
Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111
http://jwcn.eurasipjournals.com/content/2013/1/111
RESEARCH Open Access
Human-centered software development
methodology in mobile computing environment:
agent-supported agile approach
Hyo-Eun Eom1 and Seok-Won Lee2*
Abstract

Due to the large demand of the services from the wireless networked computing environment, the capacity and
performance of wireless devices, platforms, and applications are improved. Especially, in recent years, the use of
mobile applications has increased dramatically along with the concept of ‘smart’ phone. As a result, the center of
human e-life has been transferred from a conventional desktop space to a mobile wireless computing environment.
These rapid changes also generate additional requirements for more sophisticated and complex functionalities in
wireless computing environment such as personalization or adaptation which result in the requirements of
‘human’-centered software development methodology in wireless computing environment. Although there are
well-known classical software development methodologies such as waterfall, they do not fit to the characteristics of
wireless computing environment. Instead, the agile software development methodology is generally used to deal
with dynamically changing requirements in wireless computing environment. However, agile software development
methodology is knowledge- and labor-intensive and does not fully cover the requirements that are essential to the
wireless computing environment. In this paper, we analyze the requirements of mobile applications in wireless
computing environment and propose a human-centered software development methodology which is to integrate
agile philosophy and agent technology. Additionally, we employed the concepts of software product line
engineering in order to understand and represent the variability of dynamically changing requirements.
Consequently, what we propose in this paper is an agent-supported agile-based mobile software development
methodology in wireless computing environment for supporting adaptive requirement changes and their
automatic implementation. In order to demonstrate the feasibility of the proposed approach, we have performed
two experimental case studies by developing android mobile applications.

Keywords: Agile software development, Mobile computing environment, Adaptive software, Agent-oriented
software engineering, Multimedia mobile application, Requirements discovery
1. Introduction
Recently, we are witnessing an explosion of mobile ap-
plications with a lot of multimedia services driven by the
various mobile technologies in wireless computing en-
vironment. Furthermore, the user's expectation toward
functionalities and qualities keeps increasing through
the appearance of ‘smart’ applications in the wireless
computing environment. Users cannot be satisfied with
* Correspondence: leesw@ajou.ac.kr
2Department of Information and Computer Engineering, Ajou University,
San 5 Woncheon-dong, Youngtong-gu, Suwon-si, Gyeonggi-do 443-749,
Republic of Korea
Full list of author information is available at the end of the article

© 2013 Eom and Lee; licensee Springer. This is
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
one-dimensional functionalities in such environment.
They want the mobile applications to be more intel-
ligent. This intelligence includes the ability of recogni-
zing the user's intention and context and the ability of
adapting to the dynamically changing environment by
itself. In other words, the demands for the software
adaptation requirements move to the next level, which
requires more intelligence, in the mobile computing en-
vironment (MCE). In order to support such software
adaptation, a large scale of data should be continuously
monitored and supervised. A large amount of infor-
mation must be collected and analyzed as an informa-
tion lifecycle. This is shown in Figure 1. Moreover, the
an Open Access article distributed under the terms of the Creative Commons
g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:leesw@ajou.ac.kr
http://creativecommons.org/licenses/by/2.0

Figure 1 Movement on mobile computing environment.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 2 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
additional requirements of users, systems, and their in-
teractions, which are not elicited during the requirement
engineering process, should be discovered from the ac-
tual usage of the application by the users.
From the above observations, we focus on three prob-

lems. Firstly, there is no existing applicable software de-
velopment methodology that reflects the characteristics
of MCE and its adaptation requirements. Secondly, add-
itional requirements of software adaptation keep accu-
mulated on top of existing requirements by adding the
increased complexity of software and its engineering
process. Lastly, a well-structured information processing
lifecycle is needed to model, analyze and retrieve the
complex and sophisticated information from the dyna-
mically changing users, systems and the environment.
Thus, our approach integrates agile philosophy and agent
technology to resolve the above problems. The proposed
framework (in Section 5.4), which adopts the human-
centered software development methodology, is based on
the hybrid use of the above two concepts.

2. Problem statement
2.1. Problems
As described in the previous section, there are some
problems on the process of mobile software develop-
ment. Those problems are as follows:

� Conventional software development methodology
cannot be applied to the mobile software
development.

� The complexity of mobile software engineering is
increasing.
� Knowledge- and labor-intensive processes create
additional burdens.

Firstly, the MCE is different from the conventional
computing environment. The lifespan of mobile software
is quite dependent on the usability, and this usability is
also dependent on the user requirements. Requirements
from mobile software users are variable and capricious.
Thus, if we want to make a long-term mobile application
on the MCE, it is critical to reflect and satisfy the dy-
namically changing requirements. Also, the accuracy of
processed information for adaptation is important. The
MCE has limited resources, including memory, battery,
and display. Therefore, developers are required to con-
sider these limited resources. These differences and re-
strictions make the conventional software development
methodology inapplicable for the mobile software devel-
opment. The additional requirement of adaptation also
pulls variable cases and variants, which should concern
the developer. In other words, the applications in the
MCE need to be more intelligent. They need to re-
cognize the dynamically changing environment and
properly react to those changes. To develop such appli-
cation, the conventional development methodology is
not sufficient. Therefore, some labor- and knowledge-
intensive processes and complexities exist in the back-
ground of realizing adaptation, and this is why the novel
development methodology is proposed in this paper.

2.2. Objectives and propositions
In this research, our study aims to analyze the design of
the software development methodology specialized in

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 3 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
adaptive mobile-software development. The purpose is
to find a way to control the complexity and to reduce
burdens during the process of adaptation realization.
In detail, we have several propositions which are as
follows:

� Reflecting features of the MCE
� Reflecting the adaptation requirement
� Controlling complexity on adaptive mobile software

engineering
� Reducing loads from labor- and knowledge-intensive

process of developers
� Improving accuracy and functionalities

Basically, the features of MCE have to be reflected
onto the methodology, not to miss the factors affecting
the usability of the mobile application. Through this, de-
velopers can avoid the risk of an early buried and dead
application. Then, we should reflect the adaptation of
the found factors. These factors become the require-
ments of the development, and they need to be adapted
into the mobile software development process by the
adaptive functions. After reflecting additional require-
ments, the complexity, which is increased by the dyna-
mically changing requirements for the adaptation, needs
to be managed. Finally, for more usability of adaptation,
sufficient accuracy of information and functionalities of
application must be achieved.

3. Related works
3.1. Features of mobile computing environment
MCE includes the environment of the mobile software's
execution and the environment of the mobile software's
development. The MCE has more limitations compared
to the conventional computing environment. Most of
them are the constraints on resources, which are as
follows:

� Memory. The amount of memory that the
application can use is limited by constraints of
resources.

� Battery. The amount of the power consumption is
limited by the physical size of the mobile devices
and the impossibility of power supply.

� Display. The size of display is limited, so that the
arrangement of information and view needs to be
considered.

� Signal. As many functions of the application are
based on network environments, the stability of
signals is required.

� Speed and smoothness. To keep the real-time
usability present in the user's life, the speed and
smoothness of mobile software have to be
assured.
� Maintenance. To satisfy changing requirements
and updating new information and functions,
continuous upgrade and communication with
users are needed.

Because of these constraints, mobile applications avoid
constructing huge data structures and weighted com-
putations, and pursue compactness and lightness. In
addition, users on MCEs need to be active to express
opinions on applications they frequently use, and these
requirements are various and variable.
3.2. Agile software development methodology on MCE
The agile software development methodology was pro-
posed to resolve the problems of conventional software
development methodology, which shows stiffness and in-
tensive labor on the preparation and document process
[1]. Thus, the agile methodology focuses on the member's
capability, synchronization, and sustained deployment of
products. By these principles, the software development
process based on agile methodology generally includes the
iterative and evolutional development processes [2] such
as Scrum and XP [3,4]. Due to flexibility and short-term
iteration of the agile process, the agile methodology is
usually applied to mobile software projects [5]. Thus, the
agile methodology has been discussed for mobile software
development like the Mobile-D project [6]. However, there
is no widely agreed software engineering process for
the MCE which considers the dynamic requirement
adaptation.
3.3. Agent and software product line
An agent is an encapsulated computer system that is
situated. From the establishment of this definition, the
study of agent-oriented software engineering (AOSE) or
agent-based approaches for software engineering has
been researched steadily [7]. AOSE is to adapt the agent
concept to software engineering in order to control
the complexity field, called as AOSE by Jennings and
Wooldridge [8-10].
Software product line engineering (SPLE) is a field of

software engineering involving the production of serial
applications through distinguishing variable parts from
unchangeable parts. The domain and variability concepts
of SPLE are used to express the variable and common
components in a software system. Presently, these con-
cepts are used to describe the architecture of an adaptive
software system as a changeable software at runtime. In
SPLE, adaptive software is regarded as the system con-
taining the different software at a different case in one
product line. Through using SPLE concepts on enginee-
ring an adaptive software system, systems and deve-
lopers can realize where and how the system changes.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 4 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
4. Approaches
Now, we introduce our solution and approaches to the
problems described above. Basically, our solutions are
based on the hybrid of three concepts: agile, AOSE, and
agent technology. That is, these approaches were de-
veloped through combining three ideas, which look
isolated at first glance. Therefore, in this section, we ex-
plain how those key ideas are combined and used to
build our solution.

4.1. Mobile computing environment and agile
As seen through the explosion of the popularity of mo-
bile devices and applications, mobile software supports
many services with or without the support of a desktop
settled on human life. Hence, requirements for improved
function and service approach need to be considered.
To satisfy their requirements, developers have to speed
up the progress of engineering and strive to produce
good performances during relatively tight schedules.
Moreover, mobile software and devices have inherent con-
straints, which produce additional requirements concer-
ning processes.
Agile software development methodology is already

used for the development of mobile software for the rea-
son that the agile methodology is capable of covering
some critical features of the MCE:

� Various requirements. In the MCE, mobile software
requirements are changeable for various reasons like
the user's needs, capabilities of devices, platforms,
etc. Thus, for mobile software development
processes and maintenance, frequent tests and
revisions are needed to reflect various requirements
of users and markets.

� Labor- and knowledge-intensive. For dynamically
changing requirements and relatively strict terms for
development, project members go through many
turning points and iterative processes. Moreover, the
quality of their results and development processes
rely on the capabilities of the project members.
Therefore, modern mobile software requires much
knowledge and labor.

� Human-centered. As functionality and usability are
directly related to the life of mobile applications,
human-centered functions and interfaces are
required to improve usability and functionality.

Generally, a conventional software development me-
thodology cannot deal with these features of the MCE.
Unlike the conventional methodology, agile seeks to
accept changes in the middle of processes and to con-
tinuously communicate with project members, including
customers and business members. Agile places the highest
importance on delivering valuable software. Thus, the
above features of MCE, except for the second characteris-
tic, can be supported by the process and principles of the
agile methodology. Consequently, in this study, we choose
agile as the basic philosophy of our mobile software deve-
lopment methodology.

4.2. Agile and agent technology
As we mentioned, the software development process
based on agile basically has iterative and evolutional pro-
cesses to reflect requirement changes actively. Because
of the rapid process, intensive labor and knowledge are
required of developers, indicating that agile cannot solve
the second aforementioned characteristic of MCE. In
particular, the burdens on developers of the processes
increase when they want to satisfy the additional adapta-
tion requirements because adaptation includes a high-
level information processing. Also, the rapid process re-
peats tests and inspections until the requirements are
sufficiently met. Suppose we have a technical support on
these burdening processes, and then we can reduce the
load of knowledge engineering. In order to do that, the
technical support has to possess the ability to collect
widely spread information and to process collected in-
formation, like reasoning and knowledge processing.
Agent technology has features that could supply those
abilities and agility, as it is autonomous, reactive, and
proactive [11,12]. Agent operates on the basis of know-
ledge (e.g., belief-desire-intention agent model [13-17]).
Thus, agent technology can support the burden process
based on information collecting and processing.

4.3. MCE and agent-oriented software engineering
In the field of software engineering, there exists a study
about controlling the complexity of complex software
systems by abstraction, using the agent concept called
AOSE [8]. In this study, systems are considered compos-
ite components with several sub-components recursively
representing specific goals or objectives. Each compo-
nent could be expressed as an agent, which is reactive,
proactive, autonomous, and social. That is, the complex
software system is an organic set of components operat-
ing autonomously to meet the objectives. In another
study about controlling the complexity of software in-
tensive systems through the agent-oriented approach, re-
searchers said that there are remarkable improvements
for some decomposable and organizational problems.
Therefore, an agent-oriented approach for the MCE is
beneficial. In addition, the features of an agent give flexi-
bility and scalability to the system organization, which is
needed to realize adaptation. Consequently, the AOSE
approach reduces complexity and other potential abi-
lities to adapt to the system.
Hence, in this research, we plan to apply the AOSE

approach to mobile software engineering to control

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 5 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
complexity. From AOSE viewpoint, the MCE includes
elements related to mobile computing, like mobile de-
vices, mobile software, users, and developers. Such an
MCE is generally composed of various mobile elements,
but is not apart from a conventional computing environ-
ment. Such components of MCE communicate mutually
in sharing their services and information, and sometimes
even collaborate and cooperate like family products.
Thus, the architecture of MCE could be expressed as
seen in Figure 2 which shows that an MCE is generally
composed of user mobile environments and can be
decomposed to smaller systems composed of mobile de-
vices and applications.
As we discussed above, each of these three concepts

has specific features, and these features have supplemen-
tary relations with each other as seen in Figure 3. In the
MCE, requirements are easily changed, and frequent
tests and revisions are necessary. Because of this, ite-
rative implementation in the short term requires inten-
sive labor and knowledge of developers. Furthermore,
human-centered functions and interfaces are needed.
Consequently, the loads of developers are the result of
these busy processes and additional requirements of
adaptation. Agent technology can support part of this
load, specifically in the areas of knowledge engineering
and inferences. Moreover, an agent-oriented approach
can deal with the complexity of an MCE for mobile soft-
ware engineering. Therefore, we plan to combine these
three concepts in a hybrid approach to address the prob-
lems of mobile software engineering.
Figure 2 The architecture of an MCE based on an agent-oriented app
5. Body of methodology
The mobile software development methodology pro-
posed by this research is to resolve the problems caused
by the complexity and variability of MCE. The proposed
methodology uses the flexibility of the agile metho-
dology, the technical capacity of agent systems, and the
abstraction of AOSE concepts. For designing such a
methodology, we discuss four phases: principles, concepts,
processes, and technical supports.

5.1. Principles
Though agile is generally used for mobile software devel-
opment instead of conventional software development
methodology, it does not focus on mobile software de-
velopment. Thus, we need to reconsider the principles
of agile from a mobile software development view, but
as original agile principles are old-fashioned, we refe-
renced recently proposed agile principles in an article by
Williams [18]. The five principles, used by the proposed
methodology, are selected from them. They are shown
in Table 1. The principles in italics are the selected prin-
ciples. Principle 9 was slightly revised to mention usabi-
lity and functionality, which are necessary to consider
during the process.
As stated in principle 1, the most important principle

of mobile software development is delivering valuable
software to users continuously in the short term. Flexible
processes and willing minds are needed to accept dy-
namically changing requirements from various users.
Mistakes and misunderstandings have to be reduced
roach.

Figure 3 Relations of key ideas.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 6 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
through frequent communication and specifications of
important changes and feedback. During these steps, de-
velopers should pay attention to technical excellence and
preserve usability in order to make the product valuable
to users. Moreover, important change-centered documen-
tation is pursued instead of heavy documentation. The
ultimate purpose of these principles of mobile software
development is to produce a human-centered application
valuable to real users through flexible processes and active
communications.

5.2. Concepts
We referenced several terms to explain certain concepts
and artifacts within our process.

� Requirement elicitation. A method of eliciting
requirements, which are based on the user's
situation and context, for mobile software
development.

� Conti. The material for description of a scenario
composed of components like mobile software,
agent, and external components. The material
includes UI and view, data flows, and simple
descriptions about the internal computation.

� Profile. Information used for figuring out the
environment and users for adaptation. Profiles are
composed of processed information and a data
structure.

� Variable point. An asset differing in the behavior and
its situation.

� Variants. Descriptions of required behaviors to make
a choice for the next branch in variable point at the
given situation.

� Feed report. A record of important changes and
their results for feedback of each iteration.
5.3. Process
Basically, our mobile software development process is
based on AOSE and follows agile principles. Our process
includes an iterative process for the development of each
component, and this manner can satisfy the dynamically
changing requirements rapidly. As seen in Figure 4, our
process of mobile software development starts from set-
ting up the basis with ideas, categories, objectives and
services of the system. The component is divided into
simple mobile applications, sharable services, and agents.
It could be evolutionally implemented through iterative
processes. The initialization and test processes would be
supported by agent technology in order to reduce the
burden of information processing and repeated testing.
Each step will be explained as follows.

Table 1 Agile Principles as outlined from an article by
Laurie Williams [5]

Principles Agile principles as outlined from an article by
Williams [18]

Principle 1 The highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

Principle 2 Changing requirements are welcome at the start of
each iteration, even late in development; agile
processes harness change for the customer's
competitive advantage.

Principle 4 Business people and developers must work together
daily throughout the project.

Principle 5 Projects should be built around empowered, motivated
individuals with a shared vision of success; give them
the environment and support their needs, clear their
external obstacles, and trust them to get the job done.

Principle 6 The most efficient method for conveying information
to and within a development team is through
synchronous communication; important decisions are
documented so that they are not forgotten.

Principle 7 Valuable, high-quality software is the primary measure
of progress at the end of a short time boxed iteration.

Principle 8 Agile processes promote sustainable development. The
sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

Principle 9 Continuous attention to technical excellence and good
design enhances agility and makes the product
valuable through its usability and functionality.

Principle 10 Simplicity—the art of maximizing the amount of work
not done—is essential.

Principle 11 The best architecture, requirements, and designs
emerge from self-organizing teams guided by a vision
for a product release.

Principle 12 For each iteration, the team should candidly reflect on
the success of the project, its feedback, and how it
could be more effective, then tune and adjust its plans
and behavior accordingly.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 7 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
5.3.1. Initialization
The initialization process includes idea generation and
the requirement elicitation process to initiate the target
system and its scope. Firstly, the mobile applications,
which are chained with parallel usages, are derived
through a survey about the status of mobile software
usage. Such derived applications and requirements present
the requirement that is reflected on the subconscious of
users. Thus, the emerging requirement that users want to
get is elicited through analyzing the requirements and im-
plicit relations among the existing applications. Figure 5
represents this proposed method. Based on such emerging
requirements, the target system will be settled, and ideas
and the scope will be edited.

5.3.2. Design architecture
After the initialization of a target system, we have to de-
fine the architecture of target system based on AOSE,
composed of components that are described by specific
objectives. From the predefined requirements of the
target system, engineers find uncovered problem spaces
and design a component that has specific objectives to
solve the problem. Shared problems between compo-
nents could be solved by defining a reusable service of
the other components. In addition, an independent com-
ponent could be added to solve the problem. Moreover,
variable points and common points are described in this
architecture based on SPLE concepts to explain which
components are available for the change and which are
not, as shown in Figure 6.

5.3.3. Decomposition and prioritization
The architecture is decomposed into segments and pri-
oritized in order of development priority in several levels
according to the relationships among the components.
This step is to increase the reusability of each segment
and understandability of the overall architecture and to
respond to the dynamically changing environment and
requirement more easily.

5.3.4. Iterations
For each component in a segment that is not developed
yet, conventional software development process is re-
peated. During this phase, we reject weighted docu-
mentation in order to make progress rapidly, but we
recommend simplified artifacts for specifying important
changes, feedback, and progress.

5.3.4.1. Scenario Based on the architecture of the target
system, we have to define the exact scenario. In scenar-
ios, the composition of the mobile application's ele-
ments, functional flows, and interactions among the
elements is described. In the simple case of just one mo-
bile application, we can draw the scenario as a flow of
views and processes. In more complex case of composite
applications, we can draw interactions among compo-
nents with some objectives and functions. Here is an ex-
ample of developing the family applications for a bank
company. There should be some considerations of secur-
ity, identification, and so on. Each of these parts could
be divided into some smaller components. In addition, if
there are plans for adaptation, then variable points and
variants are also described in the scenario. Basically, the
variability description is composed of a variable point
and variants. Usually, variable points are caused by infor-
mation processing as seen in Figure 7. In this case, for
adaptation, the information analysis process could be
replaced by the agent. At the end of this step, a conti is
produced as a result. A simple example of conti is
shown on the case study of this paper, in Figure 8.

5.3.4.2. Requirement analysis In this step, the func-
tional and non-functional requirements for each com-
ponent are described. In particular, requirements for

Figure 4 The process of an agent supported mobile software development methodology based on agile.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 8 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
adaptation have to be described based on the distinct
situation. Also, the attributes of agent, which is used in
the target system, have to be preliminarily described for
agent specification (e.g., reactivity, pro-activeness, social
ability, and autonomy [9]).

5.3.4.3. Design For every component in the prescribed
scenarios and requirements, actual data and functional
Figure 5 The emerging requirement elicitation.
structure are defined. Components are specified by the
features of the agent - generally goals and behaviors.
Moreover, profiles about the system and users related to
adaptation and functions should be designed for each
adaptation plan, which is described in the previous step.
Several kinds of profiles have to be designed for adap-
tation. The type of profiles could be distinguished as
shown in Table 2.

Figure 6 Designing architecture.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 9 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
General profiles include the shared information that
could be accessed by all components. It usually includes
the general information about users and the system that
could be used to extract the implied information, like
patterns or the context. This general information has to
be provided by the mobile framework. If additional in-
formation is needed for the component's adaptation,
then the restricted profiles will be designed for an exten-
sion of information.

5.3.4.4. Implementation In this step, the designed com-
ponents are implemented. This implementation is re-
stricted to the previous design result. If new attributes
or requirements occur in this step, the process needs to
go back to design step. No functionalities, which are not
Figure 7 A conti example for adaptation.
described in design step, should be implemented. As this
methodology is employing an agent module, the agent is
also implemented in this step. This agent module is
made using the predesigned specifications, models and
platforms, and profiles.

5.3.4.5. Testing and feedback For a present compo-
nent, engineers verify the agent in a syntactic and se-
mantic way. If it passes the formal test, then engineers
will deliver the latest version of the component to users
and collect reactions and feedback. At the end of this
step, developers analyze artifacts of previous steps, and
then make a choice whether they should go through iter-
ation again or go over to the next iteration for the other
components. During this phase, the agent-supported

Figure 8 Conti for experiments.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 10 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
development environment could conduct the formal test
on the components and collect the results of the testing
and feedback instead of the team. Consequently, the
specifications of changed requirements, the revisions for
the satisfaction, and progress should be documented.
5.3.5. Verification and validation
For the target system operated by all working compo-
nents, engineers must ensure the satisfaction of the ori-
ginal purpose and objectives they planned in the first
step of this process. They also should check whether the
combined target system is adapted in the predefined
contexts.
5.3.6. Deployment and maintenance
After the above steps are done, the goal product is made.
In this step, the deployment of the product and its main-
tenance are executed. To keep the usability of the pro-
duct and satisfaction of users, the team has to make a
window for continued communication with users and
the changes of the market. If needed, they could go back
to the iterations and do their process again.
Table 2 Type of profiles

Type User profile System profile

General General information over
applications about a user
and the user's life logs,
including patterns and the
context of the user.

General information over
applications about a mobile
system, including the state
and the context of
environment.

Restricted The restricted information collected and analyzed by the
component for adaptation. These profiles are used for more
sophisticated information processing.
When we comply with these described whole pro-
cesses, some artifacts are made for each phase, as shown
in Table 3.

5.4. Framework
Our mobile software development methodology includes
technical agent supports to help the process of the
adaptation and test. Agent technology can support infor-
mation processing on the MCE. The supported environ-
ments are largely the development environment and the
mobile software environment. As seen in Figure 9, the
in-process information during the development and use
of applications is collected and analyzed by information-
managing components, and the newly produced infor-
mation is used for developers to implement a new
application and for mobile applications to adapt. This
process of information collecting and processing can be ex-
ecuted in real-time by the help of the agent, who supports
the information lifecycle. Thus, autonomous knowledge-
based agent technology is appropriate to support these
distributed real-time knowledge intensive processes.
Consequently, previous principles, processes, and tech-

nical support compose the framework for developing a
mobile software. As shown in Figure 9, our adaptive mo-
bile software development framework adopts the simpli-
fied principles based on agile, the process of AOSE, and
the agent technology support. The five principles of agile
are well matched to the features of MCE and made itera-
tive processes based on that. Each step of the process is
based on the AOSE and is supported by an agent technol-
ogy with labor- and knowledge-intensive processes. More-
over, we propose agent technology support adaptations of
mobile software.

Table 3 Artifacts of the process

Process Artifacts

Initialization
Specification of ideas, category, and
objectives of target system through
emerging requirement elicitation

Design architecture
Agent oriented architecture of the

target system

Decomposition and
prioritization

Segments and priorities of components
composing the target system

Iteration

Requirement analysis
Functional/non-functional requirements
specially based on mobile constraints

and adaptation

Scenario Conti, including variability

Design
Design including the specification of an

agent and provision of profiles

Implementation
Implementation of specified components

including agent

Testing and feedback

Specification of requirement satisfaction,
testing reports, prototype evaluations
and plan for revisions, including agent

verification

Verification and validation
Verification and validation of the target

system

Deployment and
maintenance

Products and user guide

Figure 9 The Framework for mobile software development methodol

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 11 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
6. Case study
In this study, we have made an experiment referred to
case study research design components [19] to show the
effectiveness of an agent support and illustrate a way to
take into account mobile user customization functions.
Thus, we have planned two applications, which are to
recommend new services according to the user's beha-
vior history in the mobile environment. One was deve-
loped by the classic development methodology, and the
other was developed by the proposed mobile software
development process.

6.1. Objectives and propositions
This experiment has two main objectives. One is to
show that the utilization of an agent support is valuable.
The other is to show that the agent can actually re-
duce the complexity of the development process. There-
fore, the following statements are considered in this
experiment:

� Reflecting the user customization requirement;
� Reducing loads over the developers;
� Improving accuracy and functionalities.
ogy.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 12 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
Concerns for developing customization functions were
reflected to the proposed process to make the process
easier. Through agent support, we can reduce the loads
on the information processing aimed at customization.
Lastly, the accuracy and functionality will be improved
through the capability of agent reasoning. The evalua-
tion metrics for these propositions are shown in the next
chapter.

6.2. Metrics
Table 4 describes the metrics and comparison of classic
software development methodology with our proposed
methodology. In this experiment, we have focused on
the effectiveness of agent support. So, we have used four
attributes in these metrics. These attributes are ‘level of
difficulty’, ‘cost of time and labor’, ‘customization usability’,
and ‘capability of information processing’.

6.3. Experiment
In this experiment, we have made two applications.
These applications have the same function which is to
recommend new services to be used. One application is
developed with agent support in managing intent map,
and the other is developed without the support. In this
section, we will explain the core concepts and results of
customization.

6.3.1. Scenario
In the proposed methodology, we introduce some con-
cepts for customization and adaptation requirements.
Among them, we have adopted three concepts: conti,
Table 4 Metrics for evaluation of methodology

Before M

Difficulties in designing information processing for
customization exist

Level o

The amount of cost to develop functions instead of
agent will be increased.

Cost of tim

By limitation of information closed to users and capability
of reasoning, usability of customization is bad.

Customiza

Limitations of collecting the user's life information exist.
All methods of information processing are implemented
by developers each time.

Capability of info

Generally, as the software development methodology is
aimed at reducing the costs from the changing of designs
and requirements, the process will fluctuate during the
mobile application development.

Change

Mobile constraints can be missed. Quality of

By the complexity of high level functionality development,
possibility of error is high.

Possibil

Independency of components and the stiff structure of the
application require the participation of developers for
functional extension.

Sca
variable points, and profiles. Firstly, our program has a
simple structure composed of three processes and just
one view as seen in Figure 8. As you see in this conti,
this scenario is composed of units in mobile applica-
tions. Generally, units of android applications are recog-
nized as layouts or activities. However, the more general
terms need to be used. Among these processes, the stan-
dard app list supply makes variability in this application.
According to the information supplied by this process,
the actual list of recommended services for the user is
decided. Though it does not have visible variants, it
has actual variability at that point. For the first applica-
tion, a standard service list is collected from the user's
mobile environment. For this, we used the list of present
launched services beforehand. As the proposed metho-
dology is used, this process is replaced by an agent mo-
dule. In this experiment, application intent map agent,
which has information about each service's user priority,
is the agent module. Through this replacement, we can
get more customized and meaningful information to be
used as standard for extracting related services.

6.3.2. Design
As a part of the design, we defined two profiles: intent
map and application relation map. An intent map is a
kind of general system profile supplied by an application
intent map agent. This profile is composed of applica-
tions, their counts of launch, and counts of launching
dependency as seen in Figure 10. We implemented the
agent to calculate the priority of the applications of the
user based on a PageRank algorithm. The gray circle
etrics After

f difficulty
Through agent reusing, length and complexity

of process for design are shortened.

e and labor
The cost can be reduced by the reusability

of the agent.

tion usability
By agent, collecting information and reasoning
from the information are possible. Thus, the

usability of customization increases.

rmation processing

Through agent support, we can get huge
amounts of information about users and

user behavior. Agent reasoning can discover
meaningful information remarkably from data.

tolerance

According to iterative and evolutional processes,
changes can be easily accepted. Moreover, reducing

the load of preparation before the actual
implementation reduces the cost of revision.

mobile apps
Through the reflection of mobile application
requirements in the process, the possibility of

missing concerns related to the quality is reduced.

ity of error
By using agent supported reasoning and specific
algorithms, the possibility of error will be reduced.

lability
Scalability and flexibility of agent reduce the
cost of development for functional extension.

Figure 10 An intent map as a general system profile for experiments.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 13 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
seen in Figure 10 represents the applications that have
high priority and will be used as the standard for looking
for related applications.
An application relation map is a kind of app-specific

profile composed of applications with connections to
each other as seen in Figure 11. The link between appli-
cations means that many users using one application
can also use another application together. The former
picture shows that the candidate has duplicate relations
with some applications. The later one shows that the li-
near relation can be shown in a family product.
Consequently, in the first experiment, we simply get

the list of currently used applications as standards and
then gather additional applications related to the stan-
dard applications, but in the second experiment, we use
the agent computing with an intent map and make a list
of most important applications to the user, instead of
just utilizing the currently used applications list.

6.3.3. Results
Figures 12 and 13 show the results of our experiments.
As seen in Figure 12, recommended applications are ac-
tually not usable for the users in some cases. Specifically,
users who generally use the bank and card company ap-
plications also use another application showing arriving
bus information. The services are recommended to this
user at the given time. However, the wrong service,
which is for C university students, is recommended to
this user who is a student of A university. In Figure 13,
for the second experiment, the application with agent
support keeps the application that has a high probability
of use at the top of the list.
As a result, some concepts like conti, variable points,

and profiles for customization and adaptation are reflected
in the process of this experiment. Loads, by implementing
the process extracting high priority applications from the
user, are reduced using agents instead of people. Lastly,
accuracy and usability of application have improved
through the utilization of meaningful information from an
agent. Consequently, in these experiments, we show three
propositions, which are explained in Section 6.1.
Actually, these applications do not always recommend

fantastic applications to the user. The reason is that the
information is not enough to realize the taste of the
user. The information about each service's user priority
is not enough to make a practical user customization.
However, we expect that it would be possible to get in-
formation and increase the accuracy of adaptation if the
infrastructure is constructed to support an information
lifecycle.

7. Discussion
In this research, we attempted to reflect the require-
ments of the MCE on the methodology and to solve the
problems caused by variability, approaching from the hy-
brid method of combining agile software development
methodology and agent technology to make the process
effective. Also, we used concepts of SPLE and AOSE to
control the complexity of engineering process and to
facilitate the realization of adaptation. Lastly, we made
experiments to show the potential of agent support in
complex mobile developments, e.g., customizing and
adaptive mobile software. However, we still have draw-
backs in our process, which could yield to further stu-
dies as follows:

� Standard specification of agent for MCE for
adaptation

Figure 11 An application relation map as an app-specific profile for experiments.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 14 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
� Autonomous agent verification and validation
� Evaluation of adaptive mobile software
� Realization of agent-supported development

environment
� Agent-supported mobile software platform.

Moreover, mobile software engineering and an AOSE
approach for customized/adaptive MCE are scarce. How-
ever, we are on the stepping stone to adaptive and tailored
functions for user and environments. So if we face the
needs of an adaptive MCE and the difficulties with com-
plex mobile software engineering, then we could learn
more about issues such as the following:

� Organization of components in MCE
� Collaboration between applications and mobile

components in MCE
� Adaptation of mobile application and complex MCE
� Infrastructure to supply tailored service and

information processing.
8. Conclusion
In this paper, we described the need for an agile-based
software development methodology for dynamically chan-
ging requirements of mobile software in wireless net-
worked computing environment. This approach can be
used to provide automatic computation support for sui-
tably decomposed tasks.
The proposed methodology includes these two fea-

tures. One is the requirement discovery and the use of
variable point concepts in SPLE for the representation of
adaptive software requirements. The other is a process
satisfying the changing requirements and accommodat-
ing the information lifecycle. In the designing of the
methodology, we reflected the adaptation requirements
as well as the constraints of MCE onto the methodology.
Finally, using those concepts, processes, and technical
support, we proposed a framework for mobile adaptive
software development in wireless computing environ-
ment. Moreover, we also described the possible effects of
agent support by performing two experiments.

Figure 12 Result of first experiment without agent support.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 15 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
As an experiment, we found a fragmentary scenario to
understand the effect of agent support. From this test,
we could realize the advantages of the infrastructure
which supports the proposed methodology.
In short, what we would like to show in this paper

are like these. One is a new mobile software deve-
lopment methodology, which reflects the feature of
wireless computing environment. Another is the mo-
bile software development framework based on hybrid
Figure 13 The results of a second experiment with agent support.
solution of agile philosophy and agent technology.
The other is the incorporation of ‘requirements dis-
covery’ stage which is a new unit of mobile software
development process to support the need of soft-
ware adaptation. With these objects, the design of a
human-centered software development methodology
and framework for mobile software development in
wireless computing environment is proposed in this
paper.

Eom and Lee EURASIP Journal on Wireless Communications and Networking 2013, 2013:111 Page 16 of 16
http://jwcn.eurasipjournals.com/content/2013/1/111
Competing interests
The authors declare that they have no competing interests.
Acknowledgment
This research was supported by the Next-Generation Information
Computing Development Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (No. 2012M3C4A7033343 and No. 2012M3C4A7033346).

Author details
1Graduate School of Computer Engineering, Ajou University, San 5
Woncheon-dong, Youngtong-gu, Suwon-si, Gyeonggi-do 443-749, Republic
of Korea. 2Department of Information and Computer Engineering, Ajou
University, San 5 Woncheon-dong, Youngtong-gu, Suwon-si, Gyeonggi-do
443-749, Republic of Korea.

Received: 17 March 2013 Accepted: 3 April 2013
Published: 24 April 2013

References
1. V Rahimian, R Ramsin, Designing an agile methodology for mobile software

development: a hybrid method engineering approach, in Second
International Conference on Research Challenges in Information Science (RCIS),
ed. by O Pastor, A Flory, JL Cavarero (IEEE, New York), pp. 337–342

2. P Abrahamsson, O Salo, J Ronkainen, J Warsta, Agile Software Development
Methods (VTT, Espoo, Finland, 2002), p. 112

3. L Rising, NS Janoff, The Scrum software development process for small
teams. IEEE Software 17, 26–32 (2000)

4. WA Wood, WL Kleb, Exploring XP for scientific research. IEEE Software
20(3), 30–36 (2003)

5. T Wasserman, Software Engineering Issues for Mobile Application Development
(FoSER, New Mexico, USA, 2010), pp. 397–400

6. P Abrahamsson, A Hanhineva, H Hulkko, T Ihme, J Jaalinoja, M Korkala,
J Koskela, P Kyllonen, O Salo, Mobile-D: an agile approach for mobile
application development (Paper presented at the 19th annual ACM SIGPLAN
conference on object-oriented programming systems, languages, and
applications, Vancouver, BC, Canada, 2004). 24–28 October

7. H Mubarak, Developing flexible software using agent-oriented software
engineering. IEEE Software 25(5), 12–15 (2008)

8. NR Jennings, M Wooldridge, Agent-oriented software engineering, in
Proceedings of the 12th International Conference on Industrial and Engineering
Application of Artificial Intelligence and Expert Systems: Multiple Approaches to
Intelligent Systems, Cairo, Egypt, ed. by IF Imam, Y Kodratoff, A El-Dessouki,
M Ali (Springer, New York, 1999), pp. 4–10

9. M Wooldridge, Agent-based software engineering. IEEE Proceedings on
Software Engineering 144, 26–37 (1997)

10. MJ Wooldrige, NR Jennings, Software engineering with agents: pitfalls and
pratfalls. Internet Computing, IEEE 3(3), 20–27 (1999)

11. R Srinivasan, Artificial intelligence methodologies for agile refining: an
overview. Knowledge and Information Systems 12(2), 129–145 (2007)

12. M Wooldridge, An Introduction to MultiAgent Systems (Wiley, New York, 2009),
p. 484

13. MP Georgeff, B Pell, ME Pollack, M Tambe, M Wooldridge, The belief-desire
-intention model of agency (Paper presented at the 5th international
workshop on intelligent agents V: agent theories, architectures, and
languages, ATAL '98, Paris, France, 1998). 4–7 July

14. AS Rao, MP Georgeff, BDI agents: from theory to practice, in Proceedings of
the First International Conference on Multiagent Systems, ed. by L Gasser,
V Lesser (AAAI, Menlo Park, CA, 1995), pp. 312–319

15. MJ Huber, JAM: A BDI theoretic mobile agent architecture (Paper presented at
the proceedings of the third annual conference on autonomous agents,
Seattle, WA, 1999). 1–5 May

16. MJ Huber, JAM manual (IRS, 2001). http://www.marcush.net/IRS/Jam/
Jam-man-01Nov01.doc. Accessed 1 November 2001

17. I Rahwan, R Kowalczyk, Y Yang, PRICAI 2000 Workshop Reader,
Virtual enterprise design—BDI agents vs. objects, in Advances in
Artificial Intelligence, ed. by R Kowalczyk (Springer, New York, 2001),
pp. 147–150
18. L Williams, What agile teams think of agile principles. Commun ACM
55(4), 71–76 (2012)

19. SW Lee, DC Rine, Case study methodology designed research in software
engineering methodology (Paper presented in the proceedings of the
sixteenth international conference on Software Engineering and Knowledge
Engineering (SEKE'04), Banff, Alberta, Canada, 2004). 20–24 June

doi:10.1186/1687-1499-2013-111
Cite this article as: Eom and Lee: Human-centered software
development methodology in mobile computing environment: agent-
supported agile approach. EURASIP Journal on Wireless Communications
and Networking 2013 2013:111.
Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.marcush.net/IRS/Jam/Jam-man-01Nov01.doc
http://www.marcush.net/IRS/Jam/Jam-man-01Nov01.doc

	Abstract
	1. Introduction
	2. Problem statement
	2.1. Problems
	2.2. Objectives and propositions

	3. Related works
	3.1. Features of mobile computing environment
	3.2. Agile software development methodology on MCE
	3.3. Agent and software product line

	4. Approaches
	4.1. Mobile computing environment and agile
	4.2. Agile and agent technology
	4.3. MCE and agent-oriented software engineering

	5. Body of methodology
	5.1. Principles
	5.2. Concepts
	5.3. Process
	5.3.1. Initialization
	5.3.2. Design architecture
	5.3.3. Decomposition and prioritization
	5.3.4. Iterations
	5.3.5. Verification and validation
	5.3.6. Deployment and maintenance

	5.4. Framework

	6. Case study
	6.1. Objectives and propositions
	6.2. Metrics
	6.3. Experiment
	6.3.1. Scenario
	6.3.2. Design

	6.3.3. Results
	7. Discussion
	8. Conclusion
	Competing interests
	Acknowledgment
	Author details
	References

