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Abstract

Tail-biting trellises are defined on a circular time axis and can have a smaller number of states than equivalent
conventional trellises. Existing circular Viterbi algorithms (CVAs) on the tail-biting trellis are non-convergent and
sub-optimal. In this study, we show that the net path metric of each tail-biting path is lower-bounded during the
decoding process of the CVA. This property can be applied to remove unnecessary iterations of the CVA and results in
a convergent maximum likelihood (ML) decoder. Simulation results show that the proposed algorithm exhibits higher
decoding efficiency compared with other existing ML decoders.

1 Introduction
For linear block codes, conventional trellis and tail-biting
trellis representations have gained a great deal of attention
in the past decades [1-3]. Trellis representations not only
reveal the code structure, but also lead to efficient trellis-
based decoding algorithms [4-8]. For the same linear block
codes, the number of states in its tail-biting trellis can
be as low as the square root of the number of states
in its minimal conventional trellis [1,8], e.g., for the (24,
12) extended Golay code, the maximum number of states
in its conventional trellis is 512 [8], while the maximum
number of states in its time-varying tail-biting trellis
is only 16 [1].
In addition, the tail-biting technique has been widely

used in convolutional encoders to eliminate the rate loss
caused by the known tail bits. For example, the World-
wide Interoperability for Microwave Access (WiMAX) [9]
and Long Term Evolution [10] standards both adopted
tail-biting convolutional codes in the control channel or
broadcasting channel. Consequently, a maximum like-
lihood (ML) decoder with high decoding efficiency on
tail-biting trellises is important and desirable for studying
tail-biting codes.
Both the Viterbi algorithm and bidirectional effi-

cient algorithm for searching code trees (BEAST) can
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achieve ML decoding on conventional trellises [8]. In
the case of a tail-biting trellis, due to the lack of a
priori knowledge about the starting state, the Viterbi
and BEAST decoder have to perform an exhaustive
search on tail-biting trellises to find the ML code-
word. BEAST can be more efficient if applied to
the conventional trellis obtained by reducing the tail-
biting code generator matrix to the minimum span
form [8].
Another kind of decoder, the two-phase ML decoder,

has been proposed to reduce the decoding complex-
ity for tail-biting trellises [5,6]. This kind of algorithm
performs Viterbi searches on tail-biting trellises in the
first phase and records the accumulated path metric
of each path at every section for the second phase.
In the second phase, heuristic searches are perform-
ing based on the result obtained from the first phase.
Since the two-phase decoder is based on two dis-
tinct algorithms, this makes it difficult for practical
application.
The circular Viterbi algorithm (CVA)-based decoder

greatly reduces the implementation complexity of a
decoder for tail-biting trellises and provides near-optimal
block error rate performance. However, the decoding pro-
cess of the CVA is non-convergent and sub-optimal [4,7].
In this paper, we introduce a CVA-based ML decoder
for tail-biting trellises. In this algorithm, the lower bound
of the net path metric of each tail-biting path can be
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Figure 1 The tail-biting trellis of the (8, 4) convolutional code with octal generator polynomials of {7, 5}.

obtained to exclude impossible starting state candidates,
which leads to convergence of the CVA. In addition, the
net path metric of survivor paths can be used to termi-
nate redundant searches without performing a full Viterbi
iteration.
The following parts of this article are organized as fol-

lows: In Section 2, a detailed description of the algorithm
is presented. The performance of the proposed algorithm
is demonstrated by simulations in Section 3. Section 4
concludes this paper.

2 Algorithm description
2.1 Variable definition
An example of a tail-biting trellis is shown in Figure 1,
which has eight sections with four states at each section.
For a tail-biting trellis with L sections, denote by Sl
the set of states at location l, where 0 ≤ l ≤ L.
From the definition of tail-biting trellises, we have S0 ≡
SL. Any path that starts from and terminates at the
same state forms a tail-biting path. All tail-biting paths
that start from the same state construct a sub-tail-
biting trellis of this state. In Figure 1, the branches of
thick solid lines form a tail-biting path of state ‘01,’
and all solid lines compose the sub-tail-biting trellis of
state ‘01’.
A conventional CVA-based decoder performs Viterbi

iterations around the tail-biting trellis to find the opti-
mal tail-biting path. This algorithm takes advantage
of the circular property of tail-biting trellises and
employs the path metrics accumulated in the ending
states of the trellis to initialize the path metrics in
the starting states for a new iteration until a prede-
fined termination condition is fulfilled. In the follow-
ing parts, we elaborate the decoding process of CVA
on tail-biting convolutional codes. The decoding pro-
cess for general tail-biting trellises can be similarly
obtained.
For tail-biting convolutional codes of rate b/c, the length

of information bits is bL and the length of the correspond-
ing codeword is cL. Binary code bits v(j)

l ∈ {0, 1} are
mapped to x(j)

l =
(
1 − 2v(j)

l

) √
Es with binary phase-shift

keying (BPSK) modulation, where 0 ≤ j ≤ c − 1 and

0 ≤ l ≤ L − 1. Without loss of generality, signal energy Es
is normalized to 1. After passing through an additive white
Gaussian noise (AWGN) channel with a double-sided
noise power spectrum density of N0/2, the corresponding
received symbols are r(j)l . The log-likelihood ratio of r(j)l is
given by �

(
r(j)l

)
= 4r(j)l /N0 , where for l ≥ L, x(j)

l = x(j)
(l)L ,

�
(
r(j)l

)
= �

(
r(j)
(l)L

)
, and (l)L = l mod L.

During the decoding process of the CVA, the accumu-
lated path metric of the survivor path entering state s at
location l in the ith iteration is

Mi
l(s) =

(i−1)L+l∑
k=0

c−1∑
j=0

(
x(j)
k �

(
r(j)k

))
, i ≥ 1. (1)

The weighted Hamming distance between �
(
r(j)l

)
and

x(j)
l can be defined as in [8]:
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(2)

where sgn
(
�

(
r(j)l

))
denotes the sign of �

(
r(j)l

)
. Based

on (1) and (2), the ML decoding on the tail-biting trellis is
equivalent to solving the following equation:

x̂ = argmax
x

iL−1∑
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(3)

The term
∣∣∣� (

r(j)k
)∣∣∣ can be ignored in the third line of

(3) since it is independent of specific codewords x and
consequently is a constant for all paths on the tail-biting
trellis.
Denote by Pi(β i(s), s) the survivor path that connects

state β i(s) of S0 with state s of Sl in the ith iteration.



Wang et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:130 Page 3 of 13
http://jwcn.eurasipjournals.com/content/2013/1/130

The corresponding net path metric of Pi(β i(s), s) can be
derived from (1) and (3):

Mi
net(β

i(s), s)=Mi
l(s) − Mi

0(β
i(s)). (4)

Since the initial path metrics Mi+1
0 (s′) are different

from Mi
0(s′) for each state s′ ∈ S0, different survivor

paths can be obtained in each iteration. Denote by Pi

the ML path obtained in the ith iteration, where the
ML path obtained from the first iteration has the least
net path metric among all possible survivor paths [4].
Similarly, the ML tail-biting path obtained in the ith
iteration is denoted by P̃i, which has the net path met-
ric of M̃i. Among the set of tail-biting paths {(̃Pi(s, s),
M̃i(s, s)) | ∀s ∈ S0, i ≥ 1}, the optimal tail-biting path
and its net path metric are denoted by P̃O and M̃O,
respectively.

2.2 Lower bounds of the net path metrics
A conventional CVA-based decoder is non-convergent,
and consequently, it cannot guarantee that the tail-biting
path obtained is optimal when the decoding process
is terminated [4,7]. In order to design a convergent
ML decoder on tail-biting trellises, further informa-
tion needs to be obtained from the decoding process
of CVA. Based on the characteristics of CVA, we can
derive a lower bound of the net path metric of each
tail-biting path. This observation is summarized in
Lemma 1.

Lemma 1. Let P̃(s, s) denote the ML tail-biting path on
the sub-tail-biting trellis of state s, and the corresponding
net path metric is M̃(s, s), where s ∈ S0. Define B(s) as

B(s) = max
i≥1

{Mi
L(s) − Mi

0(s)}, (5)

then we have B(s) ≤ M̃(s, s), i.e., B(s) is the lower bound
of the metrics of all paths on the sub-tail-biting trellis of
state s.

Proof. The tail-biting trellis defined on a circular time
axis can be split at section l = 0 and duplicated
on the time axis head-tail. Conventional CVA then
becomes a general Viterbi decoder composed of sev-
eral length L decoding sections, where the Viterbi algo-
rithm searches on the duplicated trellis by recording
and repeating the received symbols. Consequently, com-
bining (1) and (3), we find that the survivor path
Pi(β i(s), s) has the minimum accumulated path metric
Mi

l(s) among all possible paths Pi(s∗, s), where s∗,β i(s) ∈
S0, s ∈ Sl, and 0 ≤ l ≤ L − 1. Consequently,
we have

Mi
l(s) = Mi

0(β
i(s)) + Mi

net(β
i(s), s)

≤ Mi
0(s

∗) + Mi
net(s

∗, s).
(6)

Since (6) holds for 0 ≤ l ≤ L − 1, we know that for any
s ∈ SL, (6) also holds. Then for the ML tail-biting path,
P̃(s, s), on the sub-tail-biting trellis of state s, from (6), we
have

Mi
L(s) − Mi

0(s) ≤ Mi
net(s, s) ≤ M̃(s, s), i ≥ 1. (7)

Since B(s) = max
i≥1

{Mi
L(s)−Mi

0(s)}, then combining (7), we
have

B(s) ≤ M̃(s, s). (8)

Since P̃(s, s) is the ML tail-biting path on the sub-tail-
biting trellis of state s, from (3) and (8), we come to the
conclusion that B(s) is a lower bound of the metrics of all
paths on the sub-tail-biting trellis of state s.

The lower bound B(s) defined in Lemma 1 is updated as
iterations continue, and a more precise estimation of B(s)
can be obtained if more iterations are performed on the
tail-biting trellis. According to (8), the maximal value of
B(s) is M̃(s, s).
Based on Lemma 1, we can reduce the decoding com-

plexity of CVA on the tail-biting trellis by removing
redundant computations and iterations during the decod-
ing process and control the convergence of CVA. The
improvements of the proposed decoder can be summa-
rized into the following two aspects.
Firstly, during the decoding process, if the net path

metric Mi
net(β

i(s), s) of survivor path Pi(β i(s), s) is not
less than M̃O, where M̃O is the optimal tail-biting path
obtained in the first i− 1 iterations and s ∈ Sl, all searches
that follow state s can be terminated (refer to Figure 2).
In this case, the net path metric of any survivor path that
starts from state β i(s) and passes through state s is not less
than M̃O.
Secondly, denote by SiC the set of survivor starting state

candidates in the ith iteration of the CVA, i.e.,

SiC = {s|B(s) < M̃O},

where S1C = S0.
After the ith iteration, (̃PO, M̃O) and B(s) will be

updated with (̃Pi, M̃i) and Bi(s), where (̃Pi, M̃i) is the best
tail-biting path and its metric obtained in the ith iteration,
and Bi(s) is the lower bound of the metrics of all paths on
the sub-tail-biting trellis of state s obtained in the ith iter-
ation. For ∀ s ∈ SiC, if B(s) ≥ M̃O, then from Lemma 1,
we have M̃(s, s) ≥ M̃O. This indicates that the ML tail-
biting path on the sub-tail-biting trellis of state s is not
better than P̃O. State s can be excluded from the set Si+1

C .
As iterations continue, the search space on the tail-biting
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Figure 2 Decoding process of the B-CVAML decoder. For the first iteration, four survivor paths corresponding to each of the terminal states are
shown on the tail-biting trellis in (a), where the tail-biting trellis has been split at location l = 0. For the second iteration, the decoding process is
illustrated from (b) to (e). Searches following the circles with left incident branch are terminated according to step 2.1. The decoding process is
terminated at l = 4 since there are no survivor paths with net path metric less than M̃O.

trellis shrinks and the decoder will converge to the global
optimal solution eventually.

2.3 CVA-based ML decoder on tail-biting trellis
We summarize the above decoding process as follows: In
the algorithm description, the operator ‘←’ denotes value
assignment from the right-hand side to the left-hand side,
and the operator ‘=’ denotes logic comparison between
two operands.
From the description above, we find that the decoding

process can only be terminated when Si+1
C = ∅ in step

2.4. The number of entries in S1C is finite, and as iterations
continue, the size of SiC will reduce to zero.
Firstly, state s with bound B(s) > M̃O is deleted from

SiC in step 2.3 since the ML tail-biting path on the sub-tail
biting trellis of state s is not better than P̃O.
Secondly, after the (i + 1)th iteration, if no state has

been deleted from Si+1
C , i.e., ∀ s ∈ Si+1

C , B(s) < M̃O,

then equation Si+1
C = Si+2

C holds and the Viterbi algo-
rithm will be performed on the sub-tail-biting trellis of
state s† in step 2.4, where s† ∈ Si+1

C . If M̃(s†, s†) < M̃O,
P̃O will be updated with P̃(s†, s†); else, if M̃(s†, s†) ≥
M̃O, this indicates that P̃(s†, s†) is not better than P̃O.
Then state s† can be deleted from Si+1

C since the ML
tail-biting path on its sub-tail-biting trellis has been
found.
Thirdly, after the ith iteration, if M̃(s′, s′) < M̃O, P̃O will

be updated with P̃(s′, s′), where s′ ∈ SiC. Since B(s′) =
max
i≥1

{Mi
L(s′) − Mi

0(s′)} ≤ M̃(s′, s′), B(s′) will be updated

with M̃(s′, s′) in step 2.3, and then state s′ will be deleted
from SiC since the equality in B(s) ≥ M̃O holds.
All survivor starting state candidates in S1C will be

deleted eventually, and SiC will be empty in a finite number
of iterations. When SiC is empty, the decoder converges
to the global optimal solution that has been recorded in
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Algorithm description

1. Initialization: S1C ← S0,M1
0(s) ← 0 for all s ∈ S1C,

M̃O ← +∞;
2. For iteration i, i ≥ 1:

2.1 Perform Viterbi algorithm on the tail-biting trellis
with the set of starting state candidates SiC; during
the decoding process, ∀ Pi(β i(s′), s′), where
s′ ∈ Sl, ifMi

net(β
i(s′), s′) ≥ M̃O, terminate the

search that follows state s′ as mentioned above;
2.2 Find ML tail-biting path P̃i if it exists, update (̃PO,

M̃O) with (̃Pi, M̃i) if M̃i < M̃O;
2.3 For ∀s ∈ SiC, calculate B

i(s) = Mi
L(s) − Mi

0(s) and
update B(s) with Bi(s) if Bi(s) > B(s); generate
Si+1
C by excluding state s with B(s) ≥ M̃O from set

SiC;
2.4 If Si+1

C = ∅, go to step 3; else if Si+1
C = SiC, find the

starting state s† of ML path Pi and perform Viterbi
algorithm on the sub-tail-biting trellis of state s†,
step 2.1 is also applied in this case; delete s† from
Si+1
C ; update P̃O with P̃(s†, s†) if M̃(s†, s†) < M̃O;

2.5 ∀ s ∈ Si+1
C :Mi+1

0 (s) ← Mi
L(s); i ← i + 1; go back

to step 2;

3. Output the codeword associated with P̃O;

P̃O. In summary, the algorithm presented above is a con-
vergent ML decoder on tail-biting trellises. We call this a
bounded CVA (B-CVA) ML decoder.
The following example is used to explain the decoding

process of the B-CVA.

Example 1. The tail-biting convolutional code that is
represented by the tail-biting trellis in Figure 1 is selected
in this example. The information sequence is {01011100},
and the corresponding codeword is {(00), (11), (10), (00),
(01), (10), (01), (11)}. After passing through the AWGN
channel where the signal-to-noise ratio (SNR) is Eb/N0 =
0 dB, the received sequence (for one realization) is {(1.144,
0.458), (−0.986, −1.234), (0.291, 1.364), (0.472, 0.350),
(1.578, −1.594), (0.050, −0.399), (2.260, 0.359), (−1.501,
0.234)}. For convenience, states {00, 01, 10, 11} are rep-

resented by {0, 1, 2, 3}. For the first iteration, set S1C =
{0, 1, 2, 3} and the four survivor paths are shown on
Figure 2a. We find that there is a tail-biting path P1(0, 0)
with net path metric M1

net(0, 0) = 1.333. Then (̃PO, M̃O)
are updated with (P1(0, 0),M1

net(0, 0)). The bounds of each
terminal state are updated to B(0) = 1.333, B(1) = 0.291,
B(2) = 1.868, and B(3) = 2.026. Since only B(1) <

M̃O, according to step 2.3 of the B-CVA, S2C = {1}. The
decoding process of the second iteration is illustrated in
Figure 2b, c, d, e. We find that with the control on the
decoding process of the CVA, the second iteration termi-
nates at section l = 4; and at each section, searches after
state s′ that has M2

net(1, s′) ≥ M̃O are terminated. The
state s′ corresponds to the circle with left incident branch
on the trellis in Figure 2b, c, d, e. The decoding result
is the codeword associated with the tail-biting path P̃O. In
the first iteration, there are 64 real additions and 32 logi-
cal comparisons; and in the second iteration, the numbers
of real additions and logical comparisons corresponding
to each step are {(4, 2), (4, 2), (8, 4), (6, 4)}. In sum-
mary, the decoding complexity of B-CVA is denoted by
86 real additions and 44 logical comparisons. As is shown
in Appendix 1,, the decoding complexity of the two-phase
decoder is denoted by 100 real additions and 101 logical
comparisons.

3 Simulation results
In order to show the decoding efficiency, we compare the
proposed B-CVAML decoder with other widely cited tail-
biting ML decoders in three aspects: the number of real
additions, the number of logical comparisons, and average
memory space consumption during the decoding process.
The codewords are modulated to BPSK symbols and then
passed through an AWGN channel. The results shown in
the tables and figures are obtained by observing at least
100 block error events.
The conventional BEAST ML decoder should perform

decoding on each sub-tail-biting trellis independently and
consecutively to find the ML tail-biting path [8]. To
improve its efficiency, we use the upper-bounding tech-
nique on the thresholds used by BEAST. During the
consecutive decoding process, the metric of the optimal
tail-biting path obtained on the first i sub-tail-biting trel-
lises are used to upper-bound the thresholds that will be
used for decoding the remaining |S0| − i sub-tail-biting
trellises, where |S0| denotes the size of set S0. With this

Table 1 BLER performance of WAVA andML decoders for (64, 32) tail-biting convolutional codes over the AWGN channel

SNR

BLER performance 0.0 dB 1.0 dB 2.0 dB 3.0 dB 4.0 dB

WAVA 3.95 × 10−1 1.49 × 10−1 2.80 × 10−2 2.70 × 10−3 1.06 × 10−4

ML decoders 3.80 × 10−1 1.48 × 10−2 2.66 × 10−2 2.50 × 10−3 0.96 × 10−4

The ML decoders are the advanced BEAST ML decoder, two-phase ML decoder, or the B-CVA ML decoder.
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Figure 3 Averagememory space required for decoding the (64, 32) tail-biting convolutional codes. Average memory space consumption by
the WAVA and different ML decoders: advanced BEAST ML decoder, two-phase ML decoder and B-CVA ML decoder, for decoding the (64, 32)
tail-biting convolutional codes over the AWGN channel.

Figure 4 Average number of real additions required for decoding the (64, 32) tail-biting convolutional codes. Average number of real
additions that were performed during the decoding process of the WAVA and different ML decoders: advanced BEAST ML decoder, two-phase ML
decoder and B-CVA ML decoder, for decoding the (64, 32) tail-biting convolutional codes over the AWGN channel.
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Table 2 BLER performance of WAVA andML decoders for (80, 40) tail-biting convolutional code over the AWGN channel

SNR

BLER performance 1.0 dB 2.0 dB 3.0 dB 4.0 dB 5.0 dB

WAVA 1.60 × 10−1 3.16 × 10−2 3.10 × 10−3 1.45 × 10−4 3.50 × 10−6

ML decoders 1.59 × 10−1 3.05 × 10−2 3.10 × 10−3 1.44 × 10−4 3.50 × 10−6

The ML decoders are the advanced BEAST ML decoder, two-phase ML decoder, or the B-CVA ML decoder.

upper-bounding technique, redundant searches can be
terminated timely or reduced through the whole decoding
process. For convenience, we call the BEAST decoder with
this upper-bounding technique an advanced-BEAST ML
decoder, which should be more efficient than the original
BEAST decoder in [8]. Results presented in Appendix 4
are used to demonstrate this point.
In the first example, different decoders were applied

for decoding the tail-biting convolutional codes (64, 32)
with octal generator polynomials {345, 237}, which can
be represented by a 128-state tail-biting trellis [7]. For
the demonstration of the block error rate (BLER) per-
formance of the B-CVA, we choose the most cited sub-
optimal decoder proposed in [7] for comparison. This
decoder is called the wrap-around Viterbi algorithm
(WAVA). Because theWAVA is non-convergent, the max-
imal allowed number of iterations is set as 20 during the
decoding process. Table 1 shows the BLER performance

of different decoders. We find that of the sub-optimal
decoders, WAVA has performance that is close to the
optimal results.
Figure 3 shows the average memory space consumption

of the different ML decoders during the decoding pro-
cess. We find that the advanced BEAST decoder and the
B-CVA decoder require almost constant memory space
from the low- to high-SNR regions. However, we find that
the WAVA decoder requires less memory space than the
B-CVA. This is due to the fact that WAVA has no need
of space for storing B(s) of every state in S0. The mem-
ory space required by the two-phase decoder is about
2 ∼ 12 times more than that required by the B-CVA or
BEAST decoders. This is due to the fact that the two-
phase decoder has to store path metrics of all survivor
paths obtained in the first phase and has to maintain the
open stack and close table during the second phase.
Figure 4 shows that the two-phase ML decoder which

Figure 5 Average number of logical comparisons required for decoding the (64, 32) tail-biting convolutional codes. Average number of
logical comparisons that were performed during the decoding process of the WAVA and different ML decoders: advanced BEAST ML decoder,
two-phase ML decoder, and B-CVA ML decoder, for decoding the (64, 32) tail-biting convolutional codes over the AWGN channel.
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Figure 6 Average memory space required for decoding the (80, 40) tail-biting convolutional code. Average memory space consumption by
the WAVA and different ML decoders: advanced BEAST ML decoder, two-phase ML decoder, and B-CVA ML decoder, for decoding the (80, 40)
tail-biting convolutional codes over the AWGN channel.

Figure 7 Average number of real additions required for decoding the (80, 40) tail-biting convolutional code. Average number of real
additions that were performed during the decoding process of the WAVA and different ML decoders: advanced BEAST ML decoder, two-phase ML
decoder and B-CVA ML decoder, for decoding the (80, 40) tail-biting convolutional codes over the AWGN channel.
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Figure 8 Average number of logical comparisons required for decoding the (80, 40) tail-biting convolutional code. Average number of
logical comparisons that were performed during the decoding process of the WAVA and different ML decoders: advanced BEAST ML decoder,
two-phase ML decoder and B-CVA ML decoder, for decoding the (80, 40) tail-biting convolutional codes over the AWGN channel.

is based on depth-first searches is a little better than
the B-CVA ML decoder in the number of real addi-
tions. The BEAST ML decoder which performs exhaus-
tive searches on the tail-biting trellis shows the highest
decoding complexity. Figure 5 shows that a larger num-
ber of logical comparisons should be performed by the
two-phase decoder than that performed by the B-CVA
decoder. This is due to the fact that many logical com-
parisons need to be performed to sort the open stack and
to retrieve the close table in the low-SNR region. In fact,
the length of the close table grows linearly as the searches
continue. Figures 4 and 5 also show that the advanced
BEAST decoder, which has to be performed on each sub-
tail-biting trellis, exhibits high decoding complexity from
the low- to high-SNR regions. Meanwhile, we find that the
WAVA exhibits high decoding complexity from the low-

to medium-SNR regions; this is caused by circular traps
existing in the CVA decoding process [4].
The second example adopts the tail-biting convolutional

codes that have been used in WiMAX. The correspond-
ing generator polynomials are {133, 171} in octal form
[9]. The length of the information sequence is 40 bits,
and the corresponding code is a long tail-biting convolu-
tional code [7], which is denoted as an (80, 40) tail-biting
convolutional code. The BLER of the WAVA and ML
decoders are presented in Table 2, where the ML decoder
in Table 1 refers to any kind of ML decoders mentioned
in this paper: the advanced BEAST ML decoder, two-
phase ML decoder, or BCVA decoder, since all of them
exhibit exactly the same block error rate performance. We
find that in the case of long tail-biting codes, the BLER
performance of WAVA is close to that of ML decoders.

Table 3 Updates of the open stack and close table during heuristic searches of the two-phaseML decoder

Step Open stack Close table Complexity

1 {(1, 1, 0, 0.291)} ∅ {(6, 4)}

2 {(1, 2, 1, 0.291)} {(1, 1, 0)} {(6, 7)}

3 {(1, 3, 2, 0.986), (1, 1, 2, 1.234)} {(1, 1, 0), (1, 2, 1)} {(6, 10)}

4 {(1, 1, 2, 1.234), (1, 3, 3, 1.277)} {(1, 1, 0), (1, 2, 1), (1, 3, 2)} {(6, 13)}

5 {(1, 2, 3, 1.234), (1, 3, 3, 1.277)} {(1, 1, 0), (1, 2, 1), (1, 3, 2), (1, 1, 2)} {(6, 16)}

6 {(1, 3, 3, 1.277)} {(1, 1, 0), (1, 2, 1), (1, 3, 2), (1, 1, 2), (1, 2, 3)} {(6, 19)}
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Table 4 Average numbers of real additions and logical comparisons in decoding the (80, 40) code used inWiMAX

SNR

Decoding complexity 0.0 dB 1.0 dB 2.0 dB 3.0 dB 4.0 dB 5.0 dB 6.0 dB 7.0 dB

Additions 10, 307 10, 083 9, 989 9, 583 9, 288 9, 222 9, 013 8, 999

BEAST Comparisons 20, 613 20, 167 19, 978 19, 165 18, 576 18, 443 18, 026 17, 998

Additions 5, 248 4, 395 3, 793 3, 411 3, 218 3, 048 2, 996 2, 930

Advanced BEAST Comparisons 10, 497 8, 790 7, 585 6, 821 6, 436 6, 096 5, 993 5, 860

From Figures 6, 7 and 8, we come to almost the
same conclusions as that in the first example. In
Figure 6, the memory space required by the advanced
BEAST decoder decreases slowly as system SNR grows.
Figure 8 shows that, in the low-SNR region, many
comparisons were performed to maintain the open
stack and close table in the second phase of the two-
phase ML decoder. In summary, the B-CVA decoder
is an efficient ML decoder on tail-biting trellises both
in memory space saving and decoding complexity
reduction.

4 Conclusion
We propose a convergent CVA-basedML decoder for tail-
biting trellises. The proposed algorithm takes advantage
of the lower bound of the net path metric of the tail-biting
path to control the decoding process of CVA. Simula-
tion results show that, on tail-biting trellises, the B-CVA
decoder exhibits high decoding efficiency while requir-
ing relatively small memory space during the decoding
process. These advantages make it attractive to practical
applications.

Appendices
Appendix 1: decoding process of the two-phase ML
decoder
In Example 1, the decoding process of the two-phase
ML decoder can be described as follows [6]: (1) During
the first phase, the decoder stores the path metric M1

l (s)
of ∀s ∈ Sl and 0 ≤ l ≤ L; the decoding complex-
ity of the first phase is the same as that of the B-CVA,
which contains 64 real additions and 32 logical com-
parisons; (2) in the second phase, heuristic searches are
performed on the sub-tail-biting trellis of state 01; in each
step, the heuristic search is performed following the top
path in the open stack. There are 3 real additions and
4 logical comparisons for updating the values of the g-
function, h-function, and f -function. The two successors
will be saved in an open stack if the values of their f -
functions are less than M̃1. Meanwhile, the starting state,
terminal state, and current section l of the top path will
be saved in the close table. Then, the top path of the
open stack will be compared with each entry of the close

table in three aspects: starting state, terminal state, and
current location. With six heuristic searching steps, the
decoding process is stopped. The decoding complexity
in summary is denoted by 100 real additions and 105
logical comparisons. We have ignored the complexity of
sorting the open stack according to ascending order of
their f -function values. The open stack and the corre-
sponding close table obtained in each step are shown
in Table 3, where Open stack = {(starting state, cur-
rent state, l-section, f -function)}, Close table = {(start-
ing state, current state, l-section)}, and Complexity =
{(the number of real additions, the number of logical
comparisons)}.

Appendix 2: improvements of the BEAST ML decoder with
upper-bounding technique
To show the decoding efficiency improvement of the
advanced BEAST decoder, we use it and the original
BEAST decoder [8] to decode a tail-biting convolu-
tional code used in WiMAX. The length of the infor-
mation sequence is 40 bits. The average numbers of
real additions and logical comparisons are presented in
Table 4. We find that the upper-bounding technique can
cut the decoding complexity of the BEAST decoder
by 1/2 ∼ 2/3.
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