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Abstract

The propagations of 60 GHz millimeter-wave system, which occupies an enormous operation bandwidth, are
always known to be intensively dispersive. This may, in practice, pose great challenges to the estimation of channel
state information. In this article, we investigated a promising compressed sensing (CS) algorithm and its practical
applications in the channel estimations of emerging 60 GHz millimeter-wave communications. By fully considering
the particular characteristics of 60 GHz propagations and further utilizing another kind of channel sparsity, i.e., the
specific block cluster sparsity embodied by the identified multiple clusters, a novel cluster sparsity compressed
sensing (CS-CS) algorithm is proposed subsequently. Based on the provided experimental simulations, the
comprehensive analysis on both the classical regularized orthogonal matching pursuit algorithm and our newly
designed CS-CS algorithm are conducted. As has been demonstrated, the proposed new algorithm indeed shows a
much superior performance compared with the other existing methods, which may significantly reduce the
reconstruction error and hence improve the precision of channel estimation. At the same time, the time complexity
of signal reconstruction of the new CS-CS algorithm may be simplified to some extent.

Keywords: 60 GHz millimeter-wave, Compressed sensing, Channel estimations, Cluster sparsity, Cluster sparsity
compressive sensing
1 Introduction
The growing demands for high-speed data streams and
broadband wireless services have significantly driven the
worldwide researches on 60 GHz millimeter-wave fre-
quency band communications, which is mainly designed
for the wireless accessing network such as the pico-cellular
mobile systems, the wireless local area networks (WLANs),
and wireless personal area networks (WPANs) [1]. In order
to achieve the targeted ultra-high throughput in the next
generation WLAN systems, which may typically even
surpass 1 Gbps to provide online uncompressed high-
definition television or UHDTV and gigabits per second
(Gbps) Ethernet, the new WLAN/WPAN standards are
currently developed by the IEEE 802 standardization com-
mittee. Two related standards for the short-range indoor
applications, i.e., IEEE802.11.TG ac and IEEE802.11.TG ad
[2], are designed to operate in different frequency bands
less than 6 and 60 GHz, respectively. The main motivation
for 60 GHz millimeter-wave communications is the
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availability of abundant unauthorized spectrum resources,
which enables the realization of Gbps transmission as well
as the worldwide broader market of 60 GHz products and
therefore attracts a large number of famous manufacturers.
Accordingly, with this enormous signal bandwidth, the

multi-gigabit capacities and low latency transmissions
can be practically promised by the 60 GHz millimeter-
wave communication systems. Nevertheless, the emis-
sion bandwidth of one single physical layer channel may
even approach 2.16 GHz in order to support the high
data rate transmissions [3]. Consequently, such a huge
bandwidth may significantly enhance the time resolution
of 60 GHz receivers (typically in a nanosecond level).
Further taking the indoor seniors into considerations,
which may usually involve many obstructions (e.g., desks,
walls), then the 60 GHz channel is always known to be
dispersive into dozen of resolvable multipath [4]. Thus, in
order to effectively capture the multipath energy in re-
ceivers, the channel estimation has been considered as a
key research field in 60 GHz communications. Unfortu-
nately, in sharp contrast to the traditional narrow-band
systems, channel estimation in 60-GHz millimeter-wave
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systems is supposed to recover so many (e.g., tens of) re-
solvable multipath components (MPCs) that it may easily
become infeasible in practice, given the computationally
complicated estimation algorithm and the impractically
ultra-high sampling frequency.
Emerging as an extremely powerful technique in mod-

ern signal processing, compressed sensing (CS) enables a
more promising acquisition of realistic signals at a com-
petitive sampling rate, which is much lower than the
previously widely suggested Nyquist sampling rate. In
order to implement such performance, CS essentially
accomplishes the signal sensing as well as signal com-
pression via an unfired single task [5]. With an appealing
sparsity processing framework, CS focuses essentially on
the signal sparsity which can be observed in any domain,
e.g., time domain, frequency domain, and wavelet
domain. It has been commonly recognized that a sparse
signal can be recovered with the high probability, by
only relying on a set of random linear projections of
input signals and using certain nonlinear reconstruction
or optimization algorithms [6]. As a consequence, the
number of random measurements required in CS is
often dramatically smaller than the number of samples
required in the other existing Nyquist sampling
methods, which thereby leads to a significantly reduced
sampling rate and hence greatly alleviate the compli-
cated high-rate analog-to-digital converter (ADC).
More and more experiments have indicated the par-

ticularly sparse characteristics of wireless propagation
channels, especially for the systems with enormous
bandwidth. That is, less than 10% of resolvable
multipath component dominated more than 85% of the
whole channel energy, and the sparse characteristics of
60 GHz millimeter-wave channels may become much
more remarkable in practice [7]. Therefore, CS is
regarded as a promising tool to conduct channel estima-
tions, which may acquire and recover the sparse signal
at less than the Nyquist sampling rate. However, it is
noted that in the application of CS into the channel esti-
mation of 60 GHz communication systems, the signal
reconstruction algorithm may also have an important in-
fluence on the recovery performance (e.g., the recovery
precision) [8]. In other words, different algorithms may
have quite different performances. As suggested by our
investigation, the classical orthogonal matching pursuit
(OMP) algorithm and regularization orthogonal mat-
ching pursuit (ROMP) algorithm may be properly
introduced to 60 GHz channel estimation. But the per-
formance is still far from unsatisfactory, considering the
resulting high recovery error and complexity.
We may notice that from the 60 GHz millimeter-wave

channels that are dramatically different from the
narrow-band systems, except for the overall sparsity of
channel MPCs that attenuated by following an exponent
decay function, the local sparse property introduced by
the cluster phenomenon may greatly facilitate the prac-
tical designs of efficient reconstruction algorithm [9].
Based on the cluster identification results, the local
sparsity can be observed, i.e., the few nonzero coeffi-
cients occurring in each cluster, which may be referred
to as the block cluster sparsity. By explicitly taking such
specific block structures into account, both in terms of
the recovery algorithm and in terms of the measure that
are used to characterize the performance, a novel cluster
sparsity compressive sensing (CS-CS) algorithm for 60
GHz channel estimation is proposed. The reconstruction
performance (i.e., reconstruction error and iterative
convergence) is compared with the classical ROMP algo-
rithms based on the extensive experimental simulations.
It has been shown that the proposed CS-CS algorithm
can significantly enhance the accuracy of 60 GHz chan-
nel estimations, and simultaneously exhibits a much
faster iteration behavior. The advantage of such a new
CS-CS may be essentially attributed to the full exploit-
ation the specific cluster sparsity, except for the overall
sparsity as in conventional sense.
The remainder of this paper is organized as follows. In

Section 2, we discussed 60 GHz channeling model and
briefly introduced the classical CS theory. In Section 3,
we analyze the block sparsity embodied by the multiple
clusters, and on this basis, the more competitive cluster
sparsity-based compressed sensing algorithm for the
channel estimations of 60 GHz millimeter-wave is devel-
oped. In Section 4, the comprehensive experimental
simulations and comparative performance analysis are
provided. Finally, we conclude the whole investigation in
Section 5.
2 System model
2.1 60 GHz Channel modeling
In this article, we consider the channel modeling
approved by the IEEE802.15.3c TG (i.e., the next-
generation WLAN standard at 60 GHz band) [10],
which is originally developed for indoor communications
and also known as the Saleh-Valenzuela (S-V) channel
modeling, to characterize the wireless propagations of
60 GHz millimeter-wave short-range communications.
Attributed to the enormous emission bandwidth (typic-
ally surpassing 2 GHz) and the resulting fair time reso-
lution as well as the many involved objects in operating
environments, the 60 GHz propagation is always an
intensive multipath channel, which also assumes the
received resolvable MPCs arrive in clusters. That is, the
rays within a cluster (or a group) may have independent
phases as well as independent amplitudes distribution
whose variances decay exponentially with cluster and
rays delays.
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Figure 1 The impulse response of 60 GHz channel for LOS case.
Notice that, for illustration, the logarithmic coordinate of multipath
amplitude is used.
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Figure 2 The impulse response of 60 GHz channel for NLOS
case. Notice that, for illustration, the logarithmic coordinate of
multipath amplitude is used.
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The popular mathematic formulation for the channel
impulse response (CIR) of the cluster-based 60 GHz
channel can be expressed as follows:

h tð Þ ¼
XL
l¼0

XMf

m¼−Mb

αlβmσ t−Tl−τlmð Þ; ð1Þ

where the inter-cluster amplitude can be described by

β2lm
�� �� ¼ exp τlm=γ−ð Þ τlm < τl0

exp τlm=γþ
� �

τlm > τl0
: ð2Þ

�

The arrival time of the rays in two side of each cluster
may follows the Poisson distribution, i.e.,

P τl m−1ð Þ τlmj Þ ¼ λ− exp −λ− τlm−τl m−lð Þ
� �� �

; m < 0
�

ð3Þ
P τlm τl m−1ð Þ

�� � ¼ λþ exp −λþ τlm−τl m−lð Þ
� �� �

; m > 0;
�

ð4Þ
where γ− and γ+ represent ray decay parameters, re-
spectively; λ− and λ+ account to ray arrival rates which
assumed to follow Poisson processes, and m and l de-
note the index of ray and cluster. Mb and Mf represent
the total number of rays for each side in one cluster.
The phase of each ray is assumed to be an independent
uniform random variable. The αl, Tl, and L respectively
denote the peak power of the lth cluster, the arrival time
of the lth cluster, and the total number of clusters.
It has been recognized that the cluster power may also

follow an exponential decay rule, and the arrival of clus-
ters follows the Poisson distribution [11]. Thus, we may
have

α2l
�� �� ¼ exp −Tl=Γð Þ ð5Þ
P Tl Tl−1j Þ ¼ Λ exp −Λ Tl−Tl−1ð Þ½ �; l > 0; ð6Þð

where Γ is the cluster decay parameter, and Λ is the
cluster arrival rate which is also assumed to obey the
Poisson process.
The simulated 60 GHz millimeter CIRs, for both the

line-of-sight (LOS) and non-line-of-sight (NLOS) sce-
narios in typical short-range indoor applications, have
been plotted by Figures 1 and 2, respectively. It is seen
that from the simulated CIR in the case of LOS, the
amplitude of the first LOS MPC remains usually 15 dB
(or even much) higher than that of the second clusters.
In other words, the direct wave component may exhibit
the largest power and therefore, such strong reflection
wave may be observed in the LOS scenario. Meanwhile,
the amplitude of the subsequent clusters after the sec-
ond cluster becomes dramatically lower than that of the
second cluster. As a consequence, when the 60 GHz dir-
ectional transmissions are considered, i.e., the LOS links,
ignoring the insignificant clusters whose time of arrival
is later than the first three clusters, may become also ac-
ceptable for realistic analysis. While from the simulated
CIR of NLOS scenario in Figure 2, we may easily note
that the first MPC is no longer the highest one, and
these NLOS MPCs have been significantly attenuated by
the involved obstacles.
No matter what kinds of 60 GHz channels are consid-

ered, the wireless propagations of 60 GHz millimeter-
wave systems may exhibit the unique characteristic of
intensive multipath, and therefore, the channel estima-
tion may require capturing dozens of resolvable MPCs.
Taking the resulting extremely high sampling rate and
the complicated estimation algorithms into account, the
traditional channel estimation techniques, which relies
essentially on the classical Shannon theorem, may
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become obviously unbearable for the low-rate ADC de-
vice and low-complexity implementation.

2.2 Compressed sensing (CS)
In order to avoid the loss of information in the acquisi-
tion the input signal, the well-known Shannon/Nyquist
sampling theorem has stated that the sampling rate must
be configured at least two times faster than the original
signal bandwidth [11]. In many applications, such as the
storage of digital images and video streams, such a
Nyquist rate seems to be still much too high with so
many realistic applications so that a preprocessing (i.e., a
compression) is usually necessary prior to the storage or
transmission. Unfortunately, increasing the sampling
rate in the signal capture is rather expensive. As a prom-
ising new technique, compressive sensing (CS) may
provide a feasibly alternative solution to the above prob-
lems, by allowing sampling signals at a rate significantly
lesser than the Nyquist rate.
Before proceeding further, we may briefly describe the

well-developed CS framework proposed in [12]. Assume
f is an N-point discrete-time sparse signal, and Φ is a
K×N measurement matrix, and then we may have

f ¼
XM
i¼1

θliψli ¼ ΨΘ ð7Þ

for K < < N. That is, f can be recovered from the
received signal, with high probability as long as the
measurement matrix Φ remains incoherent with the
prescribed dictionary Ψ [13]. In Equation 7, Θ = [θ1,
θ2,…, θz]

T is a column vector which contains M nonzero
coefficients. The index of the nonzero coefficient speci-
fies which element in the dictionary composes the signal,
and the coefficient measures the contribution (or the
weight) of such an element in defining the original signal
f [14].
Based on the above formulation, the signal f can be

then recovered from the solution of Equation 7, via the
well-defined convex and non-quadratic optimization
problems (i.e., basis pursuit) [13], which finally yields the
sparse vector Θ. With a CS framework with very high
probability, Θ is the unique solution to

min Θk kl1
s:t y ¼ Vf ;

ð8Þ

where ⋅l1 denotes the l1 norm, V = ΦΨ is the holo-
graphic dictionary, and y is the received signal (i.e.,
observations). It has been shown by [14] that if the
random measurement matrix has sufficient entries taken
from a priori normal distribution and the number of
random projection (i.e., K) is greater than or equal to
c1Mlog2(N/M), then the probability of the exact recon-
struction may surpass 1−ec2Kð Þ , where c1 and c2 are
some constants. In other words, it is possible to use the
much less samples to reconstruct the original signal by
dramatically alleviating the burden in signal acquisition
aroused by traditional Shannon/Nyquist sampling the-
orem, which is hence of great promising to various
different realistic applications.
Signal reconstruction algorithm is the core of com-

pressed sensing theory, and it is the process of recon-
struction sparse signal x (length N) by the help of the
measurement vector (used M times). OMP and ROMP
algorithms are the most classical solutions for com-
pressed sensing. They both belonged to Greedy algo-
rithm. Moreover, ROMP was derived from OMP, and
the idea of normalized orthogonal treatment was intro-
duced into ROMP. Table 1 shows the improved CS-CS
algorithm which is not the basis of ROMP.

2.3 CS-based channel estimation
It is no doubt that CS may provide an appealing solution
to the above practical difficulties posed by channel esti-
mations with intensive multipath propagations, by
allowing sampling the signals (with a huge bandwidth) at
a feasible rate significantly lesser than the Nyquist rate
[15]. In recent years, extensive investigations have been
devoted to such fields, and a variety of CS reconstruc-
tion algorithms have been put forward.
Among these, the regularization ROMP algorithm is

the most representative one, which has been considered
with great interest from both theoretical analysis and ap-
plications designing. The ROMP scheme employs the
random linear projections, which can basically preserve
the structure of input signals that are usually sparse in
some basis (e.g., time domain). Based on this formula-
tion, an optimization process is then employed to recon-
struct the required signal.
Nevertheless, the ROMP algorithm and the classical

CS theoretical framework may still become unacceptable
to the considered 60 GHz channel estimations. First, by
ignoring the detailed specific structures of 60 GHz
multipath channels, the ROMP algorithm may imprac-
tically require at least K (K denotes sparsity of signal)
iterations in order to reconstruct the original signal,
which results in a much higher complexity O(KMN),
where M denotes the number of measurements and N
denotes the length of the signals. More importantly, the
false matches seem to be inevitable in practice when
ROMP is applied to realistic channel estimations.

3 CS-CS-based channel estimation
It has been highlighted that the 60 GHz multipath chan-
nel is relatively special, which may show quite different
characteristics from the other S-V multipath channels
(e.g., ultra-wideband channel). To be specific, the power
delay profiles (PDP) in LOS situations can be firstly



Table 1 Cluster-sparse compressed sensing

Step Description/instruction

A Cluster identification

B Cluster-based classification

C If sparsity of primary cluster is greater than threshold, go to step E, otherwise go to step D

D Extract the primary cluster as the first classification and the rest as the second part, go to F

E Extract the primary cluster and the second cluster as the first classification and the rest as the second part, go to F

F Reconstruction

Input measurement vector h ∈ □ N; sparsity K

Initialize index set Λ = ∅ and the residual error r = h. Repeat the following steps by K times or until |Λ| ≥ 2K

Select the maximum K nonzero values from measurement matrix u = Φr and insert into index set j

Regularization: let all subset j0 ⊂ j for all k, l ∈ j0 satisfy u(k)| ≤ 2|u(l)|. Then select the index set with a maximum energy as j0

Update: add subset j0 to index set: Λ ← Λ ∪ j0,update the residual error r:

y ¼ argminz∈RI ∥h−Φz∥2, r = h −Φy

If the iteration number is greater than K or the number of indexes is greater than 2 K, stop the iteration, otherwise continue the iteration

Index set: Λ ⊆ {1, … d}, then reconstruct the signal estimate as v ¼ y

G Signal synthesis
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divided into two independent parts, i.e., the direct wave
component (or the first path) and the remaining strong
reflection waves [15]. Usually, the first path can be mod-
eled by a simple impulse response. Meanwhile, the other
strong reflection components can be formed into a clus-
ter shape in the time domain. Although the direct wave
component has vanished in NLOS cases, similarly, these
NLOS paths also show relatively predominant cluster
property.
Furthermore, it may be note worthy that from the

simulation results shown in Figure 1 and Figure 2, the
simulation CIRs can be regarded to a special channel
with two-level sparsity. That is, both inter-cluster and
intra-cluster models may exhibit the sparse characteris-
tics. By fully exploiting such a unique detailed structure
of 60 GHz propagations, in this section we propose a
new reconstruction algorithm, namely, cluster-sparse
compressed sensing (CS-CS) which is then utilized to ef-
ficiently address the channel estimations in 60 GHz
millimeter-wave communications (for both LOS and
NLOS cases).

3.1 Intra-cluster sparsity
The work of Li et al. in [11] suggests a novel cluster
identification algorithm, and it can produce reasonable
clustering results in more universal propagation environ-
ments. The cluster identification can help us achieve the
scheme of cluster-classification compressed sensing.
Here, we consider the case of sparse vectors x, i.e., x

has only a few nonzero entries relative to its dimension.
The standard sparsity model considered in compressed
sensing, assumes that x has at most k nonzero elements,
which can appear anywhere in the vector. As discussed
in [12], there are practical scenarios that involve vectors
x with nonzero entries appearing in blocks (or clusters)
rather than being arbitrarily spread throughout the vec-
tor. Specific examples include signals that lie in unions
of subspaces and multi-band signals [12].
The clustered sparse signals have nonzero coefficients

occurring in clusters and can be represented as follows:

y ¼ Φx; ð9Þ
where Φ ∈ Rm × N denotes the measurement matrix, and
the precondition is m < N, y represents the received sig-
nal, and x denotes the clustered sparse signal

x ¼ x1;…xd; xdþ1…x 2dð Þ;…x N−dþ1ð Þ;…xN
� �T

; ð10Þ
where N = Md, and x[l](l = 1, 2,… M) is viewed as a
sub-block. Clustered-sparse means nonzero coefficients
occurring in only few of the sub-blocks, and K denotes
the number. To simplify the problem, we assume that all
x[l] are isometric. Similar to Equation 3, the measure-
ment matrix is blocked in the following way:

Φ ¼ Φ1…Φd;Φdþ1…Φ2d;ΦN−dþ1…ΦN½ � ð11Þ
In order to exploit the first-level sparsity, i.e., the

intra-cluster sparsity, the resolvable MPCs should be
classified into different groups. This process is also re-
ferred as cluster identification, which has been exten-
sively researched in the fields of ultra-wideband (UWB)
channel modeling. More specifically, such pre-process is
mainly designed to extract the multiple clusters involved
in 60 GHz CIRs.
It has been widely recognized that clusters in CIRs are

groups of MPCs having similar larger-scale property,



Sun et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:114 Page 6 of 9
http://jwcn.eurasipjournals.com/content/2013/1/114
such as time of arrival or ToA, angle of arrival or AoA,
and amplitude decay; nevertheless, there still is a surpris-
ing lack of agreement concerning of a cluster definition. In
most existing literatures, the cluster identification is
mainly premised on the time-consuming ‘visual inspec-
tion’ technique. Such a method may significantly rely on
subjective assessments of analysts and become inaccurate
to realistic analysis. Thus, in this paper we alternatively
resort to the recently developed automatic cluster identifi-
cation method proposed by Li et al. [15].
Rather than by only utilizing the PDP characteristics,

this method is essentially based on a discontinuity ana-
lysis which is generally introduced by different clusters.
In order to reinforce cluster breakpoints, a nonlinear
moving average ratio is firstly introduced on CIRs. Then
by exploiting the wavelet analysis, a computationally effi-
cient cluster extraction scheme is finally developed.
It is easily understood that the sparsity can be ob-

served from the intra-cluster level; i.e., the identified
clusters are also sparse in 60 GHz propagations. Thus,
the cluster sparsity-based channel response for 60
GHz millimeter-wave communication systems may be
expressed as follows:

x ¼ xc;1; xc;2;⋯; xc;L
� �T

¼ x1;…xd; xdþ1…x 2dð Þ;…x N−dþ1ð Þ;…xN
� �T

;
ð12Þ

where each group components xc,l denotes the identified
MPCs sub-vector belonging to a single cluster. To sim-
plify the channel estimations in 60 GHz communica-
tions, we may further assume that all xc,l (l = 1,2,…, M)
are isometric; i.e., each component xc,l has the same
length d (N = L × d). Despite for analysis simplicity,
such a presumption may become valid by partitioning
each cluster into a group of non-overlapped regions in
time axis.

3.2 CS-CS
Now we may consider the case of sparse vectors x, in
which each xc,l has only a few nonzero entries relative to
the cluster arriving time. The popular sparsity modeling
in CS, assuming x contains at most K nonzero elements,
may also appear anywhere in the vector. As discussed in
[16], there are also specific scenarios (e.g., the channel
estimation of 60 GHz cluster-based propagations), where
the vectors x involve nonzero entries only in some
60GHz
pulse signal
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Figure 3 Block diagram for the channel estimation process based on
blocks (or clusters) rather than being arbitrarily spread
throughout the whole vector [17]. There may exist
plenty of other specific examples such as multi-band
signals and signals appearing in clusters. Such a block
sparsity characteristic, embodied by inner-clusters
MPCs, can be properly employed to further design a
more efficient channel estimation algorithm with a much
lower complexity.
The clustered sparse signals may have nonzero coeffi-

cients occurring in clusters and can be represented as
follows:

y ¼ Φ xc;1; xc;2;…; xc;L
� �T

; ð13Þ
where Φ ∈ Rm × N denotes the measurement matrix, and
the precondition is m < N; y represents the received sig-
nal, and x denotes the clustered sparse signal. Here
clustered-sparse means nonzero coefficients occurring in
only few of the sub-blocks, xc,l (l = 1,2,…,M), can be
viewed as a sub-block which L denotes the blocks num-
ber. Accordingly, the measurement matrix Φ =
[Φc,1,Φc,2,…,Φc,1] also becomes blocked in the following:

Φ ¼ Φ1…Φd;Φdþ1…Φ2d;…ΦN−dþ1…ΦN½ � ð14Þ
In fact, a lot of sparse signals may satisfy the form of

block-sparse signal in practice, such as multi-band
signal, DNA array (DNA microarray), radar pulse signal,
and multiple measurement vector problems [16]. In
addition, the reconstruction algorithm study of such
sparse signal with specific structure is of great signifi-
cance to many realistic problems.

3.3 Cluster-sparse compressed sensing
Based on the two-level sparsity, i.e., inter-cluster and
intra-cluster, the schematic diagram of the CS-CS-based
channel estimation algorithm for 60 GHz millimeter-
wave communication has been shown in Figure 3. Based
on such an efficient CS framework, the gain and delay of
a group of resolvable multipath may be estimated
blindly, that is, the pilot symbols are not necessary to
the perfect reconstruction of multipath channel [18].
In order to ensure high precision of the reconstruction

of a group of high-energy multipath gain and delay, the
proposed cluster-based block sparsity is considered in
this investigation. Based on the promising formula-
tion of block sparsity, a new cluster sparsity-based
ath
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Figure 4 Channel estimation of ROMP and proposed algorithm
for LOS.

0.5 1 1.5 2 2.5 3
0

10

20

30

40

50

60

70

80

relative time of arrival[ns]

20
*l

og
10

(A
m

pl
itu

de
)+

10
0 

[d
B

]

orignal signal

OMP
ROMP

CS-CS

x 10-8

Figure 5 Channel estimation of ROMP and proposed algorithm
for NLOS.
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compressed sensing algorithm (i.e., CS-CS) is introduced
to the reconstruction algorithm.
The flow of the proposed channel estimation algorithm

based on CS-CS has been shown by Table 1. The auto-
matic cluster extraction algorithm proposed in [17] is used
to further enhance the cluster identification performance.
Such an automatic algorithm can usually produce reason-
able clustering results in some more universal propagation
environments. The cluster identification is employed by
step A to significantly facilitate the analysis of cluster
sparsity, which serves as the foundation of the new
CS-CS-based channel estimation algorithm.
With regards to the above channel estimation algo-

rithm, two important points should be noted. First, as
has been suggested, since the energy of the first MPC
(or first cluster) is significantly higher than the other fol-
lowing MPCs in subsequent cluster, the reconstruction
error should be carefully controlled which may dramat-
ically affect the whole reconstruction error. So during
the proposed channel estimation algorithm, after the
iterations, we may derive only one recovered MPC when
the new CS-CS algorithm is applied to the first primary
cluster (i.e., the direct wave component), which may
essentially ensure the reconstruction accuracy of this
resolvable MPC. Second, the number of resolvable
MPCs is usually huge, which may bring great burdens in
computations and realizations. In response to this chal-
lenge, we obtain the K-recovered values in parallel when
the CS-CS applied to the second or remaining clusters,
which aims mainly to maintain the low-complexity
implementation of channel estimations.

4 Simulation conditions and results
In this section, we will evaluate the performance of our
proposed CS-CS channel estimation algorithm via nu-
merical simulations. For the purpose of comprehensive
performance comparisons, the classical CS-ROMP algo-
rithm is also employed in the experimental simulations.
In order to verify the reconstruction performance of

two channel estimation schemes (i.e., CS-CS and CS-
ROMP), the 60 GHz indoor channel modeling regulated
by the IEEE P8.2.15 wireless personal area networks
(WPAS) Working Group is adopted. In our analysis, h
denotes the real multipath channel response, which is an
N × 1 vector and M of them are nonzero. The binary
phase shift keying modulation is used and we configured
the maximum delay spread to 100 ns and the sampling
rate is M/N. A total of 100 tests (or independent CIR re-
alizations) have been carried out to statistically derive
the reconstruction error of CS-ROMP and the improved
CS-CS algorithm. Notice that the cluster number is not
a priori information for our CS-CS-based channel
estimations, since it can be determined by the cluster
identification process in step A. In order to ensure the
accuracy of cluster identifications, the method proposed
in [17] is adopted. The reconstruction error is measured
by the mean squared error (MSE) between the real re-
sponse and the recovered response, i.e.,

MSE hð Þ ¼ ĥ−h
�� ��= hk k ð15Þ

As shown by Figures 4 and 5, the reconstruction re-
sults of both CS-ROMP and the developed CS-CS
reconstruction algorithm have been derived with a simu-
lation configuration of SNR = 20 dB, which respectively
corresponds to the LOS case and NLOS situation. The
vertical axis denotes the original path amplitude, accom-
panying the recovered ones by using the existing
methods (e.g., CS-ROMP and OMP) and our improved
algorithm. It should be noted that in both LOS and
NLOS environments, the multipath channel may show
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high sparsity due to the special transmission mechanics
of 60 GHz millimeter-wave communication system (e.g.,
the large path loss and directional transmissions). From
the experimental results, we may easily observe that the
reconstructed response, by using the designed CS-CS al-
gorithm, may remain perfectly in line with the first path
in LOS case (or the strongest path in NLOS). Corres-
pondingly, the performance of channel estimation of our
new algorithm is also much superior to the other existing
methods. For example, the more remarkable reconstruc-
tion error can be observed by using the other classical
OMP or ROMP algorithms. As the main path with the
highest energy has been recovered much more accurately,
it may be reasonably expected that the whole reconstruc-
tion performance can be significantly improved by our
presented CS-CS algorithm. Besides, it is seen that com-
pared with the LOS channel, the deviations between the
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Figure 7 Bit error rate for OMP, ROMP, and proposed
algorithm for NLOS.
recovered paths and real ones may become much more
obvious in NLOS case.
The MSE performance of channel estimations, by

using CS-ROMP and CS-CS algorithm, has been dem-
onstrated by Figures 6 and 7, respectively, for LOS and
NLOS channels. For the ease of low-complexity imple-
mentation in 60 GHz receivers, we have configured the
number of Rake correlation fingers to 25, that is, we
mainly concentrate on the first maximum 25 rays in the
performance evaluation of channel estimations. Each test
will be run 100 times, and then we calculate the average
reconstruction errors for each algorithm. From the
simulation-derived results, we may draw the conclusion
that the MSE performance of our CS-CS algorithm has
been significantly improved, which properly considers
the cluster characteristic of 60 GHz channels and the
resulting cluster sparsity. To be specific, as shown by
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Figure 6, the reconstruction of MSE performance in the
CS-ROMP is 30% lower than that of the cluster sparsity-
based CS-CS algorithm. Consequently, the precision of
channel estimations can be remarkably improved.
Figures 8 and 9 have shown the iterative performance

of both CS-ROMP and the proposed CS-CS algorithm
in LOS and NLOS case, respectively. Due to the exploit-
ation of block sparsity, we may see that the required it-
erations to reach a same error performance may be
significantly reduced in our CS-CS algorithm. Taking the
l1 norm error of 27 for example, the iteration times of
our new algorithm is about 200. In sharp contrast, how-
ever, the desired iteration times of CS-ROMP may even
reach 1,000. As a consequence, the time complexity of
channel estimations may be reduced to some extent. Be-
sides from both Figures 8 and 9, we may also note that
the convergence of the CS-CS algorithm seems to be
much faster in LOS channels.

5 Conclusions
In this investigation, the structural detail or block sparsity
of 60 GHz channels has been properly exploited and a
promising CS-CS algorithm is designed to perform chan-
nel estimations. The other existing CS methods, i.e., CS-
OMP and CS-ROMP, are also analyzed and compared
with our new algorithm. The provided extensive experi-
mental simulations, both for LOS and NLOS cases, have
comprehensively demonstrated the superiority of the
presented CS-CS algorithm. Based on the block sparsity
that is particularly embodied by the involved multiple
clusters, the designed new algorithm may produce more
competitive reconstruction results. Except for the signifi-
cantly reduced reconstruction errors, our method may
also require a noticeably shortened iteration time com-
pared with the existing methods, and hence, the time
complexity may be reduced to some extent in the realistic
channel estimation applications. It is expected that our
method can be further extended to a much wider applica-
tions where the block sparsity is practically available, by
efficiently reinforcing the CS reconstruction performance.
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