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Abstract

Asymptotic distributions of estimated cyclic autocorrelations (CA) of direct sequence spread spectrum (DSSS) signals
are derived in this paper. The estimation follows a zero-mean complex normal distribution in which the variance
exhibits a cyclic thumbtack form, and the cyclic period equals the symbol period. This property of the estimated CA
can be used in the detection and recognition problem of DSSS signals. The asymptotic performances of detection
and recognition are carried out, and the simulations also verify the theoretical analysis.

Introduction
Direct sequence spread spectrum (DSSS) signals are
widely used in commercial and military communications
for their anti-jamming capabilities and low probability
of interception. In DSSS systems, the information sig-
nal is modulated by a pseudo-noise (PN) sequence before
transmission. For cooperative communications, the PN
spreading sequence is known to the receiver, which is
used to carry out the despreading operation and recover
the information data. Because of the processing gain in
the matched filtering or correlation operations, the DSSS
signals can be transmitted below the noise level. In the
non-cooperative communication scenario, however, the
receiver may have no priori knowledge of the transmitter’s
PN sequence. Hence, it is difficult for a non-cooperative
receiver to detect and despread the DSSS signals because
the PN sequence used by the transmitter is unknown to
the receiver. Besides, one more important problem is the
recognition of the DSSS signals, since one may usually
want to know whether an intercepted signal is a DSSS
signal or an ordinary pulse-amplitude modulated (PAM)
signal in a non-cooperative condition. Also, the detection
and recognition problems of DSSS signals have special
significance for cognitive radio systems.
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To detect a DSSS communication hidden in the noise,
a method that is based on the fluctuations of autocor-
relation estimators is proposed by Burel in [1,2]. In [3],
the detection, symbol period, and chip width estimation
of DSSS signals are carried out based on delay-multiply,
correlation, and spectrum analysis, respectively. In [4],
Deng presents an autocorrelation estimation-based detec-
tion method. It is suitable for the real-time detection of
DSSS signals at low signal-to-noise ratio (SNR) in a cog-
nitive radio system. An approach is proposed in [5] to
detect the baseband DSSS signal with narrowband inter-
ference based on blind source separation and fluctuations
of the autocorrelation second moment. An algorithm
for correlation-based detection of direct sequence spread
spectrum signals with direction finding, including direc-
tion filtering and narrowband interference rejection, is
implemented and evaluated in MATLAB in [6].
In [7], relying upon the asymptotic normality and con-

sistency of kth-order cyclic statistics, asymptotically opti-
mal χ2 tests are developed to detect the presence of
cycles in the kth-order cyclic cumulants or polyspectra.
The paper [8] deals with the analytical evaluation of the
asymptotic detection and false alarm probabilities of mul-
ticycle and single-cycle detectors operating in additive
white Gaussian noise, which are based on the cyclosta-
tionarity properties of the signal to be intercepted.
Self-recovering receivers for DSSS signals in multi-

path with unknown spreading codes are discussed in [9],
wherein a zero-forcing receiver/equalizer is proposed to
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recover the transmitted data. In [10], a method is pro-
posed for estimating the pseudo-random sequence with-
out any priori knowledge about the transmitter. Only the
duration of the pseudo-random sequence is assumed to
have been estimated. This approach is based on eigen
analysis techniques.
Notice that the autocorrelation of DSSS signals is

applied to resolve the detection problem in [1-6]. How-
ever, none of them deal with a theoretical interpretation
for the fluctuation of the autocorrelation of DSSS sig-
nals and the asymptotic performances. Though the cyclic
autocorrelation functions of the baseband DSSS PAM sig-
nal are derived in [11], the asymptotic distributions of
the cyclic autocorrelations (CA) are absent. In this paper,
we consider the asymptotic distributions of the estimated
cyclic autocorrelations of DSSS signals, which may have
the potential applications in non-cooperative communi-
cation environments. Then, the theoretical properties of
the CA are applied in detection and recognition problems
of DSSS signals. The remainder of the paper is organized
as follows: In Section 2, we evaluate the distributions of
the estimation of the cyclic autocorrelation, from which
some interesting properties are found. In Section 2, we
apply the result of the former section to the problem
of DSSS detection and recognition, where the optimal
threshold is given. Section 2 provides some simulation
examples to illustrate the performance of the proposed
algorithm. Finally, Section 2 concludes the paper.

Asymptotic distributions of the estimation
Consider a complex-valued continuous time series x(t)
with a zero mean. It exhibits wide-sense cyclostationarity
if the cyclic autocorrelation function (CAF)

Rxx∗(α; τ) = lim
T→∞

1
T

∫ T/2

−T/2
x(t + τ)x∗(t)e−j2παtdt

(1)

is not identically zero when cycle frequency α �= 0, where
* denotes conjugation.
A linear time-variant system with input-output relation

[12]

y(t) =
∫
R
h(t,u)x(u)du, (2)

where x(t) is the input, y(t) is the corresponding out-
put, and h(t,u) is the impulse response function, is called
a linear almost-periodically time-variant (LAPTV) sys-
tem if the time-variant impulse response function can be
expressed as the Fourier series expansion [12]

h(t,u) =
∑
σ∈G

hσ (t − u)ej2πσu, (3)

where G is a countable set. The CAF of the output for the
LAPTV system can be expressed as the convolution of the
input CAF Rxx∗ and the ambiguity function of h(t,u) [12]

Ryy∗(α;τ)=
∑
σ1∈G

∑
σ2∈G

[Rxx∗(α−σ1−σ2;τ)ej2πσ1τ]⊗
τ
r12(α;τ),

(4)

where ⊗
τ

denotes convolution with respect to τ , and
r12(α; τ) denotes the ambiguity function of h(t,u)

r12(α; τ) =
∫
R
hσ1(τ + s)hσ2(s)e−j2παsds. (5)

Equation 4 can be specialized to the case of the linear
time-invariant systems for which the coefficient of the
impulse response function is given by

h(t + τ , t) = h(τ ). (6)

Hence, from (3) one has [13]

hσ (τ ) = h(τ )δσ , (7)

where δσ is the Kronecker delta, which δσ = 1 for σ = 0
and δσ = 0 otherwise. It results in

Ryy∗(α; τ) = Rxx∗(α; τ) ⊗
τ
r12(α; τ). (8)

Consider a DSSS system, where the equivalent complex
baseband received signal r(t) contaminated by Gaussian
noise can be expressed as

r(t) = x(t) + n(t), (9)

where x(t) is a DSSS PAM signal

x(t) = A
+∞∑

k=−∞
a(k)p(t − kTb)ej2π fct+θc , (10)

whereA is a received amplitude, fc is a residual carrier, θc is
an unknown carrier phase, and n(t) is a complex additive
white Gaussian noise with power spectrum density N0.

In Equation 10, {a(k)}k∈Z is an information code
sequence of independent and identically distributed
binary symbols taking on values±1 with equal probability,
Tb is the bit period, and

p(t) =
Nc−1∑
n=0

c(n)q(t − nTc) (11)

is a spreading waveform, where {c(n), n = 0, · · · ,Nc − 1}
is the Nc-length spread spectrum code sequence or called
PN code sequence with c(n) ∈ {+1,−1}, Tc is the chip
period such that Tb = NcTc, and q(t) is the chip pulse
shape. Specifically, q(t) is the rectangular pulse, in which
q(t) = rect(t/Tc), where

rect(t) =
{
1 |t| ≤ 1/2
0 |t| > 1/2 . (12)



Bao et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:141 Page 3 of 9
http://jwcn.eurasipjournals.com/content/2013/1/141

For the convenience of analysis, Equation 10 can be
rewritten as

x(t) = Aej2π fct+θcxδ(t) ⊗ p(t), (13)

where ⊗ denotes convolution, and xδ(t) is the ideal sam-
pled signal

xδ(t) =
+∞∑

k=−∞
a(k)δ(t − kTb) (14)

with δ(t) denoting Dirac’s delta. Now the CAF of x(t) can
be expressed as by using Equation 8

Rxx∗(α; τ) = A2ej2π fcτRxδx∗
δ
(α; τ) ⊗

τ
rpp∗(α; τ), (15)

where Rxδx∗
δ
(α; τ) is the CAF of xδ(t),

Rxδx∗
δ
(α; τ) = lim

T→∞
1
T

∫ +T/2

−T/2

+∞∑
n=−∞

a(n)δ(t+τ −nTb)

+∞∑
m=−∞

a(m)δ(t − mTb)e−j2παtdt

(16)

and rpp∗(α; τ) is the ambiguity function (AF) of p(t). The
AF rpp∗(α; τ) in (15) can be expressed as [11]

rpp∗(α; τ) = rq(α; τ) ⊗
τ

γc(α; τ), (17)

where

rq(α; τ) =
∫ +∞

−∞
q(t)q(t + τ)e−j2παtdt

=exp[−j2πα(Tc − τ)]rect(
τ

2Tc
)(Tc − |τ |)

× sinc(α(Tc − |τ |))

(18)

and

γc(α; τ) =
Nc−1∑
n=0

Nc−1∑
m=0

c(n)c(m)e−j2παTcmδ(τ − (n − m)Tc).

(19)

The AF is a useful tool to analyze the response of a
matched receiver, which is often used to represent the
magnitude of the matched receiver output for a coherent
signal. Due to the white noise-like pseudo-noise sequence
of the spreading waveform, the AF of p(t) has a property of
superb time-frequency concentration, which means that
the energy of p(t) is concentrated in a very small time-
frequency region −Tc < τ < Tc and −1/Tb < α < 1/Tb.
An example of the AF of the spreading waveform with
Nc = 31 and Tc = 1 is plotted in Figure 1, which shows
that the magnitude of rpp∗(α; τ) looks like a thumbtack.

Figure 1 Ambiguity function of p(t).

Take a closer look at the CAF of xδ(t). Consider the
following estimator of Rxδx∗

δ
(α; τ) :

R̂(T)

xδx∗
δ
(α; τ) = 1

T

T/2−1∑
t=−T/2

xδ(t)x∗
δ (t − τ)e−jαt . (20)

For the whiteness of the sequence {a(k)}k∈Z , one has the
following expression for R̂(T)

xδx∗
δ
(α; τ):

R̂(T)

xδx∗
δ
(α; τ)= 1

Tb
δ(αTb) mod 1δ(τ ) +

∑
n

ε(T)(α; n)δ(τ −nTb),

(21)

where n is an integer, δn is the Kronecker delta, δ(·)
denotes the Dirac delta function, mod means modulo
operation, and ε(T)(α; n)δ(τ −nTb) represents the estima-
tion error which vanishes asymptotically as T → ∞. The
estimation error ε(T)(α; n)δ(τ − nTb) was usually ignored
in former literatures just as noises, while it has interesting
uses in some special cases, such as in the DSSS systems,
because it has non-zero values only when τ = nTb. It is
due to the fact that one just considered the first non-zero
term of the CAF (21) before, while the second vanishing
term was rarely utilized. In our opinion, by properly mak-
ing use of the vanishing term, wewill show in the following
part that the CAF exhibits some vanishing but useful
properties in testing the presence of the DSSS signals.

Next, the asymptotical distribution of ε(T)(α; n) will be
evaluated as follows. The estimator R̂(T)

xδx∗
δ
(α; τ) defined in

(20) is mean-square sense consistent [7], i.e.,

lim
T→∞

R̂(T)

xδx∗
δ
(α; τ)

m.s.s.= Rxδx∗
δ
(α; τ). (22)

Additionally,
√
T[ R̂(T)

xδx∗
δ
(α; τ) − Rxδx∗

δ
(α; τ)] is asymptoti-

cally complex normal [7]. From the asymptotic normality
of CAF estimators that
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lim
T→∞

√
Tε(T)(α; n)δ(τ − nTb)

D=CN(0,�xδ (α; nTb),Cxδ (α; nTb)), n �= 0, (23)

where D= denotes convergence in distribution,
CN(μ,�,C) stands for a complex normal density where
μ is the location parameter, � is the covariance matrix,
and C is the relation matrix [14]. From Theorem 1 in [7],
the parameters in (23) can be given as

�xδ (α; nTb) = S0xδxδx∗
δx

∗
δ
(α)nTb,nTb (24)

and

Cxδ (α; nTb) = S2αxδxδxδxδ
(α)nTb,nTb , (25)

where Sγ

abcd(ω)
(∗)
τ ,ρ are the (conjugated) cyclic cross spec-

trum which is defined as [7]

Sγ

abcd(ω)τ ,ρ = lim
T→∞

1
T

T−1∑
t=0

∞∑
ξ=−∞

cum(a(t)b(t+τ), c(t+ξ)d(t+ξ +ρ))e−jωξ e−jγ t . (26)

The notation cum(.) in (26) represents the cumulant
which defined in [7]. As in [8], the cyclic spectrum of xδ(t)
can be written as

Sγ
xδxδ

(ω) = 1
Tb

δ(γTb) mod 1. (27)

By substituting (14) into (26), using (27), the parameters
of the cyclic cross spectrum can be simplified, accounting
for the whiteness of the sequence {a(k)}k∈Z when τ = nTb
and τ �= 0

�xδ (α; nTb) = 1
Tb

(28)

and

Cxδ (α; nTb) = 1
Tb

δ(2αTb) mod 1. (29)

From what that has been discussed above, we may draw
a conclusion that if ε(T)(α; n)δ(τ − nTb), the estimation
error of R̂(T)

xδx∗
δ
(α; τ) is not identically zero and behaves in a

random manner when τ = nTb, and
√
Tε(T)(α; n) follows

asymptotic normal distribution that

lim
T→∞

√
Tε(T)(α; n)

D=CN[ 0,
1
Tb

δ(2αTb) mod 1,
1
Tb

] .

(30)

By substituting (21) into (15), the estimation of the CAF
of x(t) can finally be expressed as

R̂xx∗(α; τ) = 1
T

T/2−1∑
t=−T/2

x(t)x∗(t − τ)e−jαt

= A2ej2π fcτ
{

1
Tb

δ(αTb) mod 1rpp∗(α; τ)

+
∑
n

ε(T)(α; n)rpp∗(α; τ − nTb)}
}
,

(31)

where
√
Tε(T)(α; n) is defined as in (30), and rpp∗(α; τ)

is defined as in (17). The first term in (31) is well dis-
cussed in [7], so we just focus on the second term. Though
it vanishes asymptotically as T → ∞, the second term
does exist, and due to the thumbtack-like AF rpp∗(α; τ) of
p(t), it makes some special peaks appear, in a stochastic
manner, in the regions nTb − Tc < τ < nTb + Tc and
−1/Tb < α < 1/Tb.
When T → ∞, the CAF of x(t) can be simplified to a

theoretical expression as

Rxx∗(α; τ) = A2ej2π fcτ

Tb
δ(αTb) mod 1rpp∗(α; τ), (32)

which has also been discussed in [8].
From (31), R̂xx∗(α; τ) follows an asymptotic complex

normal distribution that

lim
T→∞

√
T

[
R̂xx∗(α; τ) − Rxx∗(α; τ)

]
D=CN[ 0,�x(α; τ),Cx(α; τ)] .

(33)

Since the support of rpp∗(α; τ) is on −NcTc < τ < NcTc
and ε(T)(α; n) is zero-mean complex normal distributed,
the parameters in (33) can be defined as follows:

�x(α;τ)= A4

Tb

[|rpp∗(α;τ%2Tb)|2+ |rpp∗(α; (τ +Tb)%2Tb)|2
]

Cx(α;τ)= A4

Tb
ej4π fcτ

[
r2pp∗(α;τ%2Tb)+r2pp∗(α;(τ+Tb)%2Tb)

]
δ(2αTb) mod 1,

(34)

where τ%T = τ − round(τ/T) · T . More specifi-
cally, the asymptotic distributions of R̂xx∗(α; τ) at some
special points can be derived from (34). For instance,
lim

T→∞
√
TR̂xx∗(0; nTb) follows asymptotic normal distribu-

tions with the parameters defined as

�x(0; nTb) = S0xxx∗x∗(0)nTb,nTb = A4NcTcCx(0; nTb)

= S0xxxx(0)nTb,nTb = A4NcTcej4π fcτ .
(35)
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It is well known that the DSSS signal has a low prob-
ability of intercept because of its low power spectrum
density. The cooperative receiver can recover the informa-
tion using the correlation operation or the matched filter.
The advantage gained through the correlation receiver is
called spreading gain, while the non-cooperative receiver
can rarely benefit from it. One may notice that the PN
sequence c(n) does not appear in (35) and that the asymp-
totic covariance of R̂xx∗(0; nTb) is proportional to spread-
ing gain Nc, which means that non-cooperative receivers
can also take advantage of the spectrum spreading gain
using the CAF of the intercepted DSSS. In other words,
the estimation of CAF resembles the correlation operation
or the matched filter in some sense when the spreading
code sequence c(n) is unknown.
An example of the R̂xx∗(α; τ) is plotted in Figure 2. We

notice that peaks appear in the regions nTb − Tc < τ <

nTb + Tc, n = 1, 2 and −1/Tb < α < 1/Tb just as
discussed above.

Applications and asymptotic performance analyses
From the properties of the CAF estimation mentioned in
the above section, it can be seen that the CAF can be used
to check the presence of a DSSS, and it also has the poten-
tial of recognizing a DSSS. The following assumptions are
considered:

(A1) The intercepted DSSS signal r(t) is
BPSK-modulated both for the information and the
PN code sequence as in (10) and (11). The pulse
shape q(t) is assumed to be rectangular without
loss of generality.

(A2) The PN code sequence c(n) is unknown.
(A3) The bit period Tb is known. However, in practice,

Tb can also be estimated using the CAF of r(t),
while the estimation is not discussed here.

Figure 2 An example of the estimated CAF of x.

(A4) The signal r(t) is oversampled. The sample period
Ts is a fraction of Tc, and the sample clock is not
necessarily synchronized to the PN code in
practice.

For both the detection and recognition, a unified binary
hypothesis testing problem is formulated as follows:

H0 : r(t) = y(t) + n(t)
H1 : r(t) = x(t) + n(t) , (36)

where y(t) is a simple PAM signal defined as

y(t) = A
+∞∑

k=−∞
a(k)q(t − kTc)ej2π fct+θc , (37)

and x(t) is defined as in Equation 10. Equation 36 is a
typical formulation of a classification problem, but when
y(t) = 0, Equation 36 turns into a special case as a
detection problem.
From the discussion in the former section, it is seen

that peaks appear in particular regions for the magnitude
of the CAF of r(t). We find that the hypothesis testing
problem is actually equivalent to checking whether the
covariance of the CAF at τ = nTb, n �= 0, and α = 0 is
over a threshold or not. Thus, we present the test statistic
as follows:

λ = T
N2
0

N∑
n=1

R̂rr∗(0; nTb)R̂∗
rr∗(0; nTb), (38)

where N is the number of the lags. In (38), R̂rr∗(0; nTb)
represents the estimated CAF from the received DSSS r(t)

R̂rr∗(α; τ) = 1
T

T/2−1∑
t=−T/2

r(t)r∗(t − τ)e−jαt . (39)

For setting a threshold for the hypothesis testing problem,
the asymptotic distribution of λ will be derived next.
To get the asymptotic distribution of λ, it is necessary

to get the asymptotic distribution of R̂rr∗(0; nTb) first. The
asymptotic distribution of R̂rr∗(0; nTb) under Hi, i = 0, 1
is as follows:

lim
T→∞

√
TR̂rr∗(0;nTb)

D=CN
(
0,�i

r(0;nTb),Ci
r(0;nTb)

)
, n �=0,

(40)

where�i
r(0; nTb) andCi

r(0; nTb) are the asymptotic covari-
ance and relation under Hi defined similar to (24) and
(25) which can be expressed for T that is large enough as
follows (see Appendix 1 for more details):

�0
r (0; nTb) = S0rrr∗r∗(0)nTb,nTb = N2

0 + 2A2N0 + A4Tc

C0
r (0; nTb) = S0rrrr(0)nTb,nTb = A4Tcej4π fcnTb

�1
r (0; nTb) = S0rrr∗r∗(0)nTb,nTb = N2

0 +2A2N0+A4NcTc

C1
r (0; nTb) = S0rrrr(0)nTb,nTb = A4Tbej4π fcnTb . (41)
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The notation N0 in (41) shows the power spectrum
density of the complex additive white Gaussian noise
n(t) as in (9). From (41), it is easy to find the differ-
ence between the simple PAM signal and the DSSS
signal. The greater the spectrum spreading gain Nc
is, the more different the test statistic λ becomes.

Suppose that R̂rr∗(0; nTb)R̂∗
rr∗(0; nTb)n = 1, 2, . . .,N

is statistically independent and identically distributed.
Therefore, based on the central limit theorem, when N
is considerably large, the distribution of λ approaches
Gaussian distribution, i.e.,

lim
T→∞

λ|Hi
D=N(mi, σ 2

i ) (42)

with

m0 = N
N2
0
E[ R̂rr∗(0; nTb)R̂∗

rr∗(0; nTb)]

= N
N2
0
(N2

0 + 2A2N0 + A4Tc)

m1 = N
N2
0
(N2

0 + 2A2N0 + A4NcTc) (43)

and

σ 2
0 = NT2

N4
0
E{[ R̂rr∗(0; nTb)R̂∗

rr∗(0; nTb)

− E[ R̂rr∗(0; nTb)R̂∗
rr∗(0; nTb)] ]2 }

= N
N4
0
[ (N2

0 + 2A2N0 + A4Tc)
2 + (A4Tc)

2]

σ 2
1 = N

N4
0
[ (N2

0 + 2A2N0 + A4NcTc)
2 + (A4NcTc)

2] ,

(44)

where the derivation of the variants uses the fourth
moment of R̂rr∗(0; nTb) (see Appendix 2 for more details).
Particularly, when y(t) = 0, Equation 36 is reduced to a
simple detection problem, which can be used to decide
whether a DSSS signal exists in the intercepted signal or
not. In this case, the parameters of (42) can be reduced to
a simple detection version as

m0 = N (45)

and

σ 2
0 = N . (46)

By following the conclusion of (42), we present a DSSS
detector based on a constant false alarm rate approach. A
threshold η should be worked out according to a probabil-
ity of false alarm which is defined as PF

�=Pr{λ > η|H0}.
Because of the distribution of λ as in (42), η can be found

by searching for theGaussian distribution tables, such that
PF = Pr{λ ≥ η}. Then, the detector is given as

λ

H1≥
<
H0

η, (47)

which means that H1 holds if λ ≥ η, and vice versa. Since
the threshold η has been set, the probability of detection
can be evaluated using the distribution of λ under H0,
which is defined as PD

�=Pr{λ ≥ η|H1}.
Therefore, the detection algorithm for the presence of

the DSSS is implemented using the following steps:

Step 1. Using (39), estimate the CAF of received signal
r(t).

Step 2. Calculate the test statistic λ as in (38).
Step 3. Set an expected value of false alarm rate PF .

Using PF , find a threshold η by checking the
Gaussian distribution tables, such that
PF = Pr{λ ≥ η}.

Step 4. If λ ≥ η, declare that H1 holds, which means
that a DSSS is present in the received signal or
the type of the signal is DSSS, and vice versa.

Simulations
To verify the accuracy of asymptotic Gaussian distribu-
tions for the test statistics of the recognition problem
where y(t) is given by (37), histograms of estimated λ

for simulated signals are plotted in Figure 3, where they
are compared with the corresponding theoretical values.
The DSSS signals are generated using (10) with Nc = 31,
A = 1, N = 100 and for the SNR being fixed at −10 dB,
where the SNR is defined, in decibels, as

SNR = 10log10
A2

N0
. (48)

Figure 3 Theoretical and experimental distributions of test
statistics under both hypotheses, SNR = −10 dB.
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Figure 4 PD vs. PF in the recognition problem.

The chip period Tc = 8Ts and the carrier frequency
fc = 0.022/Ts, where Ts is the sample period. Set the
observation interval T be 104Ts. The theoretical distribu-
tions of λ getting through asymptotic analysis are repre-
sented by lines, and the experimental ones getting through
simulations are represented by markers.
The detectability of the presented test statistics is

investigated in terms of the receiver operation charac-
teristic. The probabilities of recognition PR are plotted
versus the probability of false alarm PF for the SNRs
from −12 to −15 dB in Figure 4 where the theoretical
curves are represented by lines, while the experimen-
tal results are represented by markers. The lowest false
alarm probability in the simulation in Figure 4 is 10−3,
so from the experiments, one can see that the recogni-
tion probability is above 0.9 when PF = 10−3 and the
SNR = −13 dB.
When the PAM signal y(t) = 0 in the hypothesis testing

problem of Equation 36, the problem becomes a detection
problem. The probabilities of detection PR versus the
probability of false alarm PF are plotted in Figure 5 for -

Figure 5 PD vs. PF in the detection problem.

Figure 6 PD vs.N when PF = 0.001.

the SNRs from −12 to −15 dB. The condition in
Figure 5 is the same with that in Figure 4, while the only
discrimination is the absence of y(t) in Figure 5. As we
can see from the comparison of Figures 4 and 5, the
detection probabilities are slightly greater than the recog-
nition probabilities for the absence of y(t) in the detection
problem.
Numerical experiments are carried out to evaluate the

influence of the summation number of the lags N on the
performance of the DSSS recognition. The results plotted
in Figure 6 demonstrate that the probability of recog-
nition PR increases rapidly as N becomes larger, and it
becomes almost 1 at a moderate number of N for which
the computational load will not be dramatically unaccept-
able. When SNR becomes lower, the situation becomes
worse in which increasingN will not make the PR increase
rapidly. Thus, it is necessary for one to choose a moderate
N to achieve an optimal tradeoff between the perfor-
mance and the computational load. The computational
load of the algorithm is the order of [NT(1+log2 T)] when
the FFT is used.

Figure 7 PD vs. PF with carrier offsets.
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Figure 8 PD vs. PF with different T .

A simulation is also performed to evaluate the effect
of the carrier frequency fc on the recognition problem of
DSSS. In Figure 7, the square, asterisk, and circle markers
represent PR when fc = 0, 0.022 and 0.053/Ts, respec-
tively. The simulation results in Figure 7 show that fc
cannot affect PR, which verify the theoretical analysis of
(42).
Next, the simulation is concerned with the asymptotic

performance of the proposed test statistics. Figure 8 shows
experimental probabilities of recognition when T = 256,
1,024, 4,096, and 8,192 with respect to theoretical val-
ues. Note that when the observation interval T increases,
the experimental probabilities rapidly approach the the-
oretical ones. The simulation demonstrates that it does
not need a very large T to get a good performance
in applications.

Conclusion
The asymptotic distributions of the estimated CA of DSSS
signals are derived. The variance of the estimation resem-
bles a series of thumbtack forms, and the cyclic period
equals the symbol period. Though it vanishes as the
observation time becomes infinite, the properties of the
estimated CA can be used in the detection and recog-
nition problem of DSSS signals. A good agreement is
obtained between theoretical and simulation results. The
simulations also show that non-cooperative receivers can
also take advantage of the spectrum spreading gain using
the CAF of the intercepted DSSS just as the cooperative
receivers do.

Appendix 1
Using the superimposition of the two independent zero-
mean complex time series (r(t) = x(t) + n(t)), the cyclic
cross spectrum can be expressed as [8]

Sγ
rrrr(ω)τ ,ρ =Sγ

nnnn(ω)τ ,ρ + Sγ
xxxx(ω)τ ,ρ + Sγ

xnxn(ω)τ ,ρ

+ Sγ
nxnx(ω)τ ,ρ + Sγ

xnnx(ω)τ ,ρ + Sγ
nxxn(ω)τ ,ρ .

(49)

Each quantity in (49) can be evaluated and expressed as

Sγ
nnnn(ω)τ ,ρ =Sγ

xnxn(ω)τ ,ρ =Sγ
nxnx(ω)τ ,ρ = Sγ

xnnx(ω)τ ,ρ

= Sγ
nxxn(ω)τ ,ρ = 0

(50)

because n(t) is a complex additive white Gaussian noise.
The conjugate cyclic cross spectrum can be expressed as

Sγ
rrr∗r∗(ω)τ ,ρ =Sγ

nnn∗n∗(ω)τ ,ρ +Sγ
xxx∗x∗(ω)τ ,ρ +Sγ

xnx∗n∗(ω)τ ,ρ

+Sγ
nxn∗x∗(ω)τ ,ρ + Sγ

xnn∗x∗(ω)τ ,ρ + Sγ
nxx∗n∗(ω)τ ,ρ , (51)

where each quantity can be evaluated and expressed as

Sγ
nnn∗n∗(ω)τ ,ρ = N2

0ηγ (δτ−ρ + δτ+ρe−jτω)

Sγ
xnx∗n∗(ω)τ ,ρ = N0Rxx∗(γ ; τ − ρ)e−jω(τ−ρ)

Sγ
nxn∗x∗(ω)τ ,ρ = N0Rxx∗(γ ; ρ − τ)e−jγ τ

Sγ
xnn∗x∗(ω)τ ,ρ = N0Rxx∗(γ ; ρ + τ)e−jωτ

Sγ
nxx∗n∗(ω)τ ,ρ = N0Rxx∗(γ ;−ρ − τ)ejωρejγ τ .

(52)

By using (32), substituting (52) into (51) and (50) into (49),
the asymptotic covariance and relation under Hi, i = 0, 1
can be respectively expressed as in (41).

Appendix 2
The characteristic function of a zero-mean complex Gaus-
sian variable z D=CN (0,�,C) is given by [14]

�z(ω) = exp
{
−1
4
[ω∗�ω + Re(ω∗2C)]

}
. (53)

The relation between the mth moment of a complex
random variable and the characteristic function is given in
[15]. The fourth-order moment of z can be achieved by

E[ z2z∗2] = 16
∂4�z(ω)

∂ω2∂ω∗2

∣∣∣∣
ω=0,ω∗=0

= 2�2 + |C|2.
(54)

Competing interests
The authors declare that they have no competing interests.

Author details
1Department of Electronic Engineering, Xidian University, Xi’an 710071, China.
2Shandong Institute of Aerospace Electronic Technology, Yantai 264670, China.

Acknowledgements
Wewant to thank the helpful comments and suggestions from the anonymous
reviewers. This research was supported partially by the Fundamental Research
Funds for the Central Universities (grant no. K5051202002).

Received: 1 February 2013 Accepted: 19 May 2013
Published: 28 May 2013



Bao et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:141 Page 9 of 9
http://jwcn.eurasipjournals.com/content/2013/1/141

References
1. G Burel, in IEEE Int. Symp. on Intelligent Signal Processing and

Communications Systems (ISPAC’2000). Detection of spread spectrum
transmission using fluctuations of correlation estimators (IEEE Honolulu,
5–8 Nov 2000)

2. G Burel, C Bouder, O Berder, in IEEE Global Telecommunications Conference
GLOBECOM’01, San Antonio, TX. Detection of direct sequence spread
spectrum transmissions without prior knowledge (IEEE New York, 2001),
pp. 236–239

3. Z Dong, H Hu, H Yu, The detection, symbol period and chip width
estimation of DSSS signals based on delay-multiply, correlation and
spectrum analysis. J. Electron. Inf. Technol. 30, 840–842 (2008)

4. Z Deng, L Shen, N Bao, B Su, J Lin, D Wang, in 2011 International
Conference onWireless Communications and Signal Processing (WCSP).
Autocorrelation based detection of DSSS signal for cognitive radio system
(IEEE New York, 2011), pp. 608–612

5. H Yang, X Wang, Y Zou, L Wang, Novel approach to detect the spread
spectrum signal and estimate period of PN based on blind source
separation. J. Comput. Inf. Syst. 7, 637–644 (2011)

6. U Ahnström, J Falk, P Händel, M Wikström, in Nordic Matlab Conference.
Detection and direction-finding of spread spectrum signals using
correlation and narrowband interference rejection (COMSOL A/S
Copenhagen, 21–22 Oct 2003)

7. Dandawaté A V, GB Giannakis, Statistical tests for presence of
cyclostationarity. IEEE Trans. Signal Proc. 42, 2355–2369 (1994)

8. P Rostaing, E Thierry, T Pitarque, Asymptotic performance analysis of
cyclic detectors. IEEE Trans. Commun. 47, 10–13 (1999)

9. M Tsatsanis, G Giannakis, Blind estimation of direct sequence spread
spectrum signals in multipath. IEEE Trans. Signal Proc. 45, 1241–1252
(1997)

10. G Burel, E Bouder, in Proc. Int. Symp. Military Commun. (MILCOM2000), Los
Angeles. Blind estimation of the pseudo-random sequence of a direct
sequence spread spectrum signals (IEEE New York, 2000), pp. 967–970

11. A Napolitano, M Tanda, Blind parameter estimation in multiple-access
systems. IEEE Trans. Commun. 49, 688–698 (2001)

12. WA Gardner, A Napolitano, L Paura, Cyclostationarity: Half a century of
research. Signal Process. 86, 639–697 (2006)

13. A Napolitano, Cyclic higher-order statistics: input/output relations for
discrete- and continuous-time MIMO linear almost-periodically
time-variant systems. Signal Process. 42, 147–166 (1995)

14. B Picinbono, Second-order complex random vectors and normal
distributions. IEEE Trans. Signal Process. 44, 2637–2640 (1996)

15. J Eriksson, E Ollila, V Koivunen, Essential statistics and tools for complex
random variables. IEEE Trans. Signal Proc. 58, 5400–5408 (2010)

doi:10.1186/1687-1499-2013-141
Cite this article as: Bao et al.: Asymptotic distributions of estimated cyclic
autocorrelations of DSSS signals and the applications. EURASIP Journal on
Wireless Communications and Networking 2013 2013:141.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Introduction
	Asymptotic distributions of the estimation
	Applications and asymptotic performance analyses
	Simulations
	Conclusion
	1
	2
	Competing interests
	Author details
	Acknowledgements
	References

