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Abstract

In this paper, we consider a system of cognitive radios that collaborate with each other with the aim of detecting the
random waveforms being emitted from licensed users. We study the problem of fusing the statistics from
collaborating sensors, assuming that they send their statistics to a base station, where the final decision is made. The
main contribution of this work is the derivation of a cognitive detector based on the generalized likelihood ratio test
and the use of spatial signatures, a novel concept that allows the detector to capture the spatial correlation inherently
embedded in measurements coming from neighboring sensors. The problem is formulated in terms of a model order
detection problem, where a set of active and inactive sensors can be distinguished, thus allowing the detector to
operate with a rank-reduced version of the observed covariance matrix. Since the estimation of this matrix may be a
challenge in large-scale networks, we study the application of shrinkage techniques to cope with the problem of
having more sensors than available observations. Finally, we analyze the performance of the proposed detection
scheme in the presence of log-normal shadowing effects and noise power uncertainties, the latter due to presence of
interferences. For the proposed detector, numerical results are drawn, showing a significant gain in performance
compared to traditional approaches.

1 Introduction
Due to the rapid growth in the field of radio com-
munication, most of the available spectrum has already
become congested, and the assignment of frequencies to
new services is currently a critical problem. Nevertheless,
studies show that assigned frequencies are not occupied
all the time, implying that the traditional way of spec-
trum allocation has resulted in underutilization of such
a precious resource. In that sense, cognitive radio (CR)
has the potential to become the solution to the spec-
trum underutilization problem. The CR paradigm is based
upon the coexistence within the same frequency band,
of both licensed and unlicensed users, in such a way
that the latter are allowed to utilize the free spectrum
holes left by the former in a dynamic and opportunis-
tic manner [1,2]. This technology, which is currently on
the forefront of next-generation wireless systems, and
regulatory as well as standardization bodies are start-
ing to support the idea of spectrum reuse [3,4]. Among
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the various functions of a CR system, reliable sensing
of the licensed or primary users’ (PU) spectrum is cer-
tainly of paramount importance. Such spectrum sensing
is performed by unlicensed or secondary users (SU), either
following a single-sensor or a multisensor approach. The
process of spectrum sensing with a single sensor is funda-
mentally limited by local impairments, such as the noise
level, the signal-to-noise ratio (SNR) wall [5], and radio
propagation effects such as path loss and fading experi-
enced by this sensor, which significantly deteriorate its
sensing performance [6]. In contrast, collaborative spec-
trum sensing relies on the combination of measurements
coming from multiple neighboring sensors [7]. Therefore,
collaborative approaches are able to circumvent most of
the propagation impairments of single-sensor spectrum
sensing due to the presence of diversity in the set of mea-
surements being processed at the fusion center [8]. It has
to be taken into account that for the case of large-scale
sensor networks, the signal of the PU will only reach to a
subset of sensors (i.e., those sensors located close to the
PU), which will typically be closely spaced, thus form-
ing a cluster having highly correlated observations [9].
This observation motivates our interest on exploiting the
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spatial information of the received signal at closely spaced
sensors, with the aim of providing an additional degree of
robustness to the overall network decision metric.
There have been some attempts to consider correlated

measurements into the formulation of collaborative sig-
nal detection. However, many of these studies consider
the presence of correlation as a deleterious effect [10,11]
rather than as a form of side information that can be
used to enhance the detection performance. Similarly,
most of the work done on correlated detection problems
just focuses on the discrimination between correlated
and independent observations, by means of exploiting
the structure of the covariance matrix. For this partic-
ular problem, the study in [12, Chap. 9-10] extensively
discusses the use of multivariate detectors for testing the
independence of random observations with the help of the
generalized likelihood ratio test (GLRT) based on covari-
ance matrices. These GLRT-based detectors typically end
up with a simple quotient between the determinant of
the sample covariance matrix and the determinant of
its diagonal version. Recently, covariance-based detection
techniques in [12] have been widely adopted for the detec-
tion of signals with distributed sensors, especially in the
context of cognitive radios [13,14]. However, these detec-
tors typically focus on detecting the presence of correlated
data, as a possible indication of the presence of signal
from a PU. They do not focus, instead, on exploiting the
actual correlation structure that impinges onto the sen-
sor field when an emitting PU is present. This observation
suggests that the performance can be further improved
by exploiting the sensor proximity information, leading to
new schemes based on the concept of location awareness
[15-17]. For the case of collaborative spectrum sensing,
prior work has demonstrated that information on the
sensor position can lead to more reliable spectrum sens-
ing, thus confirming the convenience of this information,
when available [10,18].
Motivated by these facts, we propose a modified GLRT-

based detector that achieves the regularization of the
unknown covariance matrix with the help of spatial sig-
natures. The concept of signatures would be somehow
equivalent to steering vectors in the field of array sig-
nal processing [19], which are adopted herein as a way
to capture the structure of spatially correlated measure-
ments between neighboring sensors. Furthermore, select-
ing just some of the sensors of the network allows the
proposed detector to operate on a rank-reduced subspace
of the received signal, thus achieving a significant SNR
gain. This approach, which was preliminary introduced
in our earlier work [20], is extended herein to the prob-
lem of detecting Gaussian random waveforms emitted
from a PU with unknown covariance matrix. This is in
contrast to the deterministic approach considered in [20]
where an unknown but constant waveform was assumed

to be transmitted by the PU and where ideal propaga-
tion conditions as well as perfect knowledge on the signal
parameters was also assumed. In that sense, the present
contribution offers a much more realistic approach by
assuming the emission of random waveforms, by includ-
ing the presence of shadowing and noise power uncer-
tainty, and by taking into account the practical problems
that may arise in large-scale networks when estimating the
unknown covariancematrix of the PU. The latter is indeed
related to the required number of observations to avoid
ill-conditioning in the estimation of this matrix, which
is typically on the order of the number of sensors [21].
Therefore, detection algorithms requiring the inverse or
the determinant of this matrix can no longer be applied
for short observation periods. To cope with this practi-
cal problem, the present work incorporates the concept of
shrinkage estimation, a method that is found to improve
the stability of estimated covariance matrices with short
data records [21]. Simulation results have been obtained
to compare the proposed detection schemes with and
without spatial signatures, as well as with and without
shrinkage estimation, showing that the introduction of
spatial structures and shrinkage estimation significantly
improves the overall detection performance.
The remaining of the paper is organized as follows. In

Section 2, the problem statement and details about the
signal model are presented. Section 3 presents the struc-
tured signal model based on the concept of spatial signa-
tures, and 4 introduces the proposed detection algorithm.
In 5 we briefly discuss the shrinkage method for estimat-
ing the covariance matrix. Finally, simulation results are
presented in 6, and conclusions are drawn in Section 7.

2 Problem statement
We consider herein a large cognitive radio network where
both primary and secondary users coexist in the same
geographical area. We assume an infrastructure-based
secondary network [22], where each cell consists of a sin-
gle base station (BS) working as a fusion center and K
SUs working as sensors. We also assume that sensors are
deployed in the region following a uniform distribution
and that the sensors and PU remain stationary in their
position during the observation interval. The signal power
emitted by the PU decays isotropically as a function of
distance and is affected by a significant path loss attenu-
ation due to the large area being covered by the network,
as well as by fading/shadowing effects. As a consequence,
only a subset of sensors will be able to receive enough
power levels so as to easily detect the presence of the PU
with a given detection performance [23,24]. The rest of the
sensors will typically receive extremely weak power lev-
els, and this observation allows us to distinguish between
the so-called active and inactive sensors, respectively. In
the process of collaborative spectrum sensing, the BS
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coordinates the opportunistic spectrum access of all SUs
within its cell. This is done by directing sensors to per-
form spectrum sensing periodically. At the end of each
sensing period, all the sensors report their measurements
to the BS, which makes the final decision about the pres-
ence or absence of the PU [8]. Once the final decision is
made at the BS, it is broadcast back to SUs within the cell
in order to inform them about the presence or an absence
of the PU. Similarly to [25], we further assume that the
BS knows the location of the SUs, either through the
use of positioning techniques or through some calibration
process.

2.1 Signal model and test statistics at the SU
In the collaborative sensing system considered herein, we
assume that sensors simply measure the PU signal power
on a target frequency band using an energy detector, and
they report their sensing results to the BS [26]. This is
a simplistic interpretation of collaborative sensing, which
indeed covers a much wider area [27], but it allows us to
concentrate on the specific problem of energy detection.
Indeed, the energy detector is the simplest detector that
can be constructed in practice. It uses very limited a pri-
ori information regarding the signal since the detection is
based only on the received signal power. In the sequel, we
will consider an observation interval of n = 1, 2, . . . ,N
sensing periods. During the nth sensing period, every SU
captures a snapshot of m = 1, 2, . . . ,M received signal
samples in order to estimate the received signal power. At
the ith sensor (i.e., SU), the corresponding received sam-
ples are denoted by yi(m; n), and two possible hypotheses
arise for the spectrum sensing problem under study. On
the one hand, we have the null hypothesis denoted byH0,
which represents the case in which no PU signal is present
in the received samples yi(m; n). On the other hand, we
have the signal-present hypothesis denoted by H1 which
represents the case in which some PU signal is actually
present in these samples. The signal model for these two
hypotheses can be formulated as follows:

H0 : yi (m; n) = zi (m; n)

H1 : yi (m; n) = gi (m; n) + zi (m; n)
i = 1, 2, . . . ,K ,

(1)

where zi(m; n) are the i.i.d. zero-mean samples encom-
passing the aggregate of random disturbances affecting
each sensor, whereas gi(m; n) are the received signal sam-
ples corresponding to the randomwaveform emitted from
the PU. Based on these samples, the energy detector at
sensor i for the nth sensing period is given by:

Ti(n) = 1
M

yTi (n)yi(n) = 1
M

M∑
m=1

y2i (m; n) (2)

where yi(n) �
[
yi(1; n), yi(2; n), . . . , yi(M; n)

]T .

It is interesting to note that the energy detector in (2)
can fairly be approximated by a Gaussian distribution in
virtue of the central limit theorem (CLT), provided that
M is sufficiently large1. Moreover, it should also be taken
into account that the overall noise in a wireless receiver
is often considered to be an ensemble of various effects,
including not only the thermal noise contribution but also
other degradations such as the presence of interference
signals from distant PUs or from other opportunistic SUs.
All these random disturbances are included within the
zi(m; n) samples in (1), whose overall unknown power will
be denoted herein by σ 2

ε,i
.= E

[|zi(m; n)|2]. For the sake of
clarity, we will loosely refer to these samples as noise sam-
ples. In practice, and because of the unknown and random
nature of the underlying disturbances, it is very difficult
to determine the exact noise powers σ 2

ε,i even if we cali-
brate the system [28]. In some situations, this noise power
uncertainty may lead to an increase of the SNRwall, which
can be understood as the minimum SNR below which
a signal cannot be detected, thus hindering the overall
detection process [5]. Consequently, and from a practi-
cal point of view, it is of interest to assume that σ 2

ε,i is
unknown. A similar statement can be made for the power
being received from the PU at sensor i, which is referred
herein as Pε,i � E

[|gi(m; n)|2], and is also considered to
be unknown due to the unknown location of the PU and
the presence of shadowing/fading that may alter the actual
received power from its nominal value.
With the above considerations, and in virtue of the

Gaussian assumption in (2) provided by the CLT, the
test statistics for the energy detector at sensor i can be
modeled by the following Gaussian distribution [26]:

H0 :Ti(n) ∼ N
(

σ 2
ε,i,

2σ 4
ε,i

M

)

H1 :Ti(n) ∼ N
(
Pε,i + σ 2

ε,i,
2

(
P2ε,i + 2Pε,iσ

2
ε,i

)
M

+ 2σ 4
ε,i

M

)
(3)

where both σ 2
ε,i and Pε,i are assumed to remain con-

stant during the whole observation interval of N sensing
periods, and thus, they can be treated as unknown deter-
ministic parameters herein. For the sake of clarity, note
that we have used the notationN (μ, σ 2) for some

{
μ, σ 2}

in order to represent a Gaussian (i.e., normal) distribution
with mean μ and variance σ 2.

2.2 Signal model and test statistics at the BS
Every sensor calculates an estimate of its received power
level according to (2) and transmits this power estimate to
the BS through a reporting channel. At the BS, the power
estimates received from the K sensors at the nth sens-
ing period are stacked into the (K × 1) vector x(n) �
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[ x1(n), . . . , xK (n)]T , where xi(n) stands for the noisy and
attenuated version of Ti(n) after propagation through the
reporting channel from sensor i to the BS [29]. Although
the actual propagation effects of the K reporting channels
are assumed to be unknown herein, they are considered to
remain constant within the observation interval ofN sens-
ing periods. Therefore, the received signal model at the BS
can still be expressed as some noisy contribution under
hypothesis H0 and some signal plus noise contribution
under hypothesisH1 as follows:

H0 : x(n) = w(n)

H1 : x(n) = s(n) + w(n)
(4)

for n = 1, . . . ,N and with w(n) ∼ N (μw,�w) a (K × 1)
vector containing the reported noise power levels at each
sensor when no PU is present, whereas s(n) ∼ N (μs,�s)
is a (K × 1) vector with the PU power levels. It is impor-
tant to recall here that both w(n) and s(n) are power
measurements, and thus, the mean vectors μw� E [w(n)]
and μs� E [s(n)] contain the mean noise powers and the
mean signal powers at each sensor, respectively, whereas
the covariance matrices �w � E [(x(n) − μw)(x(n)−
μw)T

]
and �s� E

[
(x(n) − μs)(x(n) − μs)T

]
represent

the variability of the corresponding power estimates being
reported by the sensors. At the BS, and because of the dis-
turbances that may appear due to propagation through the
reporting channel, we will assume that power measure-
ments under hypothesis H0 are i.i.d. with some common
variability σ 2

w in such a way that �w = σ 2
wIK for some

unknown σ 2
w, and IK the (K×K) identity matrix. Note also

that both μs and �s depend on the characteristics of the
random waveform being emitted by the PU and its posi-
tion with respect to the K sensors. Finally, and for the sake
of clarity, we can express the signal model at the BS to be
Gaussian distributed as follows:

H0 :x(n) ∼ N (μ0,�0)

H1 :x(n) ∼ N (μ1,�1)
(5)

where μ0 � μw and �0 � �w under the H0 hypothesis,
whereas μ1 � μs + μw and �1 � �s + �w under the
H1 hypothesis. In practice, �s will depart from a diagonal
matrix, and the correlation represented by non-diagonal
elements in �s will typically indicate the presence of
correlated shadowing effects in the received PU signal
strengths [10].

3 Signature-based problem formulation
3.1 Preliminaries
For an improved sensing performance, intuition suggests
that the detection rule should rely on the observations
of active sensors, thus discarding observations from the
rest of inactive sensors. This approach can be understood
as a kind of rank reduction method, whereby removing

the most noisy dimensions of the received signal subspace
leads to a significant improvement of the overall signal-
to-noise ratio. Moreover, since active sensors are typically
located close to the PU, and also close to each other form-
ing a spatial cluster, this side information should also be
considered in the design of the detector. It is for this
reason that one of the key points of this paper is the iden-
tification of the set of active sensors, a purpose that will
be achieved through the help of model order selection
techniques and the spatial structure of the neighboring
sensors. To this end, we propose a structured signal model
based on the concept of spatial signatures. For the case of
the ith sensor, its signature is a vector that contains the
attenuation terms to all the K sensors of the network, in
such a way as if a signal source was located at the ith sen-
sor position. Thus, the ith signature is a (K × 1) vector hi
as follows:

hi �
[
h

(
d1,i

)
, . . . , h

(
di−1,i

)
, 1, h

(
di+1,i

)
, . . . , h

(
dK ,i

)]T .
(6)

where h
(
di,j

) = d−β
i,j takes into account the determinis-

tic attenuation loss due to the distance between ith and
the jth sensor locations, with β as the known path loss
exponent. We assume herein, similarly to [25], that the BS
has complete knowledge of the sensors’ positions in the
network.

3.2 Full-structured signal model
The signatures of all K sensors can be stacked into the
so-called signatures matrix H �[h1,h2 . . . ,hK ], which is
typically a full-rank (K ×K) matrix having K signatures as
columns. Based on this formulation, the PU power levels
received at any of the sensors can be expressed as a lin-
ear combination of the network signatures. That is to say,
the values of s(n) in (4) can be expressed as s(n) = Ha(n),
thus making explicit the role played by the spatial struc-
ture of the network, through the dependence onH. Then,
the signal model in (4) can be rewritten as:

H0 :x(n) = w(n)

H1 :x(n) = Ha(n) + w(n)
(7)

where a(n) ∼ N (μa,�a) is a (K×1) vector containing the
random weights of each signature onto the received sig-
nal. That is to say, the elements within a(n) quantify the
importance of each of the sensor signatures in the recon-
struction of the signal field emitted by the PU. Therefore,
by selecting the largest weights, we are actually choosing
the most relevant sensors on the basis of their physical
proximity to the PU. The closer the sensor is located to the
PU, the more aligned will be its signature vector to s(n),
and thus, the larger the weight assigned to this signature.
Using this linear combination of signatures in (7), we are
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taking into account both the distances between neighbor-
ing sensors and the location of the sensors with respect to
the PU, thus fully exploiting the spatial information con-
tained within the received signals. From a statistical point
of view, the only difference with respect to the conven-
tional unstructured signal model in (4) to (5) is that now,
a specific structure is imposed onto both μ1 and �1, with
μ1 = Hμa + μw and �1 = H�aHT + σ 2

wIK . Finally,
once we have the signal model with the embedded spatial
structure, the next step will be to select the relevant sig-
natures contributing to the received signal, a topic that is
discussed in Section 3.3.

3.3 Rank-reduced structured signal model
The PU will typically appear at an unknown and random
position, and it will be surrounded by a given number of
L ≤ K active sensors. In these circumstances, and in order
to improve the spectrum sensing detection performance,
we need to select the relevant signatures of active sen-
sors so that the rest of K − L signatures can reasonably
be ignored. In some sense, we are in front of a detection
problem where it is convenient to use a rank-reduced ver-
sion of the signal model in (7). To do so, we will select
the L most relevant signatures using model order selec-
tion techniques [30]. Once we select the set of L active
sensors, their signatures will be stacked into a truncated
(K × L) matrix HL. Similarly, the selected weights will be
stacked into a (L × 1) vector aL(n), which is the reduced
version of vector a(n) in (7). The resulting rank-reduced
signal model can be written as:

H0 : x(n) = w(n)

H1 : x(n) = HLaL(n) + w(n)
(8)

where the random weights aL(n) continue to be Gaus-
sian distributed with aL(n) ∼ N (μaL ,�aL). Therefore,
the difference with respect to the full structured model
in (7) is that now, we have μ1 = HLμaL + μw and
�1 = HL�aLHT

L +σ 2
wIK , both depending on the unknown

model order L. It is important to remark that in addition
to the spatial information provided by the use of spa-
tial signatures, the rank-reduced version of matrix H will
indeed allow us to benefit from an equivalent SNR gain
by removing those subspace dimensions where the noise
contribution is the dominant effect [31].

4 Detection algorithms
In our spectrum sensing detection problem, there are
unknown parameters under both hypotheses that prevent
us from adopting the well-knownNeyman-Pearson detec-
tor. This obstacle is typically circumvented by adopting
the GLRT approach, whereby the unknown parameters
are substituted by their maximum likelihood estimates
resulting in a simple and asymptotically optimal detec-
tor [32]. The main drawback, however, occurs when the

dimension of the unknown signal vector (i.e., the model
order) is unknown [33]. This situation occurs in the sig-
nal model (8), where the model order (i.e., the number of
L active sensors) is actually unknown, and thus, we cannot
use the GLRT in a straightforward manner. Instead, we
need tomodify the GLRT in order to determine the appro-
priate value for L to be used, a task that can be done using
model order selection techniques [30]. In Section 4.1, we
will derive the traditional detector based on the conven-
tional GLRT, which will be used as a benchmark. Since
no spatial information is considered in this detector, it
will be referred to as the unstructured GLRT. Later on,
in Section 4.2, we will derive an improved detector that
incorporates both spatial information and the minimum
description length (MDL) criterion for carrying out the
model order selection. For the sake of clarity, this latter
detector will be referred to as the structured GLRT.

4.1 Unstructured GLRT
In the original detection problem to be solved in (5), we
need to estimate the unknowns {μ0,�0} under hypothe-
sisH0, as well as the unknowns {μ1,�1} under hypothesis
H1. To do so, we will assume that the BS has available
the measurements of K sensors for N consecutive sens-
ing periods which are stacked into the (K × N) matrix
X � [x(1), . . . , x(n)]. In these circumstances, the expres-
sion for the traditional or unstructured GLRT (UG) can be
written as:

�UG (X) =
max
μ0,�0

f (X;μ0,�0)

max
μ1,�1

f (X;μ1,�1)
≷H0

H1
γ (9)

where γ is a threshold that determines a given probability
of false alarm. Following the GLRT approach, the values
of the unknown parameters required in (9) are substituted
by their maximum likelihood estimates (MLE). For the
unknown mean vector μ1, its MLE can easily be found as:

μ̂1 = x̄ � 1
N

N∑
n=1

x(n). (10)

Regarding the unknown covariance matrix �1, its MLE
can be written as [12, Lemma 3.2.1]:

�̂1 = �̂x = R̂x − x̄x̄T (11)

where R̂x � 1
N

∑N
n=1 x(n)xT (n). It is interesting to note

that the correlation matrix R̂x and the mean vector x̄
are the sufficient statistics under hypothesisH1. Similarly
under hypothesis H0, the MLE of μ0 can be obtained as
μ̂0 = x̄, and the ML estimate of σ 2

w can be found as:

σ̂ 2
w = 1

K
Tr(�̂x) (12)
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where Tr(·) is the trace operator. Replacing all the
unknowns with their estimates, and after somemathemat-
ical manipulations, the final expression for the unstruc-
tured GLRT in (9) turns out to be given by:

�UG (X) = |�̂x|[
1
KTr(�̂x)

]K ≷H0
H1

γ . (13)

The test statistic in (13), which does not take into
account any spatial information, is nothing but the tradi-
tional Mauchly’s sphericity test [12, Chap 10]. The detec-
tor operates with the full sample covariance matrix �̂x,
and it neither considers the relevance of active sensors
nor the spatial structure as side information. A modified
sphericity test has been proposed in [34,35] by exploiting
the fact that the signal covariance matrix may be of low-
rank dimensionality. However, the resulting detector does
not really exploit the spatial structure of neighboring sen-
sors. In that sense, the performance of this unstructured
sphericity test-based detector can be further improved by
incorporating the proposed concept of spatial signatures,
which acts as an additional side information and allows
us to select only those particular observations reported by
active sensors. This novel feature will be introduced next
in Section 4.2.

4.2 Structured GLRT with spatial information
Aswe have alreadymentioned in Section 3.3, the key point
in the proposed rank-reduced signal model in (8) is the
determination of the spatial model order L. Since L ≤ K ,
the detector with spatial information can operate with
a reduced signal subspace by rejecting those dimensions
(i.e., those spatial signatures) where the PU signal contri-
bution is almost negligible. Therefore, some performance
gain is expected compared to traditional unstructured sig-
nal detectors. The process of determining the optimal L is
coupled with the one of signal detection, and this leads to
the following structured GLRT (SG) detector:

�′
SG (X) = max

1≤l≤K
�SG,l(X)

= max
1≤l≤K

⎧⎪⎨⎪⎩
max
μ0,�0

f (X;μ0,�0)

max
μ1,l ,�1,l

f
(
X;μ1,l,�1,l

)
⎫⎪⎬⎪⎭ ≷H0

H1
γ .

(14)

The denominator in (14) is the likelihood function of
the observation under hypothesis H1, which includes the
unknown model order L as an additional parameter to
be determined by searching the maximum of the GLRT
from l = 1, . . . ,K . As a result, the mean vector and the
covariance matrix under hypothesis H1 now depend on
the tentative model order l, according to the rank-reduced

spatial structure considered in (8). That is, for the mean
vector, we have μ1,l � Hlμal + μw and for the covariance
matrix �1,l � Hl�alHT

l + σ 2
wIK .

The problem with (14) is that the inner GLRT �SG,l(X)

monotonically increases as a function of l, and thus, the
result to the overall search process is always given by
the test statistic having the maximum model order l =
K . This occurs because the tentative probability density
functions f (X;μ1,l,�1,l) are a set of nested families. The
net effect is that the test statistic will always overesti-
mate the actual model order, thus including dimensions
of the signal subspace where there is almost no signal,
but only noise is present. This results in a reduction of
the power of the detector to produce a desired result
[33]. This problem will occur whenever the number of
signal components is unknown, and that is why the con-
ventional GLRT poses some limitations in this type of
nested or model order-based detection problems. To cope
with this problem, several model order selection crite-
ria have been proposed in the literature. They are based
on the incorporation of an additional penalty function,
which prevents the likelihood function to increase with-
out bound when increasing the model order [30]. Herein,
we will consider the well-known MDL criterion. With
the help of this selection technique, both the estima-
tion of the true model order L and the evaluation of
the GLRT can be done jointly. The detector combining
the structured GLRT and the MDL can be expressed as
follows:

�SG (X) = min
1≤l≤K

{
l logK − 2 log�SG,l(X)

}
≷H0

H1
γ

(15)

where l logK is a penalty function that prevents the GLRT
statistic to monotically increase with increasing model
orders. In (15), �SG,l(X) stands for the structured GLRT
statistic while considering L̂ = l as the tentative model
order, whose likelihood functions under both H1 and H0
hypotheses will be derived in Section 4.2.1. Later on, in
Section 4.2.2, we will propose an algorithm to evaluate the
structured GLRT in (15) and take advantage of the avail-
able spatial information embedded onto the signatures
matrix.

4.2.1 Derivation of the structured GLRT for the tentative
model order L̂ = l

In this section, we will derive the expression for the struc-
tured GLRT �SG,l(X) required in (15), which assumes a
tentative model order L̂ = l for the parameters

{
μ1,l,�1,l

}
in the likelihood function under hypothesisH1. Bearing in
mind the Gaussian nature of the received measurements
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at the BS, as already introduced in Section 3.3, the likeli-
hood function in the denominator of �SG,l(X) in (14) is
given by:

f
(
X;μ1,l,�1,l

) = ∣∣�1,l
∣∣−N

2 exp
[
−N

2
tr

(
�−1

1,l �̂x,l
)]
(16)

where the reduced rank spatial covariance matrix �al is
embedded into �1,l, since �1,l = Hl�alHT

l + σ 2
w1IK .

Regarding the sample covariance matrix �̂x,l in (16), it has
the following expression:

�̂x,l = 1
N

N∑
n=1

(
x(n) − Hlμal

) (
x(n) − Hlμal

)T (17)

where the MLE of the unknown mean vector μal is found
as μ̂al = (

HT
l Hl

)−1HT
l x̄, where x̄ � 1

N
∑N

n=1 x(n). Sub-
stituting μ̂al into (17) and using [12, Lemma 3.2.1], we can
write (17) as:

�̂x,l = R̂x − x̄x̄T + (
x̄ − x̄p,l

) (
x̄ − x̄p,l

)T (18)

where x̄p,l � PHl x̄, and PH1 �Hl
(
HT

l Hl
)−1HT

l is
the projection matrix onto the l-dimensional subspace
spanned by rank-reduced spatial signatures matrix Hl.
The vector x̄p,l is therefore the projected version of the
mean vector x̄ onto the subspace spanned by the columns
(i.e., signatures) of Hl. Next, in order to find the MLE of
�al , we can apply the logarithm on both sides of (16), take
the derivative w.r.t. �al , and equate to zero. By doing so,
we get [36, Sec. 8.5 ],

�̂al = H†
l

[
�̂x,l − σ̂ 2

w1IK
]
H†

l
T

(19)

where H†
l�

(
HT

l Hl
)−1HT

l is the Moore-Penrose pseu-
doinverse, and σ̂ 2

w1 is given by:

σ̂ 2
w1 =

Tr
[
P⊥
Hl

�̂x,l
]

K − l + 1
(20)

with P⊥
Hl

� IK − PHl , the orthogonal projection matrix
of PHl . In (20), the variance σ 2

w1 of power estimates at the
BS is estimated using the projected version of the obser-
vation vector x(n) onto the noise subspace, since P⊥

Hl
�̂x =

P⊥
Hl

(
R̂x − x̄x̄T

)
= 1

N
∑N

n=1

[
P⊥
Hl
x(n)

] [
P⊥
Hl
x(n)

]T −
P⊥
Hl
x̄

(
P⊥
Hl
x̄
)T

. Consequently, for the overall covariance

matrix �1,l in (16) we have,

�̂1,l = PHl

[
�̂x,l − σ̂ 2

w1IK
]
PHl + σ̂ 2

w1IK (21)

which can also be written as,

�̂1,l = PHl�̂x,lPHl + 1
K − l + 1

Tr
[
P⊥
Hl

�̂x,l
]
P⊥
Hl

.

(22)

On the other hand, under hypothesis H0, we need to
determine the unknown parameters {μ0,�0} required by
likelihood function in the numerator of �SG,l(X) in (14).
Regarding the MLE of �0 = σ 2

w0IK , it can be obtained
from σ̂ 2

w0 = 1
KTr

(
R̂x − x̄x̄T

)
� 1

KTr
(
�̂x,l

)
, where we

already used the fact that μ̂0 = x̄. With these results
in mind, we can obtain the expression for the structured
GLRT with tentative model order L̂ = l as:

�SG,l(X) �
∣∣σ̂ 2

w0I
∣∣−N

2 exp
[−N

2
]

∣∣∣�̂l

∣∣∣−N
2 exp

[−N
2
] =

∣∣∣�̂1,l

∣∣∣N2
σ̂KN
w0

. (23)

Substituting �̂1,l = PHl�̂x,lPHl + σ̂ 2
w1P

⊥
Hl

and σ̂ 2
w0 =

1
KTr(�̂x,l), and after some mathematical manipulations,
(23) can equivalently be expressed as:

�SG,l(X) �
∣∣∣PHl�̂x,lPHl + 1

K−l+1Tr(P
⊥
Hl

�̂x,l)P⊥
Hl

∣∣∣N2[
1
KTr(�̂x,l)

] KN
2

.

(24)

The expression in (24) provides a closed-form expres-
sion for the structured GLRT with tentative model order
L̂ = l. The main feature of this expression is that it selects
the most relevant spatial signatures, and then on the
basis of these signatures, it reduces the rank of the mea-
surements covariance matrix, �x. This statement can be
explained by defining 	l � PHl�̂x,lPHl and noticing that
	l = PHl R̂xPHl − PHl x̄x̄TPHl , which can be equivalently
expressed using the properties of projection matrices as
	l � 1

N
∑N

n=0
[
PHlx(n)

] [
PHlx(n)

]T − [
PHl x̄

] [
PHl x̄

]T .
The expression of 	l clearly shows that it is indeed the
sample covariance matrix of a vector achieved by pro-
jecting the received observations x(n) onto the specific
subspace being spanned by the signatures of active sen-
sors. This will indeed result in an SNR gain due to
the projection of the observation vector onto a reduced
dimensionality subspace.

4.2.2 Implementation of the structured GLRTwithMDL
model order selection

The next step is to substitute the expression in (24) into
(15) and perform the joint PU signal detection and model
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Algorithm 1 MDL-based structured GLRT.
1. With the received observation vectors x(n), n = 1, 2, · · · ,N , we calculate:

R̂x = 1
N

N∑
n=1

x(n)xT (n),x̄ = 1
N

N∑
n=1

x(n)and �̂x,0 = R̂x − x̄x̄T .

2. Find μ̂a = H−1x̄.
3. Take the absolute values

∣∣μ̂a
∣∣ and sort

∣∣μ̂a
∣∣ in descending order, which results in μ̃a = sort

(∣∣μ̂a
∣∣) .

4. Reorder the signature vectors inH according to the sorted μ̃a, to get H̃.
5. Implement the detector as:

• Initialize t = 〈 〉 and l = 1.
• while l ≤ K do:

– Set μal=μ̃a(1 : l).
– SetHl=H̃(1 : l).
– Calculate PHl = Hl

(
HT

l Hl
)−1HT

l .
– Calculate x̄p,l = PHl x̄.

– Calculate �̂x,l in (18) as �̂x,l = �̂x,0 + (
x̄ − x̄p,l

) (
x̄ − x̄p,l

)T .
– Calculate �SG,l(X) in (24).
– Push the result of l logK − 2 log�SG,l(X) onto the vector t.
– l = l + 1.

• end while
• �SG(X) = min {t} ≷H0

H1
γ as in (15).

order selection from l = 1, . . . ,K . To do so, we summa-
rize the implementation of the resulting detector in the
pseudocode description indicated in Algorithm 1.

5 Improved estimation of the covariancematrix
Both the unstructured and the structured GLRT detectors
presented in this paper are found to be based on the
determinant of covariance matrices, which are typically
estimated through the sample covariance, as in (11) and
(18), respectively. Therefore, and although it is often taken
for granted, a critical requirement for the GLRT detec-
tors under study is that, the sample covariance matri-
ces must be non-singular and positive definite. To this
end, we have to make sure that the number of avail-
able observations at the BS, given by N, is much larger
than the number of sensors K (i.e., N 	 K). How-
ever, in many sensor network deployments, we typically
have a very large K, and thus, using a number of sam-
ples greater than K is a requirement that is difficult to
fulfill in practice. In these circumstances, it is there-
fore needed to estimate the covariance matrix with fewer
samples while keeping a reasonable detection perfor-
mance. Stein in [37], introduced the concept of shrinkage
applied to high-dimensional estimators, and he derived

the striking result that the performance ofMLE can always
be improved upon by shrinking with a given factor α

(shrinkage intensity). This improved covariance estima-
tor is well-conditioned and always positive definite, even
for small sample sizes [21]. The basic principle of shrink-
ing estimators is to shrink the variation of the eigenvalues
in the sample covariance matrix, proceeding as follows:

�̆x = αF0 + (1 − α) �̂x, 0 ≤ α ≤ 1 (25)

where F0 is the target matrix, which is chosen to be
positive definite (and therefore nonsingular) and well-
conditioned, and we assume it herein to be given by
F0 = 1

KTr(�̂x)IK . The interested reader can find fur-
ther details about the target matrix in [21]. Now, for the
expression in (25), we need to choose an appropriate α,
the shrinkage intensity parameter. In [38], the authors
discuss shrinkage methods that calculate the intensity
parameter on the basis of received observations. They
present what they call an oracle approximating shrinkage
(OAS) estimator, which is an iterative method presented
in Algorithm 2.
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Algorithm 2 The oracle approximating shrinkage estimator (OAS).
1. Initialize α and δtarget.
2. Implement the shrinkage estimation as:

• while covariance matrix estimation error δ > δtarget do:

– Calculate �̆
(k)
x = α(k)F0 + (

1 − α(k)) �̂x.

– Calculate α(k+1) =
(
1− 2

K
)
Tr

(
�̆

(k)
x �̂x

)
+Tr2

(
�̆

(k)
x

)
(
N+1− 2

K
)
Tr

(
�̆

(k)
x �̂x

)
+(

1−N
K

)
Tr2

(
�̆

(k)
x

)
• end while

In Algorithm 2, δTarget represents a specified threshold
for the covariance matrix estimation error. The algo-
rithm stops once the estimation error turns out to be less
than this threshold. Once the algorithm has converged,
it reaches the following stable value of the shrinkage
parameter,

αapprox≈min

⎧⎨⎩
(
1 − 2

K
)
Tr(�̂2

x) + Tr2(�̂x)(
N + 1 − 2

K
) [

Tr(�̂2
x) − 1

K Tr
2(�̂x)

] , 1
⎫⎬⎭ .

(26)

In our detection schemes, we will use αapprox in (26),
the approximate value of the shrinkage parameter in the
covariance matrix estimation process indicated in (25).

6 Simulation results
The motivation of this section is to assess the perfor-
mance of the proposed structured GLRT detector in (15)
and (24), which takes advantage of the novel concept
of spatial signatures introduced in Section 3 and whose
implementation is described in the pseudocode descrip-
tion of Algorithm 1. For the analysis to be conducted
herein, we consider a wireless sensor network with a total
ofK = 30 sensors deployed in a squared field. The sensors
are randomly placed within the field following a uniform
distribution, and we assume that the PU appears at an
unknown position. We have tested the detectors consid-
ered in this paper for many different uniformly distributed
topologies of K sensors, and we have found that the
results have similar characteristics for different random
topologies.
For the signal generation, we are assuming a quasistatic

block-fading channel in which both the PU received
power and the noise power at each sensor do remain con-
stant within the observation interval of N measurements.
For a given observation interval, the PU received power at
sensor i is given by Pε,i = P0d−β

i 10Xσ /10, where P0 is the
power at a reference distance from the PU, β is the signal
decay exponent with typical values from 2 to 5, di is the

Euclidean distance between the PU and sensor i, and Xσ is
the value of the log-normal shadowing. From one obser-
vation interval to the following, we allow the shadowing to
vary according to Xσ ∼ N (0, σ 2

X), with σX as the standard
deviation [26]. Regarding the noise power at sensor i, we
are assuming σ 2

ε = 10�σ /10 for all sensors, with �σ mod-
eling the log-normal noise uncertainty as �σ ∼ N (0, σ 2

�σ
),

from one observation interval to the following [39]. At the
BS, the variability of the received power measurements is
given by σ 2

w = 2σ 4
ε

M + σ 2
f , where the first term represents

the variability due to the sensors themselves, as indicated
in (3), and the second term incorporates an additional dis-
turbance σ 2

f due to the noisy reporting links that connect
sensors to the BS.
Regarding the assessment of the detectors being consid-

ered in this paper, we will analyze their performance with
and without the shrinkage estimation through the use of
receiver operating characteristic (ROC) curves. Although
the ROC curves fully characterize the performance, it is
also desirable to have a single and quantitative figure of
merit in order to compare different detectors. This met-
ric is typically the area under the ROC curve (AUC),
which varies between 0.5 (poor performance) and 1 (good
performance). The AUC is mathematically expressed as
AUC(T) = ∫ 1

0 PD(T)dPFA(T), where T represents some
specific detector, PD indicates the probability of detec-
tion, and PFA is the probability of false alarm. For the
traditional unstructured GLRT in (9), the theoretical char-
acterization of both PD and PFA (as well as the associated
detection threshold γ ) can be determined for an asymp-
totically large observation interval. In that asymptotic
case, closed-form expressions can be found because the
statistics of the GLRT can be well approximated by a chi-
squared (χ2) distribution [32, Sec.6.5]. Unfortunately, this
is not the case for the structured GLRT in (15), whose per-
formance turns out to be coupled with that of the MDL
model-order selection criterion, thus posing insurmount-
able obstacles to the derivation of a closed-form statistical
characterization. In order to circumvent this limitation,
we resort to the numerical evaluation of PD and PFA
through the numerical computation of the ROC curve.
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To do so, we use the algorithm proposed in [40],which
provides a computationally efficientmethod for determin-
ing the performance of a given detector in terms of PD
as a function of PFA. Once the ROC curve is available,
we calculate the AUC curve on the basis of integrating
the areas of small trapezoidal bins from the ROC curve.
That is to say, AUC(T) = ∑

κ P̄κ
D(T)�Pκ

FA(T), where

�Pκ
FA(T) = Pκ+1

FA (T) − Pκ
FA(T) and P̄κ

D(T) = Pκ+1
D (T)+Pκ

D(T)

2 .

6.1 Experiment 1: ROC curves for the detection schemes
In Figure 1, we evaluate the ROC curves for the pro-
posed detection schemes by setting the PU transmit
power P0 = −7 dB so that the mean received power in
the sensor field turns out to be −37 dB. In Figure 1a,
we present the results in the absence of noise power
uncertainty (i.e., σ�σ = 0 dB), where two conclusions can
be drawn. First, that the structured GLRT �SG (X) clearly
outperforms the unstructured GLRT �UG (X) when no
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Figure 1 Receiver operating characteristic (ROC) curves: σX= 3 dB,N= 100,M= 250, P0= −7 dB, and σ f = 0 dB. (a) ROC curves of
σ�σ = 0 dB. (b) ROC curves of σ�σ = 2 dB. In this figure, we simulate the receiver operating characteristic (ROC) curves for the detectors discussed
above. Details about this figure can be found in subsection with the heading Experiment 1 in Section 6.
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shrinkage is implemented. Second, that when shrinkage
is implemented, the performance of the unstructured
GLRT is boosted and becomes close to the one pro-
vided by the structured GLRT. This observation suggests
that in the absence of noise power uncertainty, shrinkage
has a similar effect to rank-reduction implemented by
the use of spatial signatures. Interestingly, the situation
changes when noise power uncertainty appears. This can
be observed in Figure 1b, where we plot the ROC curves
for the case of σ�σ = 2 dB. In that case, the unstruc-
tured GLRT �UG (X) is severely degraded irrespective of
whether shrinkage is implemented or not, whereas the
proposed structured GLRT �SG (X) is found to exhibit
a more robust and superior performance, particularly for
small PFA.

6.2 Experiment 2: Sensitivity to noise power uncertainty
In Figure 2, we compare the AUC plots Xx of the detectors
under study in order to further analyze the effects of noise
power uncertainty preliminary highlighted in Experiment
1. To do so, and for the same parameters as in the previ-
ous experiment, we now let the noise power uncertainty
range from σ�σ = 0 dB to σ�σ = 12 dB. The AUC plots
clearly show that the unstructured GLRT �UG(X) with
shrinkage estimation starts to degrade for noise power
uncertainties greater than σ�σ = 3 dB. In contrast, the
structured GLRT �SG(X) (both with and without shrink-
age) is able to cope with higher noise power uncertainties
and provide on the order of a 15% to 20% improvement in
terms of AUC in the range σ�σ ∈[ 5.5, 8.0] dB. Indeed, the
impact of noise power uncertainty is even more severe in
the case of low SNR, as suggested in [39], and �SG(X) is
able to counteract this situation by increasing the system’s
SNR by selecting the relevant samples of active sensors.

It is also found that the performance of different detec-
tion schemes improves by shrinkage estimation, though
the improvement is very small in the case of the structured
GLRT �SG(X), for which the use of signatures already
provides the required robustness to cope with harsh work-
ing conditions. In this experiment, we have also analyzed
the impact of noise power uncertainty on a energy detec-
tor at a single node. We remark here that we selected
a sensor that is located close to the PU, and it receives
signal with high SNR. In spite of that, we can see that
the performance of the energy detector at a single node
is severely affected by noise uncertainty, thus confirming
the advantages of the proposed approach of collaborating
sensing with spatial information.

6.3 Experiment 3: Sensitivity to shadowing in the channel
between the PU and SUs

In this experiment, we analyze the sensitivity to the shad-
owing present in the channel between the PU and SUs,
quantified by the parameter σX , and for two different
working conditions (i.e., low and high SNR). We first start
with the low SNR scenario in Figure 3, where two dif-
ferent cases of noise power uncertainties are analyzed as
a function of shadowing. These two cases correspond to
σ�σ = 0 dB in Figure 3a and σ�σ = 5 dB in Figure 3b. As
already highlighted in previous experiments, the results
in the presence of shadowing also show a superior per-
formance for the structured GLRT �SG(X), particularly
for high noise power uncertainties, i.e., as in Figure 3b.
Interestingly, the detection schemes under analysis are
found to perform better as the shadow fading becomes
more variable (i.e., higher σX). This is because of the
heavy-tailed distribution of the PU-received power in
the presence of log-normally distributed shadow fading,
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Figure 2 Area under the ROC curve (AUC) for analyzing the sensitivity to noise power uncertainty: σX= 0 dB,N= 100,M= 250, P0= −7
dB and σ f = 0 dB. In this figure, we plot the area under the ROC curves (AUCs) to analyze the sensitivity to noise power uncertainty. Further details
are given in subsection with the heading Experiment 2 in Section 6.
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Figure 3 Area under the ROC curve (AUC) for analyzing the sensitivity to shadowing:N= 100 andM= 250, P0= −16 dB and σ f = 0 dB.
(a) ROC curves of σ�σ = 0 dB. (b) ROC curves of σ�σ = 5 dB. In this figure, we plot the area under the ROC curves (AUCs) to analyze the sensitivity
to shadowing for the case when P0 = −16 dB and σf = 0 dB. Further details about this figure are given in subsection with the heading Experiment
3 in Section 6.

which helps to improve the overall performance for large
σX [41]. Similarly, in Figure 4, we plot the AUC curves
for the high SNR regime. Figure 4a is for σ�σ = 0 dB,
and Figure 4b for σ�σ = 5 dB. Here again, we can
see that using spatial signatures, the detection perfor-
mance also improves compared to the unstructured GLRT
�UG(X), with or without shrinkage. Therefore, and par-
ticularly for large noise power uncertainty, it becomes
clear again the superior performance of the structured

GLRT compared to any of the unstructured GLRT
implementations.

6.4 Experiment 4: Sensitivity to the available sample
support for estimating the covariance matrix

In this final experiment, we analyze the sensitivity to the
observation interval length N, which has a direct impact
on how accurate is the estimated covariance matrix and
thus how reliable is the overall GLRT detection metric.
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Figure 4 Area under the ROC curve (AUC) for analyzing the sensitivity to shadowing:N = 100 andM= 250, P0 = −7 dB and σ f= 0 dB.
(a) σ�σ = 0 dB and (b) σ�σ = 5 dB. The figure shows the plots of the area under the ROC curves (AUCs) to analyze the sensitivity to shadowing for
the case when P0 = −7 dB and σf = 0 dB. Further details about this figure are given in subsection with heading Experiment 3 in Section 6.

To do so, we consider again two different noise power
uncertainties, σ�σ = {0, 5} dB, as shown in Figure 5a,b,
respectively. Taking a look at these figures, two important
conclusions can be drawn. First, that the adoption of
shrinkage becomes essential for very short observation
intervals (i.e., when the number of measurements N is
smaller than the number of sensors K). In this case, the
incorporation of shrinkage does actually prevent the ill-
conditioning of the estimated covariance matrix, and this
leads to a much higher AUC for both the unstructured

and the structured GLRT. This can be observed in both
Figure 5a,b for N < 30, since K = 30 is the number of
sensors being simulated in these experiments. The second
conclusion is that for high noise power uncertainty (i.e.,
as in Figure 5b, the structured GLRT �SG(X) clearly out-
performs the unstructured GLRT �UG(X). This is found
to be true even for the case when the structured GLRT
does not use shrinkage but the unstructured GLRT does,
thus confirming the remarkable advantage of exploiting
spatial information in uncertain scenarios. Moreover, the
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Figure 5 Area under the ROC curve (AUC) for analyzing the sensitivity to the observation interval lengthN : σX= 3 dB,M= 250, P0 = −7
dB and σ f = 0 dB. (a) ROC curves of σ�σ = 0 dB. (b) ROC curves of σ�σ = 5 dB. The plots in this figure are of the area under the ROC curves (AUCs)
to analyze the sensitivity to the observation length N. Details about this figure can be found in subsection with the heading Experiment 4 in Section 6.

performance of the structured detector is not only bet-
ter than the one provided by the unstructured one but
also increases at a higher rate as a function of N. For that
reason, we can also state that including spatial informa-
tion results in a much more efficient exploitation of the
information contained in the available measurements.

7 Conclusion
In this paper, a new GLRT-based collaborative spec-
trum sensing scheme has been proposed. The aim has

been to achieve an improvement in the sensing perfor-
mance by exploiting the implicit spatial correlation that
is present among neighboring sensor nodes. Prior infor-
mation on the sensor positions has been incorporated
through a novel signal model based on the concept of spa-
tial signatures, leading to the so-called structured GLRT
detector, which is able to capture the correlation among
different sensors. The performance of the proposed struc-
tured GLRT detector has been compared to that provided
by the conventional unstructured GLRT by means of
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computer simulations. In order to further improve the
detection performance, shrinkage estimation has been
considered in both detectors as a way to circumvent the
ill-conditioning problems that arise with short observa-
tion intervals. Interestingly, for the case of benign working
conditions (i.e., in the absence of noise power uncertainty
and shadowing), the use of shrinkage has been found to
significantly improve the performance of the unstructured
GLRT, leading to similar results to those provided by the
use of spatial information in the structured GLRT. Never-
theless, this similar performance between both methods
no longer holds when severe noise power uncertainty and
shadowing do appear. In that case, the performance of the
unstructured GLRT severely degrades, whereas the pro-
posed structured GLRT is able to provide a more robust
and superior performance. The results obtained for harsh
working conditions confirm the suitability of this novel
approach compared to traditional detectors that ignore
spatial information.

Endnote
aFor instance, in the case of IEEE 802.22 WRANs, sen-

sors measure the entire 6 MHz DTV channel at the
Nyquist rate during observation intervals of 1 ms, and
thus, a total ofM = 6 ·103 samples are typically processed
per snapshot [26].
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