).We rearrange the revised
transport capacity by inserting ˆm(R∗(�),D) instead of
m(R∗(�),D):

CT (R∗(�),�) ≈ �

⎧⎪⎪⎨
⎪⎪⎩

log2(1+ 1
6ζ (θ−1) 2

θ )

M − θ
ln 2M

b � + θ
ln 2M + c

( 1
ξ

+ Tt)

(
D/2 − a

b
� + a − nπD2�LTt

)
− �L

⎫⎪⎪⎬
⎪⎪⎭ ,

(39)
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which is a quadratic equation. The solution of Equation 39
is identical to the result of Proposition 2.

Proof of Proposition 3
Network connectivity is a critical problem in a WMN
because nodes are randomly distributed. In our system
model, sensing rangeD is a critical parameter in the deter-
mination of the network connectivity. Let us define Dc(n)
as the sensing range that guarantees network connectivity.
We use Dc(n) instead of D.
The scaling laws of the related components, A1 (20), A2

(21), B1 (26), B2 (27), and B3 (25) are

A1 = � (Dc(n))

A2 = �

(
1

nDc(n)

)
B1 = �(1)
B2 = �(1)
B3 = � (nDc(n)) .

Therefore, the scaling law of �opt (24) is

�opt = �
(
nDc(n)2

)+�
(
nDc(n)2

)+�(1)+√�(n2Dc(n)4)+�(n2Dc(n)4)

�(n2Dc(n)3)

= �

(
1

nDc(n)

)
,

(40)

and the corresponding transmission range R∗(�opt) and
packet velocity v(R∗(�opt),�opt) are

R∗(�opt) = �(nDc(n)2�opt + Dc(n)) = �(Dc(n))

v(R∗(�opt),�opt) = m(R∗(�opt),Dc(n))

1
ξ

+ Tt

(
R∗(�opt) − nπDc(n)2�optLTt

)
− �optL

= m(R∗(�opt),Dc(n))

1
ξ

+ Tt
· R∗(�opt)

− �optL

(
nπDc(n)2Tt

m(R∗(�opt),Dc(n))

1
ξ

+ Tt
+ 1

)

= �(1) · �(Dc(n)) − �

(
1

nDc(n)

)
· � (nDc(n)2

)
= �(Dc(n)).

(41)

BecauseDc(n) cannot shrink faster than
√

log n
n to main-

tain the connectivity of the nodes [1], (40) and (41) are
reduced to Proposition 3.
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