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Abstract

In this paper, we consider the linear minimummean square error (LMMSE) estimation of channel for the two-way
relay network employing analog network coding and orthogonal frequency division multiplexing. The channel
responses required for self-interference cancelation and coherent detection are estimated in the time domain with
the preamble. We derive the optimal training condition for minimizing the mean square error (MSE) of the LMMSE
estimator and obtain the corresponding MSE. It is observed that the LMMSE estimator has the optimal training
condition equivalent to that of the least square estimator and that the former is less sensitive to the training
sequences than the latter. We also propose new training sequences not only satisfying the optimal training condition
but also providing the minimum peak-to-average power ratio.
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1 Introduction
Relay communication has been intensively studied so far
due to its capability of improving coverage and reliabil-
ity at low cost [1-3]. However, the additional transmission
phase required for relaying incurs spectral inefficiency
in practice. By adopting analog network coding (ANC)
which spends two transmission phases in data exchange
[4,5], the inefficiency has recently been partially mitigated
in two-way relaying (TWR) networks: In the scheme, two
communicating source nodes transmit signals simultane-
ously in the first phase called the multiple access (MAC)
phase, where the two signals autonomously form the ANC
in the air. In the second phase called the broadcast (BC)
phase, the signals received at the relay node are ampli-
fied and broadcasted so that the source nodes equipped
with self-interference cancelation (SIC) can retrieve the
information which originated from their counterparts.
Although various TWR networks based on the ANC have
been shown to improve the performance theoretically,
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they assume perfect channel state information in per-
forming SIC and coherent detection [6-8].
Recently, the problem of channel estimation has been

addressed in the ANC-based TWR networks when the
channel reciprocity holds between the MAC and BC
phases [9-13]. These studies deal with the estimation of
the composite channels of the MAC and BC phases at the
communicating nodes. Specifically, the maximum like-
lihood and linear maximum signal-to-noise ratio (SNR)
estimators have been developed in flat fading channels
in [9]. For orthogonal frequency division multiplexing
(OFDM) systems in frequency-selective fading channels,
the least square (LS) estimator and optimal training
sequences to minimize the mean square error (MSE) have
been derived in [10,11], which have subsequently been
extended for the joint estimation of carrier frequency off-
set and channel responses in [13]. The LS estimators,
derived for block-based (or equivalently, preamble-based)
signals in the time domain [10] and in the frequency
domain [11], are shown to require the same optimal train-
ing condition and to provide the sameMSE. Some training
sequences satisfying the optimal training condition with
low peak-to-average power ratio (PAPR), preferred for
the low-cost and low-power design of OFDM systems
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[14], have also been suggested in [11]. It should be noted
that the channel estimation schemes considered for the
OFDM-based TWR networks in [10,11,13] are all based
on the LS criterion.
Without channel reciprocity, two channel estimation

methods, the independent estimation of the MAC and
BC channels at the relay and communication nodes [15]
and the combined estimation of the MAC and BC chan-
nels at the communication nodes [16], have been studied
for OFDM-based TWR networks using ANC. It should
be mentioned that the former requires the feedback of
channel estimates from the relay for the communica-
tion nodes to perform SIC and coherent detection. To
avoid such a feedback, the latter estimates the composite
channels of the MAC and BC phases as in the channel
estimators developed for the OFDM-based TWR net-
works with channel reciprocity [10,11,13]. The channel
estimator in [16], which is equivalent to the LS estimator
[10,11,13] applied to the case with no channel reciprocity,
reduces the complexity of the LS estimator by adopting
the method developed for point-to-point OFDM systems
[17].
In this paper, the linear minimum mean square error

(LMMSE) estimator is adopted for the improvement
of channel estimation of OFDM-based TWR networks
employing ANC. As in [4-13], we assume the chan-
nel reciprocity, which improves the performance of the
TWR networks as observed in [18]. We would nonethe-
less like to mention that the results herein can be easily
extended to the networks without channel reciprocity.
For the LMMSE estimator with the time-domain signals,
we derive the optimal training condition minimizing the
MSE and analyze the effect of multipath intensity profile
(MIP) on the MSE. It is verified that the optimal train-
ing condition for the LMMSE estimation is equivalent to
that for the LS estimation. In addition, we propose new
sets of training sequences satisfying the optimal train-
ing condition and, at the same time, exhibiting the lowest
PAPR.
The rest of this paper is organized as follows: Section 2

introduces the system model of the OFDM-based TWR
network employing the ANC, for which the channel

estimation and optimal training condition based on the
LMMSE criterion are derived in Section 3. The MSE
under the optimal training condition is analyzed in
Section 4, followed by discussions on several training
sequences satisfying the optimal training condition in
Section 5. The performance characteristics of the channel
estimators with optimal training sequences are evaluated
in Section 6. Section 7 concludes this paper.

2 Systemmodel
Consider the TWR network illustrated in Figure 1, where
the two source nodes S1 and S2 exchange information via
the relay node R, and each of the three nodes is equipped
with a single antenna: We assume a direct channel is not
available between S1 and S2. The information exchange is
accomplished over two transmission phases using ANC.
In the first phase called the MAC phase, the two source
nodes S1 and S2 send packets to R simultaneously so that
the ANC of two packets is formed autonomously in the
received signal at the relay node. In the second phase
called the BC phase, the relay R amplifies and broadcasts
the signal received in the first phase to S1 and S2. Once the
relay signal is received, the nodes S1 and S2 perform chan-
nel estimation with a preamble and then detect the data
symbols from their counter part after SIC.
The channel between Si and R is assumed to be recipro-

cal, frequency-selective fading, and quasi-static over two
transmission phases for i = 1, 2. The discrete-time chan-
nel impulse response (CIR) between Si and R can then be
modeled as hi = [ hi,0 hi,1 · · · hi,Li−1]T , where Li is the
number of resolvable multipath taps and hi,l is the com-
plex fading gain of the lth path. Assuming Rayleigh fading,
we have hi,l ∼ CN

(
0, σ 2

hi,l

)
, where ∼ signifies ‘distributed

as’ and CN (μ,�) denotes the circularly symmetric com-
plex Gaussian (CSCG) distribution with mean vector μ

and covariance matrix �. The MIP of the CIR between Si
and R is then described by

{
σ 2
hi,l

}Li−1

l=0
. The average trans-

mit powers of S1, S2, and R are denoted by P1, P2, and Pr ,
respectively.
We adopt the OFDM signal model with N subcarriers

for the block-based channel estimation as depicted,

Figure 1 Systemmodel of a TWR network.
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for example, in [10]. For transmission in the MAC
phase, source node Si generates a preamble fol-
lowed by a number of vectors of OFDM data
symbols: Let xi = [

xi,0 xi,1 · · · xi,N−1
]T and xi,d =[

xi,d,0 xi,d,1 · · · xi,d,N−1
]T denote the time-domain rep-

resentations of the preamble constructed by a training
sequence and of the OFDM data symbol vector, respec-
tively, of Si. The training sequences x1 and x2 are both
known to S1 and S2 and are subject to the transmit
power constraint ‖x1‖2 = NP1 and ‖x2‖2 = NP2.
Here, the OFDM data symbol vector xi,d is generated as
xi,d = WHX i,d, where X i,d = [Xi,d,0 Xi,d,1 · · · Xi,d,N−1

]T
is the frequency-domain modulation symbol vector
with E

{∣∣Xi,d,k
∣∣2} = Pi, W is the unitary discrete

Fourier transform (DFT) matrix with the (m, n)th entry
[W ]m,n = 1√

N exp
(−j2π mn

N
)
, and (·)H denotes the con-

jugate transpose. To avoid inter-symbol interference
(ISI) in frequency-selective fading channels, a cyclic
prefix (CP) of length G is appended, producing x̃i =
[ xi,N−G, xi,N−G+1, · · · , xi,N−1, xi,0, xi,1, · · · , xi,N−1]T
from the preamble xi and x̃i,d = [xi,d,N−G, xi,d,N−G+1, · · · ,
xi,d,N−1, xi,d,0, xi,d,1, · · · , xi,d,N−1

]T from the OFDM
data symbol vector xi,d. Normally, we set G ≥ max(L1, Ls)
so that the ISI can be eliminated completely. For the ANC,
the two source nodes S1 and S2 simultaneously transmit
their packets of the CP-added preamble and OFDM data
symbol vectors.
The signals received at the relay R in the MAC phase of

the ANC protocol can be described, after the removal of
CP, as

yr = �1x1 + �2x2 + nr (1)

and

yr,d = �1x1,d + �2x2,d + nr,d, (2)

where �i is an N × N column-wise circulant matrix hav-
ing h̃i =

[
hTi 01×(N−Li)

]T
as its first column, and nr ∼

CN
(
0N×1, σ 2

n IN
)
and nr,d ∼ CN

(
0N×1, σ 2

n IN
)
are the

additive noise vectors at the relay. Here, 0a×b denotes the
all-zero matrix of size a × b and Ia is the a × a identity
matrix. The relay constructs ỹr and ỹr,d by adding a CP
of length G to yr and yr,d, respectively, and then broad-
casts the amplified signals x̃r = αỹr and x̃r,d = αỹr,d in
the BC phase. Here, α =

√
Pr

β1P1+β2P2+σ 2
n
is the scaling

factor to make the average relay power equal to Pr with

βi =
Li−1∑
l=0

σ 2
hi,l for i = 1, 2.

Let us now consider the signal processing at node Si in
the BC phase of the ANC protocol. After the removal of

CP, the received signal at Si can be expressed in the time
domain as

yi = α�i�ixi + α�i�jxj + α�inr + ni (3)

and

yi,d = α�i�ixi,d + α�i�jxj,d + α�inr,d + ni,d (4)

for (i, j) ∈ {(1, 2), (2, 1)}, where ni ∼ CN
(
0N×1, σ 2

n IN
)

and ni,d ∼ CN
(
0N×1, σ 2

n IN
)
are the additive noise vectors

at Si. Note that �i�m is a N × N column-wise circulant
matrix having

t̃im =
[
tTim 01×(N−L̃im)

]T = h̃i � h̃m (5)

as its first column for m = i, j, where � denotes the cir-
cular convolutiona, and the vector tim of length L̃im =
Li + Lm − 1 denotes the non-zero portion of the compos-
ite channel represented by the circular convolution of the
zero-padded CIRs h̃i and h̃m. In (5), the lth element of tim
is given by

tim,l =
min(l,Lm−1)∑

l′=max(0,l−Li+1)
hi,l−l′hm,l′ (6)

for l = 0, 1, · · · , L̃im − 1 andm = i, j.
To detect the modulation symbol vector X j,d transmit-

ted from Sj, the DFT is performed on yi,d as Y i,d = Wyi,d,
resulting in

Y i,d = α
√
Ndiag

(
W L̃iitii

)
X i,d + α

√
Ndiag

(
W L̃ijtij

)
X j,d

+ αW�inr,d + Wni,d, (7)

where diag(a) denotes the diagonal matrix with the vec-
tor a on the diagonal, W L is the N × L submatrix of
W constructed by the first L columns, and we have used
W�i�mWH = √

Ndiag
(
Wt̃im

) = √
Ndiag

(
W L̃imtim

)
from the property of a circulant matrix. In (7), the
first term on the right-hand side (RHS) is the self-
interference (SI) containing Si’s own transmitted signal,
and the second term contains the desired signal X j,d.
Hence, Si first removes the SI from Y i,d as Ỹ i,d = Y i,d −
α
√
Ndiag

(
W L̃iitii

)
X i,d with channel state information tii

and then detects the modulation symbol vector X j,d from
Ỹ i,d with channel state information tij. To this end, node
Si of the ANC-based TWR network is required to esti-
mate tii and tij from the received signal (3) by exploiting
the knowledge on the training sequences xi and xj.
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3 Channel estimation and optimal training
condition with the LMMSE criterion

Taking into account that the matrices �i�i and �i�j are
circulant, we can rewrite (3) as

yi = α
[
� ii � ij

] [tii
tij

]
+ α�inr + ni

= α� iti + ñi, (8)

where � i = [� ii � ij] with � im, the N × L̃im column-
wise circulant matrix having xm as its first column; ti =[
tTii t

T
ij

]T
denotes the total composite channel to be esti-

mated; and ñi = α�inr + ni. It should be mentioned that
the first part tii and the second part tij of the total com-
posite channel ti are essential elements in performing the
SIC and coherent demodulation, respectively.
Let us first derive the LMMSE estimate

t̂i =
[
t̂Tii t̂

T
ij

]T = Kyi (9)

of the total composite channel ti in such a way that the
MSE

MSE(t̂i) = E
{∥∥ti − t̂i

∥∥2} (10)

is minimized. The linear transformation matrix K can be
obtained in a straightforward manner from the orthogo-
nality principle [19]

∂

∂K
MSE

(
t̂i
) = E

{(
ti − t̂i

)
yHi
} = 0, (11)

which leads to K = RtiyiR
−1
yi , or equivalently,

t̂i = RtiyiR
−1
yi yi. (12)

In (12), Rtiyi = E
{
tiyHi
} = αRti�

H
i is the cross

correlation between ti and yi, and Ryi = E
{
yiyHi
} =

α2� iRti�
H
i + Rñi is the autocorrelation of yi with Rti =

E
{
titHi
}
denoting the autocorrelation of ti.

Now, noting that the autocorrelation Rñi of noise ñi can
be expressed as

Rñi = E
{
ñiñHi

}
= σ 2

n
(
α2βi + 1

)
IN (13)

since E
{
�i�

H
i
} = βiIN , the LMMSE estimator t̂i in (12)

can be rewritten equivalently as

t̂i = αRti�
H
i
{
α2� iRti�

H
i + σ 2

n
(
α2βi + 1

)
IN
}−1yi

(14)

and produces the MSE

MSE
(
t̂i
) = tr

{(
R−1
ti + θi�

H
i � i
)−1
}
, (15)

where tr{·} denotes the trace of a matrix and

θi = α2

σ 2
n
(
α2βi + 1

)
= Pr

σ 2
n
(
β1P1 + β2P2 + βiPr + σ 2

n
) . (16)

It should be noted that theMSE (15) can be decomposed
into MSE

(
t̂i
) = MSE

(
t̂i1
)+ MSE

(
t̂i2
)
, where

MSE
(
t̂im
) = E

{∥∥tim − t̂im
∥∥2} (17)

will be called the partial MSE form = 1, 2 in the sequel.
Let us next obtain an explicit expression of Rti for use

in (14) and (15). First, since h1 and h2 are independent of

each other, it is immediate to haveRti =
[
Rtii 0
0 Rtij

]
, where

Rtim = E
{
timtHim

}
. Next, the (l1, l2)th element [Rtim ]l1,l2 =

E
{
tim,l1 t∗im,l2

}
of Rtim can be expressed as

[Rtim ]l1,l2 =
min(l1,Lm−1)∑

l′1=max(0,l1−Li+1)

min(l2,Lm−1)∑
l′2=max(0,l2−Li+1)

× E
{
hi,l1−l′1hm,l′1h

∗
i,l2−l′2

h∗
m,l′2

}
(18)

from (6). Here, since
{
hi,l
}Li−1
l=0 are independent

zero-mean CSCG random variables, we have
E
{
h2i,l
}

= E
{(

h∗
i,l

)2} = 0 for all l, E
{
hi,lhi,l′

} =
E
{
hi,l
}
E
{
hi,l′
} = 0 for l 	= l′, and E

{
h1,lh2,l′

} =
E
{
h1,l
}
E
{
h2,l′
} = 0 for all l and l′. Therefore, the sum-

mand E
{
hi,l1−l′1hm,l′1h

∗
i,l2−l′2

h∗
m,l′2

}
on the RHS of (18) has

a non-zero value only when either l1 − l′1 = l2 − l′2 and
l′1 = l′2 or l1 − l′1 = l′2 and l′1 = l2 − l′2 if i = m, and only
when l1 − l′1 = l2 − l′2 and l′1 = l′2 if i 	= m. In other words,
we have [

Rtim
]
l1,l2 = 0 (19)

for l1 	= l2, and

[
Rtii
]
l,l � ζii,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
min(l,Li−1)∑

l′=max(0,l−Li+1)
E
{|hi,l′ |2}E {|hi,l−l′ |2

}
, for l odd,

2
min(l,Li−1)∑

l′=max(0,l−Li+1)
l′ 	= l

2

E
{|hi,l′ |2}E {|hi,l−l′ |2

}+ E
{∣∣∣hi, l2

∣∣∣4} , for l even
(20)
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and

[
Rtij
]
l,l � ζij,l =

min(l,Lj−1)∑
l′=max(0,l−Li+1)

E
{|hi,l′ |2|hj,l−l′ |2

}
(21)

for l = 0, 1, · · · , Li − 1. Noting that E
{|hi,l|4} = 2σ 2

hi,l and
E
{|hi,l|2} = σ 2

hi,l , we can combine (20) and (21) to obtain

ζim,l = (1 + δi,m
) min(l,Lm−1)∑
l′=max(0,l−Li+1)

σ 2
hi,l′ σ

2
hm,l−l′ , (22)

where δi,m = 1 for i = m, and 0 for i 	= m is the Kronecker
delta. In short, we finally have

Rtim = diag
(
ζ im
)
, (23)

where ζ im =
[
ζim,0 ζim,1 · · · ζim,L̃im−1

]T
.

Theorem 1. The training sequences x1 and x2, mini-
mizing MSE

(
t̂1
)
and MSE

(
t̂2
)
subject to ‖x1‖2 = NP1

and ‖x2‖2 = NP2, should satisfy the zero autocorrelation
condition except at the origin

N−1∑
n=0

xi,nx∗
i,mod(n+l,N) =

{
NPi, l = 0,
0, |l| = 1, 2, · · · , L̃i − 1

(24)

for i = 1, 2 and the zero cross-correlation condition

N−1∑
n=0

x1,nx∗
2,mod(n+l,N) = 0, |l| = 0, 1, · · · , L̃max − 1,

(25)

where mod(x, y) is the remainder when x is divided by y,
L̃i = max

(
L̃i1, L̃i2

)
, and L̃max = max

(
L̃11, L̃12, L̃22

) =
2max (L1, L2) − 1 with L̃im = Li + Lm − 1 for m = 1, 2.

Proof. See Appendix 1.

4 TheMSE of the LMMSE estimator with optimal
training sequences

With training sequences satisfying (24) and (25), the MSE
(15) of the LMMSE estimator at Si has the minimum
(optimal) value

MSEo
(
t̂i
) = MSEo

(
t̂i1
)+ MSEo

(
t̂i2
)
, (26)

where the optimal partial MSE

MSEo
(
t̂im
) = tr

{(
Rt

−1
im + θiNPmI L̃im

)−1
}

=
L̃im−1∑
l=0

ζim,l
1 + NθiPmζim,l

(27)

is the minimum value of the partial MSE (17) incurred in
estimating tim form = 1, 2. It is obvious from (26) and (27)
that the optimal MSE of the LMMSE estimator achieved
with optimal training sequences would in general depend
on the DFT size, powers of signal and noise, and MIPs{
σ 2
hi,l

}Ls−1

l=0
which determine L̃im, ζim,l, and θi.

Now, from (27), we have

MSEo
(
t̂im
) ≈ 1

θi

L̃im
NPm

= σ 2
n

(
βi + β1P1 + β2P2 + σ 2

n
Pr

)
L̃im
NPm

(28)

if θiPmN � 1 for m = i, j (or equivalently, if P1
σ 2
n

� 1,
P2
σ 2
n

� 1, and Pr
σ 2
n

� 1), and

MSEo
(
t̂im
) ≈

L̃im−1∑
l=0

ζim,l = (1 + δi,m
)
βiβm (29)

if P1
σ 2
n

� 1, P2
σ 2
n

� 1, and Pr
σ 2
n

� 1. It should be noted,
as described in Appendix 2, that the optimal MSE (26)
with the high SNR approximation (28) of the partial MSE
for the LMMSE estimation is the same as the optimal
MSE of the LS estimation [9]. It is also interesting to note,
from (28) and (29), that the numbers L1 and L2 of resolv-
able multipaths relative to the DFT size N are the key
factors determining the optimal MSE in the high SNR
region, while the average channel powers β1 and β2 are the
key factors determining the optimal MSE in the low SNR
region.

5 New sets of optimal training sequences
In Appendix 2, we have provided a derivation of the LS
estimator and its optimal training condition to minimize
theMSE, where we have also shown the equivalence of the
optimal training conditions for the LMMSE and LS esti-
mators. Interestingly, although the LMMSE estimator is a
function of the SNR unlike the LS estimator, the optimal
training condition of the LMMSE estimator, like the LS
estimator, does not depend on the SNR.
The equivalence observation on the training conditions

allows us to conveniently reuse, in the LMMSE estima-
tion, the training sequences proposed originally for the
LS estimation. For example, the sequences proposed in
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[10] are given with the frequency-domain representa-
tion X i = Wxi = [Xi,0 Xi,1 · · · Xi,N−1] for i =
1, 2, where X1,k = √

P1 and X2,k = √
P2 exp

(
j2π ωk

N

)
for ω ∈ {L̃max, L̃max + 1, · · · ,N − L̃max

}
. The equivalent

time-domain representation is given by
{
x1,n = √P1Nδn,0,

x2,n = √P2Nδmod(n+ω,N),0
(30)

for n = 0, 1, · · · ,N − 1. In [11], based on the Zadoff-Chu
sequence [20]

zn,M =

⎧⎪⎪⎨
⎪⎪⎩

exp
{
−jπ

n(n + 2q)U
M

}
, forM even

exp
{
−jπ

n(n + 1 + 2q)U
M

}
, forM odd,

(31)

where q and U are integers relatively prime to M, the
sequences
⎧⎨
⎩
x1,n = √P1zn,N2 ,
x2,n = √P2zn,N2 exp

(
j2π

n
N

) (32)

have been proposed: The sequences (32) satisfy the opti-
mal training conditions (24) and (25) if N > 2L̃max.
Let us now consider the PAPR of a training sequence

defined as

PAPR =
max
n

|xi,n|2

1
N

N−1∑
n=0

|xi,n|2
. (33)

The training sequences in (30) are simple to generate,
but unfortunately, their PAPR is the worst (that is, of value

N) since max
n

|xi,n|2 = NPi and 1
N

N−1∑
n=0

|xi,n|2 = Pi. The

high PAPR either increases the design cost or degrades
the performance at a similar design cost as delineated in
Section 6. In the meantime, the training sequences in (32)
have a higher complexity with complex values, but their
PAPR is the best (that is, of value 1) since max

n
|xi,n|2 = Pi

and 1
N

N−1∑
n=0

|xi,n|2 = Pi.

Taking the PAPR also into consideration, we now pro-
pose some sets of optimal training sequences with lower
or similar complexity than the conventional training
sequences. From the conditions (24) and (25) expressed in
the time domain, it is clear that the set of zero-correlation
zone (ZCZ) sequences [21,22] with family size 2, sequence
length N, and ZCZ L̃max can be used as the optimal

training sequences of the LS and LMMSE estimators.
Specifically, consider the set⎧⎪⎨
⎪⎩
x1 = √P1 [−u(no) v(no)

]T
,

x2 = √P2 [−ζ
(
u(no)
)

− ζ
(
v(no)
)]T (34)

of two binary training sequences with length N = 2no+1,
where ζ(a) denotes the reverse sequence of a, and the
sequences u(m) and v(m), both of length 2m+1, are defined
recursively by u(m) = [

u(m−1) v(m−1)] and v(m) =[−u(m−1) v(m−1)] with the initial condition u(0) = v(0) =
1 [21]. The sequences in (34) satisfy the optimal training
condition if N > 4L̃max.
In addition, we can independently design polyphase

[23,24] training sequences satisfying the optimal training
condition based on the Chu sequence [25]. Specifically, for
a positive integer ν of which the greatest common divisor
with N is 1, consider the sequences designed as⎧⎪⎪⎨
⎪⎪⎩
x1,n = √P1 exp (jπ ν

N
n2
)
,

x2,n = √P2 exp
{
jπ

ν

N

(
n + N

2

)2} (35)

for n = 0, 1, · · · ,N − 1. Since
N−1∑
n=0

xi,nx∗
i,mod(n+l,N)

= 0 for

l 	= 0 and
N−1∑
n=0

x1,nx∗
2,mod(n+l,N)

= 0 for |l| = 0, 1, · · · , N2 −
1, the sequences in (35) satisfy the conditions (24) and (25)
if N > 2L̃max. Clearly, the PAPR of the proposed training
sequences in (34) and (35) is the best (that is, of value 1)

since max
n

|xi,n|2 = Pi and 1
N

N−1∑
n=0

|xi,n|2 = Pi.

In Table 1, we have compared the optimal training
sequences discussed so far, where (30) and (32) are the
optimal sequences for the LS estimator considered in
[10,11], respectively, and (34) and (35) are the optimal
sequences proposed in this paper for the LMMSE esti-
mator. For reference, we have also included the raw cubic
metric (RCM) of the training sequences. Proposed as an
alternative of the PAPR for better estimation on the non-
linear effect of a high-power amplifier [26], the RCM of a
training sequence xi = [xi,0 xi,1 · · · xi,N−1

]T is computed
as

RCM = 20 log10

√√√√√√√√
1
N

N−1∑
n=0

(|xi,n|3)2
(

1
N

N−1∑
n=0

|xi,n|2
)3 [ dB]. (36)

The RCM is 0 dB when there exists no signal fluctua-
tion and gets larger when the fluctuation in the amplitudes
gets more severe. Specifically, the RCMs of the sequences
(32), (34), and (35) are all 0 dB since the sequences have
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Table 1 Comparison of some optimal training sequences

Sequences (30) [10] (32) [11] (34) [Proposed] (35) [Proposed]

MSE Optimal Optimal Optimal Optimal

PAPR N 1 1 1

RCM 20 log10 N 0 0 0

Complexity Low High Low High

the property of constant modulus |xi,n| = √
P1 for n =

0, 1, · · · ,N − 1.
Clearly, the four training sequences all provide the same

optimal MSE performance for both the LS and LMMSE
estimators. Although the sequences in (30) require the
lowest complexity in the memory size and in computa-
tion with only a single non-zero value multiplication for
N OFDM signal samples, they result in the highest PAPR
and RCM, which makes the sequences rather impracti-
cal. Among the other three optimal training sequences,
all providing the minimum PAPR and RCM, the proposed

sequences in (34), for which a binary value is used for
each OFDM sample, have the lowest complexity: A binary
value requires only 1-bit storage in the memory, while a
complex value in (32) and (35) requires two floating point
storage in the memory (2q bits with 2q quantization lev-
els for each floating point). Therefore, we believe that the
proposed sequences in (34) are themost desirable in terms
of performance and complexity.

6 Performance evaluation
Let us now evaluate the performance of the LMMSE and
LS channel estimators when the total power dissipated by
the system is set to PT and the relay node is located at the
center point of the two source nodes. Then, the average
power of source nodes is P1 = P2 = 1

4PT , and that of the
relay is Pr = 1

2PT . Other system parameters employed in
the evaluation of performance comparisons are as follows:
Sampling time Ts = 50 ns, DFT size N = 64, and length
of a CP G = 16. In the simulation, we have generated 105
packets for each source node, where one packet consists

Figure 2 Comparison of optimal partial MSEs of LMMSE and LS estimators. (a) At node S1 and (b) at node S2.
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of one OFDM preamble and 49 OFDM data symbols of
the same power. The channels remain unchanged over one
packet transmission but undergo independent fading from
packet to packet. To simulate frequency-selective fading
channels, we adopt the exponential MIP

σ 2
hi,l = 1 − e−ai

1 − e−aiLi
e−ail (37)

for l = 0, 1, · · · , Li − 1 with ai = 10
Li−1 . This MIP results

in β1 = β2 = 1. In this setup, the MSE is computed with
105 OFDMpreambles, while the bit error rate (BER) is cal-
culated with 49 × 105 OFDM data symbols using BPSK
modulation.
Figure 2 verifies our analysis by comparing the opti-

mal partial MSEs (27) and (46) of the LMMSE and LS
estimators, respectively, with simulation results when the
optimal training sequences in (35) are employed and the
channels have the exponential MIP (37) with L1 = 8 and
L2 = 4. Figure 2a,b compares the results at S1 and S2,
respectively. It is clearly observed that the results from
the analysis agree well with those from the simulation. In
addition, by mitigating the noise enhancement incurred
in the LS estimator, the LMMSE estimator performs bet-
ter than the LS estimator with the gain higher in the lower
SNR region. The gain diminishes as the SNR increases
since the effect of the noise components is reduced. In
the high SNR region, the partial MSE is the largest and
smallest in estimating t11 and t22, respectively, for both
the LMMSE and LS estimators since the partial MSE in
estimating tim is proportional to L̃im = Li + Lm − 1 in the
high SNR region. Specifically, with L̃11 = 2 · 8 − 1 = 15,
L̃12 = L̃21 = 8 + 4 − 1 = 11, and L̃22 = 2 · 4 − 1 = 7
in (28) and (46), we have MSE(t̂21)

MSE(t̂22)
≈ MSE(t̆21)

MSE(t̆22)
= 11

7 and
MSE(t̂11)
MSE(t̂22)

≈ MSE(t̆11)
MSE(t̆22)

= 15
7 . For the LMMSE estimator, the

partial MSE of t̂ii is observed to be slightly larger than the
partial MSE of t̂ij for (i, j) ∈ {(1, 2), (2, 1)} when the SNR
is very low due to the factor 1 + δi,i = 2 (on the RHS of
(22)) in the trace of Rtii , which has eventually led to the
factor 1 + δi,i = 2 multiplied to βiβm when m = i (on the
RHS of (29)). Note that tii, a convolution of the identical
CIR hi and hi, exhibits higher correlation among the ele-
ments than tij, a convolution of two independent CIRs hi
and hj.
Figures 3 and 4 compare the MSEs and BERs, respec-

tively, of the LMMSE and LS estimators when optimal and
non-optimal training sequences are used, where we have
assumed the symmetric channels with L1 = L2 = 6 for
the exponential MIP, leading to an identical MSE (BER)
performance at S1 and S2. The MSE in Figure 3 represents
MSE

(
t̂1
)
and MSE

(
t̆1
)
of the LMMSE and LS estima-

tors, respectively, and the BER in Figure 4 is evaluated at
S1. In these figures, ‘optimal (30), (32), (34), (35)’ denotes
the results with the optimal training sequences in (30),

Figure 3MSE of LMMSE and LS estimators for several training
sequences.

(32), (34), and (35)b, ‘Non-optimal I’ denotes the results
with the training sequences constructed with randomly
generated BPSK symbols {Xi,k} used as a benchmark in
[11], and ‘Non-optimal II’ denotes the results with the
training sequence xi,n = √

0.1x∗
i,n for 0 ≤ n ≤ 31

and xi,n = √
1.9x∗

i,n for 32 ≤ n ≤ 63 used as a bench-
mark in [10]. It is clearly confirmed in these figures that
all the optimal training sequences (conventional or pro-
posed) provide the best performance for both the LMMSE
and LS estimators. It is also observed that non-optimal
sequences could cause significant degradation in the per-
formance of channel estimation. Although the sequences
‘Non-optimal I’ provide a similar performance with the
optimal training sequence, the former exhibits a higher
PAPR than the latter. Interestingly, it is observed that the
performance degradation incurred by using non-optimal

Figure 4 BER of LMMSE and LS estimators for several training
sequences.
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Figure 5MSE of LMMSE and LS estimators for several training
sequences with clipping.

training sequences is smaller in the LMMSE estimation
than in the LS estimation.
To incorporate a partial effect of the PAPR of transmit-

ted signals, the MSEs and BERs of Figures 3 and 4 are
now re-evaluated in Figures 5 and 6 when there exists a
baseband non-linearity at the source nodes. Wemodel the
baseband non-linearity by a hard limiter as in [27], where
the transmitted signals

{
xi,n
}
are clipped when |xi,n| ≥ A.

The clipping ratio defined by A
σxi

with σ 2
xi = 1

N

N−1∑
n=0

|xi,n|2
is assumed to be 6 dB. It is clearly observed that the
optimal training sequences in (32), (34), and (35) are not
influenced by the clipping, while the conventional optimal
training sequences in (30), due to its high PAPR, are not

Figure 6 BER of LMMSE and LS estimators for several training
sequences with clipping.

appropriate in practical systems. In addition, the proposed
sequences in (34) and (35) can provide the same perfor-
mance at a lower or similar complexity when compared
with the conventional optimal sequences in (32).

7 Conclusion
In this paper, we have addressed the LMMSE estimation
of channels for OFDM-based TWR systems employing
ANC.We have derived the conditions for optimal training
sequences minimizing the MSE of the LMMSE estimator,
which is found out to be equivalent to the optimal train-
ing conditions of the LS estimator. In addition, the MSE
behavior of the LMMSE estimator with optimal training
sequences is analyzed to be generally dependent on the
MIP of the channel. Results from analysis and simula-
tion show that the LMMSE estimator outperforms the LS
estimator at most practical values of SNR.
Taking the MSE and PAPR into account simultane-

ously, we have suggested new designs of optimal train-
ing sequences exhibiting lower or similar complexity
when compared with the conventional optimal training
sequences. Simulation results also show that the proposed
training sequences would perform adequately even when
signal clipping occurs during signal processing.

Endnotes
aFor two vectors a =[ a0 a1 · · · aN−1]T and b =

[ b0 b1 · · · bN−1]T , the lth element of c = a � b is given

by cl =
N−1∑
n=0

an−lbmod(n,N) =
N−1∑
n=0

anbmod(n+l,N), where

mod(x, y) denotes the remainder after dividing x by y.
bThe MSEs of the optimal training sequences are all the

same, and thus, we have shown only the MSE of (34) to
make the graphs less crowded.

Appendix 1
Proof of Theorem 1
Let d =

[
d0 d1 · · · dL̃i−1

]
and λ =

[
λ0 λ1 · · · λL̃i−1

]
denote the vectors of diagonal elements and eigenvalues,
respectively, ofϒ i = R−1

ti +θi�
H
i � i. Since thematrixϒ i is

symmetric, the vector d is majorized by the vector λ [28],
that is, we have

K∑
k=0

d[k] ≤
K∑

k=0
λ[k] (38)

if K = 0, 1, · · · , L̃i − 2, and

K∑
k=0

d[k] =
K∑

k=0
λ[k] (39)

if K = L̃i − 1, where d[k] and λ[k] denote the kth largest
elements in {dl}L̃i−1

l=0 and {λl}L̃i−1
l=0 , respectively. In addition,
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since tr
{
ϒ−1

i

}
=

L̃i−1∑
k=0

1
λk

is Shur-convex [29], we have

tr
{
ϒ−1

i

}
≥

L̃i−1∑
k=0

1
dk

. (40)

Hence, noting that Rti is diagonal, the MSE (15) is min-
imized when ϒ i = R−1

ti + θi�
H
i � i is a diagonal matrix, or

equivalently, when�H
i � i is a diagonal matrix. Thus, since

the diagonal elements of �H
ii � ii and �H

ij � ij are identically
‖xi‖2 and

∥∥xj∥∥2, respectively, and we have ‖xi‖2 = NPi for
i = 1 and 2, it is required that

�H
i � i =

[
�H

ii � ii �H
ii � ij

�H
ij � ii �H

ij � ij

]
=
[
NPiI L̃ii 0L̃ii×L̃ij
0L̃ij×L̃ii NPjI L̃ij

]
(41)

for (i, j) ∈ {(1, 2), (2, 1)} to minimize the MSE at Si. The
condition (41) is equivalent to (24) and (25).

Appendix 2
The LS estimator and its optimal training condition
With the received signal (8), the LS estimator t̆i =
argmin

a

∥∥yi − α� ia
∥∥2 of ti is obtained by setting the first

derivative
∂

∂a
∥∥yi − α� ia

∥∥2 = 2α�H
i
(
yi − α� ia

)
(42)

to zero, as

t̆i = 1
α

(
�H

i � i
)−1

�H
i yi (43)

since the second derivative is positive semi-definite,
∂
∂a

(
∂
∂a
∥∥yi − α� ia

∥∥2)H = 2�H
i � i ≥ 0. The MSE of the

LS estimator is then given by

MSE
(
t̆i
) = tr

{
σ 2
n

α2
(
�H

i � i
)−1

�H
i (α2β1 + 1)� i

(
�H

i � i
)−1
}

= σ 2
n

(
β1 + β1P1 + β2P2 + σ 2

n
Pr

)
tr
{(

�H
i � i
)−1} ,

(44)

which is minimized when �H
i � i is diagonal from the

same reason as that applied when proving Theorem 1 in
Appendix 1. Under the power constraint ‖xi‖2 = NPi for
i = 1, 2, the optimal training conditions of the LS esti-
mator thus becomes the same as those of the LMMSE
estimator given in (41), and the resultant minimum MSE
of the LS estimator is given by

MSEo
(
t̆i
) = MSEo

(
t̆i1
)+ MSEo

(
t̆i2
)
, (45)

where

MSEo
(
t̆im
) = σ 2

n

(
β1 + β1P1 + β2P2 + σ 2

n
Pr

)
L̃im
NPm

(46)

is the partial MSE for m = 1, 2. We would again like to
mention that the optimal MSE (45) of the LS estimator
derived herein is identical to that derived in [10,11] and
becomes the high SNR approximation (28) of the optimal
MSE of the LMMSE estimator.
In [10,11], the optimal training condition (41) is

expressed with the frequency-domain representation
X i = Wxi =[Xi,0 Xi,1 · · · Xi,N−1] of the training
sequences as

WH
L̃im

diag
(
XH
i � X i

)
W L̃im = PiI L̃im , (47)

WH
L̃im

diag
(
XH
i � X j

)
W L̃mj

= 0L̃im×L̃mj
(48)

for m = i, j and (i, j) = {(1, 2), (2, 1)}, where � is the
element-wise multiplication. Let us now show that the
conditions (47) and (48) are equivalent to those given as
(24) and (25). First, (47) can be rewritten as

1
N

N−1∑
k=0

X∗
i,kXi,k exp

{
−j2π

k (l2 − l1)
N

}
=
{
Pi, for l1 = l2,
0, for l1 	= l2,

(49)

for i = 1, 2, where l1, l2 = 0, 1, · · · , max(L̃i1, L̃i2)−1. With
L̃i = max(L̃i1, L̃i2), we can rewrite (49) as

N−1∑
k=0

|Xi,k|2 exp
(

−j2π
kl
N

)
=
{
NPi, for l = 0,
0, for |l| = 1, 2, · · · , L̃i − 1

(50)

for i = 1, 2. Similarly, (48) can be rewritten as
N−1∑
k=0

X1,kX∗
2,k exp

{
−j2π

k (l1 − l2)
N

}
= 0 (51)

for l1, l2 = 0, 1, · · · , max(L̃1, L̃2)−1, which is equivalent to
N−1∑
k=0

X∗
1,kX2,k exp

(
−j2π

kl
N

)
= 0 (52)

for |l| = 0, 1, · · · , L̃max − 1. Since

N−1∑
k=0

X∗
i,kXm,k exp

(
−j2π

kl
N

)
=

N−1∑
n=0

x∗
i,nxm,mod(n+l,N)

(53)

form = i, j from the (generalized) Parseval’s theorem [30],
it is straightforward to see that (47) and (48) represented
in the frequency-domain are equivalent to (24) and (25),
respectively, represented in the time domain.
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