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Abstract

An embedded monitoring network system is based on the visual principle of compound eye, which meets the
acquirements in field angle, detecting efficiency, and structural complexity of panoramic monitoring network. Three
fixed wide-angle cameras are adopted as sub-eyes, and a main camera is installed on a high-speed platform. The
system ensures the continuity of tracking with high sensitivity and accuracy in a field of view (FOV) of 360 × 180°.
In the non-overlapping FOV of the sub-eyes, we adopt Gaussian background difference model and morphological
algorithm to detect moving targets. However, in the overlapping FOV, we use the strategy of lateral inhibition
network which improves the continuity of detection and speed of response. The experimental results show that
our system locates a target within 0.15 s after it starts moving in the non-overlapping field; when a target moves in
the overlapping field, it takes 0.23 s to locate it. The system reduces the cost and complexity in traditional
panoramic monitoring network and lessens the labor intensity in the field of monitoring.

Keywords: Moving targets; Panoramic monitoring; Gaussian background difference; Lateral inhibition; Detection
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1 Introduction
Conventional surveillance cameras are of limited field of
view (FOV) and fail in continuous panoramic monitoring
of 360 × 180° FOV. In order to solve the problem, a parallel
network of multiple cameras is commonly used to cover
the panoramic monitoring area [1]. However, such network
is expensive and complex. Worse still, multi-channel parallel
video processing may affect the real-time character of
the system and increase the misjudgment rate. In recent
years, the fish-eye lens [2] have gradually popularized in
panoramic monitoring. However, distortion is large in
the edge of the field, where no effective information can
be obtained.
Biologically-inspired design methods are developing

rapidly [3-10]. The compound eye vision system of insects
has large FOV and high sensitivity. Such systems have
advantages over conventional vision systems in applications
of community monitoring, robot vision system and intelli-
gent vehicle, etc. By means of that, the whole system can
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be of small volume, light weight, large field of view, and
high sensitivity to moving targets. Compound eye vision
system obtains original image information from different
directions at the same time. Its unique structure signifi-
cantly enlarges the field range and has paraxial optical
path for each view angle, which decreases distortion
[11-13]. Besides, the concept of lateral inhibition [14]
among sub-eyes can be used in artificial bionic network to
improve sensitivity. Therefore, bionic compound eye
network can realize continuous tracking and locating of
moving targets in panoramic view robustly. It provides a
new mode for the development of detectors and sensors.
Starting from the insects' compound eye system, this

paper describes an embedded network system used for
continuous tracking moving targets in panoramic view.
A panoramic detection with low distortion is realized by
multiple cameras. Meanwhile, global low-speed acquisition
and local high-speed image acquisition are combined to
shorten the time used by the detection algorithm and to
improve sensitivity as well. Besides, high-resolution
automatic tracking mode and lateral inhibition is used in
improving the limitations of the current system in the
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aspects of field angle, detecting efficiency, and structural
complexity.

2 The system principle and implementation
2.1 System components and setup
Three wide-angle cameras are fixed in a ring, and we
call them ‘sub-eye cameras.’ Each sub-eye camera covers
about 120° in horizontal field and 180° in meridian
plane; thus, the total field of view is 360° in the sagittal
plane. The panoramic video information of 360 × 180°
space angle is then obtained. Each sub-eye camera has
a charge-coupled device (CCD) of 1/3 inches, with a
resolution of 704 × 576.
A high-resolution camera is used as the main camera.

The camera uses a CCD of 1/2 inches and ×18 optical
lens with automatic zooming. Its FOV is 45°, and its
resolution is 1,280 × 1,024. The main camera is installed
on a rotary platform, which has a highest rotary speed of
400°/s, presets 128 positions, and has a baud rate of
9,600 bps. The platform uses a pitching and horizontal
rotating axis motor system and a processing module.
The system architecture is shown in Figure 1.

2.2 Detection process
After a setup process, the three sub-eye cameras start
global sub-sampling, that is, sampling pixel values in
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Figure 1 The architecture of the monitoring network system
structure. (a) System probe of the detection network. (b) Overview
of all sub-eyes.
alternative lines. When a sub-eye camera detects a
moving target, it switches to full-resolution sampling
mode, which is, sampling every pixel value. Then, it
extracts the centroid of the target and calculates the
distance between the target and its optical axis. According
to the calibrated position of the main camera, the visual
information obtained by the sub-eye cameras is delivered
to the main camera through serial communication in
PELCO-D protocol [15]. The main camera immediately
turns to the direction of the target and tracks it with its
high resolution. The main camera zooms automatically
and thus accurately locates and images targets in various
distances. The images are saved in real time by a flip-flop
register until the target leaves the FOV.
When the target moves out of the FOV of the main

camera, the sub-eye cameras restart the detection mode.
When a camera spots a moving target, it immediately
sends a signal to the main camera; the camera again
positions the target. A panoramic continuous detection
is thus achieved.
When multiple targets are spotted at the same time,

the system adopts a default detection mode (size-priority
mode, speed-priority mode, etc.). The entire process
does not need complex manual operation.
Figure 2 shows the overall flowchart of this panoramic

detection. On the one hand, in order to avoid loss of
information caused by dead zone, every two sub-eye
cameras share a certain overlapping FOV. On the other
hand, in order to prevent information aliasing and positions
targets more accurately, different tracking strategies
are used in the overlapping and non-overlapping FOV.
In the non-overlapping FOV, background difference method
under Gaussian background model is used, while in the
overlapping FOV, lateral inhibition algorithm is used.

3 Tracking algorithm and experiments in
non-overlapping FOV
3.1 Self-adaptive Gaussian background difference method
After sub-eye cameras obtain images by global sub-
sampling, primary detection is done by background
difference method. Target extraction algorithms that are
commonly used include background difference method
[16] and frame difference method [17]. We adopt the adap-
tive Gaussian background model to obtain the foreground
target and update the background model synchronously.
We assume that the background changes are consistent

with a random probability distribution. In avoiding the
unpredictability when light changes slowly, we build a
sub-eye self-adaptive Gaussian background model, which
adapts different environment change and gets a better
background estimation.
In the Gaussian background model, we assume that

each pixel value, say, f (x, y), accords with Gaussian
distribution in time domain [18]. We establish a Gaussian
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Figure 2 Strategy flow chart of panoramic detection.
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model for each pixel in view. By fitting the new frame with
the Gaussian model, we extract the background image.
The background is synchronously updated to make the
algorithm adaptive.
The probability distribution of Gaussian background

model is:

p xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e x−μð Þ 1

2σ ð1Þ

where μ is the mean value; σ is the standard deviation. In
this model, a Gaussian probability distribution η (μ, σ2) is
established for each pixel. Let fk (x, y) be the pixel value of
the image of the kth frame.

(1) Background image initialization:

μ0 ¼
1
N

Xk¼N

k¼1

f k x; yð Þ ð2Þ

σ20 x; yð Þ ¼ 1
N

Xk¼N

k¼1

f k x; yð Þ−μ0 x; yð Þ� �2 ð3Þ
where μ0 and σ0
2 are the estimates of the mean and

variance of a point in the initialization background,
respectively. N is the number of frames. The value
of N should be appropriate, not too large. Here, we
let N = 5.

(2) Background image update. After the background
model is built, we subtract the background model
from the current frame and get a difference image.
Now we set a threshold. In Section 2.2, we will
describe in detail how a threshold is selected. If the
pixel value in the difference image is larger than a
threshold, that is as follows:

f k x; yð Þ−f k x; yð Þ�� ��≥Th ð4Þ

The object is then taken as a moving target. For each
pixel, we have:

μk x; yð Þ ¼ μk−1 x; yð Þ
σ2k ¼ σ2k−1

:

�
ð5Þ

If less than the threshold, which means:

f k x; yð Þ−f k−1 x; yð Þ�� �� < Th: ð6Þ
Then, it is considered as background. Here, the back-

ground model should be continuously updated. The update
rules are as follows:

μk x; yð Þ ¼ 1−αð Þμk−1 x; yð Þ þ αIk x; yð Þ
σ2k x; yð Þ ¼ 1−αð Þσ2k−1 x; yð Þ þ α f k x; yð Þ−μk x; yð Þ� �2 ;�

ð7Þ
where Ik (x, y) is a pixel value in the kth frame; α is the
background updating rate, ranging from 0 to 1. The larger
α is, the faster the system updates. If the system updates
too fast, noise occurs; while if it updates slow, it takes a
long time to adapt to the background. So we should give α
an appropriate value. Here, we initialize α = 0.5. α accords
with the probability distribution:

α ¼ A
1ffiffiffiffiffiffi

2π
p

σk−1
exp

f k x; yð Þ−μk−1
� �2

2

( )
ð8Þ

where A is a modulation factor. This makes the background
update automatically according to a certain statistical
regularity.

3.2 The adaptive threshold
After the background model is built, a binarization image
from the difference image is needed to show the target. It
is important to select an appropriate threshold, Th. If the
threshold is too large, a target point may be mistaken for a
background point; while if the threshold is too small, a
background point may be mistaken for a target point.
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The threshold is conventionally set artificially, which
lacks adaptability and requires manual intervention. Here,
we select the threshold using self-adaptive iteration [19]
and get the global optimal threshold. Thus, we achieve a
satisfying adaptability, as Figure 3 shows. The detailed
iteration process is as follows:

(1) Calculate the maximum and minimum gray value
t1 and tk, and initialize the threshold value as
T0 = (t1 + t0)/2.

(2) Segment the image into two parts: the target and
the background. Calculate the pixel number in each
part, N1

k and N2
k, and then, calculate the average gray

level of the two parts t0 and tA:

t0 ¼ Σt i; jð Þ � N i; jð Þð Þ=Nk
1 t i; jð Þ < Tk

tA ¼ Σt i; jð Þ � N i; jð Þð Þ=Nk
2 t i; jð Þ > Tk ;

�
ð9Þ

where t (i, j) is the gray level of point (i, j); N (i, j) is
the weight of point (i, j). We set N (i, j) = 1.

(3) Calculate the new threshold T k+1 = (tA + t0)/2.
(4) If T k= T k+1or k > M, then T k is the suitable global

threshold, and the iteration is over. Otherwise, go to
step (2) and continue further iteration. M is the
maximum iteration.

Moreover, the target image on the obtained binarization
image has shadows and discontinuity. We use the
morphological opening operation [20] to enhance the
target image.
After the target is extracted from sub-eye images, we

extract its centroid to determine whether the target has
moved into overlapping FOV or not. Once it moves out of
the certain rectangle boundary region, the system will
automatically switch to the algorithm for overlapping FOV.
(a)
Figure 3 Comparison between different threshold segmentation met
iterative threshold.
3.3 Experiment of tracking in non-overlapping FOV
Figure 4 shows an experiment using human body as a
moving target. The three pictures on the left are images
obtained by the three sub-eye cameras. Black means no
moving targets detected, while white regions are images
of detected targets after morphological closing operation
[20]. The picture on the right is the current field image
by the main camera.
In Figure 4, no.1 sub-eye camera detects a moving target

in its 96th frame. The target is in non-overlapping FOV and
is not in the view of the main camera. The main camera
then rotates to the direction of the target. Later, when no.1
sub-eye camera gets its 100th frame, the target occurs in
the FOV of the main camera. The detection takes 0.15 s.
In comparison, if the sub-eye cameras sample every

pixel from the beginning, the detection time is about 0.4
s. It is thus clear that the use of sub-sampling method
improves detection sensitivity.

4 Tracking algorithm and experiments in
overlapping FOV
The detection strategy applied in the overlapping FOV is
different from that used in the non-overlapping fields. In
this case, two sub-cameras are involved, and thus, if we
simply use the background difference method applied in
non-overlapping FOV, the extracted edge of the target is
blurred, incomplete, and has shadows. Also, in this case,
the stability and efficiency of the algorithm are relatively
low. It is difficult to determine the centroid position of
the target. So, we adopt the lateral inhibition algorithm that
is conventionally used in bionic compound eye systems
and extract the edge of the moving targets stably.
The phenomenon of lateral inhibition widely exists in

the compound eye systems of insects. It refers to the fact
that a receptor is inhibited by receptors around it, and this
(b)
hods. (a) Using the static threshold. (b) Using the adaptive
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Figure 4 A non-overlapping FOV detection experiment. (a) A moving target appears in non-overlapping FOV. (b) The main camera detects
the target with high resolution.
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inhibitory effect is a spatial additive. Besides, a receptor is
inhibited more strongly by receptors near it than by those
far away from it.
For the overlapping FOV, we first extract the edge

quickly by adopting lateral inhibition algorithm and then
extract the target image by background difference method.
This algorithm is stable and accurate, resistant to gray
scale change, and improves the detection accuracy and
sensitivity.
We adopt the centroid position tracking method to

determine whether the target moves into overlapping
fields. When a sub-eye camera detect a target whose
centroid is 4/5 its image width to the farthest vertical
edge; meanwhile, a sub-eye next to it also detects the
target, and its centroid is 1/5 the image width to the
nearest edge. We consider the target in the overlapping
field, and the system automatically switches to the lateral
inhibition algorithm. After the target has been detected,
the main camera turns to the orientation of the bisector
of the angle between the optical axes of the two sub-eye
cameras.
We take each pixel as a sub-eye receptor. The spatial

contrast is large on the edge of the target. According to the
bionic lateral inhibition principle, the nearest receptors
inhibit strongly the receptor that detects the edge, and
such inhibition is stronger from the nearer receptors. We
enhance the edge according to the inhibition coefficient
[21]. We analyze this method in the time domain below.
Take a simple two-unit inhibition network as an example.

Let y1, y2 be gray values of input units. We assume:

y2 ¼ ky1; ð10Þ
where 0 < k < 1. Outputs of the network are X1, X2:

X1 ¼ y1−βX2

X2 ¼ y2−βX1

�
ð11Þ

where we set 0 < β < k < 1, so that X1/X2 is non-negative.
y1/y2 is used to measure the input contrast while X1/X2

describes the output contrast. According to (10) and (11),
we have:
X1 ¼ y1−βy2
1−β2

;X2 ¼ y2−βy1
1−β2

ð12Þ

X1=X2

y1=y2
¼ k 1−βkð Þ

k−β
¼ k−βk2

k−β
> 1 ð13Þ

Equation 13 shows that the output contrast is larger than
the input contrast, proving that the inhibition network
enhances target edge.
The inhibition model of the overlapping fields is:

rp ¼
Xm
j¼1

kp;jI j: ð14Þ

For a 3 × 3 network, it corresponds to the image:

I m; nð Þ ¼ f
X1
i¼−1

X1
j¼−1

αi;jI0 mþ i; nþ jð Þ
" #

¼ f R0 m; nð Þ½ �;

ð15Þ

where, I (m, n) is the pixel gray value after the inhibition
process; αi,j is the lateral inhibition coefficient for the
position (i, j) in the network; f is a function indicating
the inhibition competing relationship between input and
output; R0 (m, n) is the lateral inhibition coefficient for
position (m, n) in the network.
According to the mechanism of compound eye vision

system, the lateral relationship between a certain nerve
cell on the compound eyes and those surrounding it is
relatively stable and coincident. For there is no direction
constraint for edges, weights are symmetric about the
center. Suppose the centroid weight is α00, and the 8 is
the weight around equal α1. Then, the lateral inhibition
coefficient is as follows:

R0 m; nð Þ ¼ α00 � I0 m; nð Þ

þ α1
X1
i¼−1

X1
j¼−1

I0 � mþ i; nþ jð Þ−I0 m; nð Þ
" #

ð16Þ
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Figure 6 Panoramic detection for continuous multiple targets. (a) Target 1 appears in the FOV of no.2 camera. (b) Target 1 tracked by the
main camera. (c) Target 2 appears in the FOV of no.3 camera. (d) Target 2 tracked by the main camera.

(a) (b)

(c) (d)
Figure 5 Comparing the edge detection results with and without the use of lateral inhibition method. (a) Background difference
detection image by no.1 sub-eye camera using lateral inhibition method. (b) Background difference detection image by no.2 sub-eye camera,
using lateral inhibition method. (c) Background difference detection image by no.1 sub-eye camera using Roberts operator. (d) Background
difference detection image by no.2 sub-eye camera using Roberts operator.
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As the optic cells are on a plane of the same inhibition,
the lateral inhibition coefficient is approximately zero. So
α00 + 8α1 = 0. Here, we let α00 = 1, α1 = −0.125, and the
template for inhibition is as follows:

−0:125 −0:125 −0:125
−0:125 1 −0:125
−0:125 −0:125 −0:125

2
4

3
5

Take the template coefficients to (16), we have:

I m; nð Þ ¼ 255 R0 m; nð Þ≥T
0 R0 m; nð Þ≥T :

�
ð17Þ

Figure 5 compares the edge detection results with and
without the use of lateral inhibition method. In Figure 5a, b
are background difference images by no.1 and no.2 sub-
eye cameras in overlapping field using lateral inhibition
method, while c,d are background difference images by
Roberts operator treatment [22]. From the pictures, we
can see that we obtain the edge of the target in the
overlapping FOV more accurately and clearly when
using the method proposed in this paper. The total
detection time is 0.23 s.

5 Experiments of multi-target panoramic detection
We detect multiple targets continuously by this embedded
monitoring network system. We use the speed-priority
mode. The experimental results are shown in Figure 6.
Target 1 first appears in the FOV of no.2 camera, and
the main camera tracks it immediately. Later, target 2
appears in the FOV of no.3 camera, which moves faster
than target 1. The main camera then turns to track target
2 immediately. Meanwhile, target 1 is still detected by
sub-eye cameras. Thus, we realized continuous tracking.

6 Conclusions
This paper proposes a bionic compound eye sensing net-
work and continuous tracking strategy used for panoramic
target tracking. We introduced the system structure and
related algorithm. The experimental results show that the
system has a panoramic view and a high sensitivity and
continuity. It extracts moving targets clearly, stably, and
accurately. This system can be widely used in security
surveillance industry.

Competing interests
The authors declare that they have no competing interests.

Acknowledgments
This study was supported by the National Basic Research Program of China
(973 Program, grant no. 2011CB706705), the National Natural Science
Foundation of China (no. 90923038, 51175377), and the Tianjin Natural
Science Foundation (no.12JCQNJC02700).

Received: 22 May 2013 Accepted: 30 May 2013
Published: 24 June 2013
References
1. J Black, TJ Ellis, D Makris, Wide area surveillance with a multi camera

network, in Proceedings of the Intelligent Distributed Surveillance Systems
(London, 2004), pp. 21–25

2. F Huang, X Shen, Q Wang, B Zhou, W Hu, H Shen, L Li, Correction method
for fisheye image based on the virtual small-field camera. Opt. Lett. 38(9),
1392–1394 (2013)

3. Q Liang, Biologically-inspired target recognition in radar sensor networks.
EURASIP J. Wirel. Commun. Netw. 2010, 523435 (2010)

4. Q Liang, X Cheng, S Samn, NEW: network-enabled electronic warfare for
target recognition. IEEE T. Aero. Elec. Sys. 46(2), 558–568 (2010)

5. Q Liang, Automatic target recognition using waveform diversity in radar
sensor networks. Pattern Recognit. Lett. 29(2), 377–381 (2008)

6. Q Liang, X Cheng, KUPS: knowledge-based ubiquitous and persistent sensor
networks for threat assessment. IEEE Trans. Aerosp. Electron. Syst. 44(3),
1060–1069 (2008)

7. Q Liang, Waveform design and diversity in radar sensor networks:
theoretical analysis and application to automatic target recognition, in Third
Annual IEEE Communications Society on Sensor and Ad Hoc Communications
and Networks, vol. 2 (, Reston, 2006), pp. 684–689

8. Q Liang, Situation understanding based on heterogeneous sensor networks
and human-inspired favor weak fuzzy logic system. IEEE Syst. J. 5(2),
156–163 (2011)

9. Q Liang, Radar sensor networks: algorithms for waveform design and
diversity with application to ATR with delay-Doppler uncertainty. EURASIP J.
Wirel. Commun. Netw. 2007, 89103 (2007)

10. Z Zhong, Q Liang, L Wang, Biologically-inspired energy efficient distributed
acoustic sensor networks. Ad Hoc & Sensor Wireless Networks 13(1–2),
1–12 (2011)

11. R Horisaki, S Irie, Y Ogura, J Tanida, Three-dimensional information acquisition
using a compound imaging system. Opt. Rev. 14(5), 347–350 (2007)

12. JW Duparré, FC Wippermann, Micro-optical artificial compound eyes.
Bioinspir. Biomim. 1(1), R1–16 (2006)

13. R Krishnasamy, W Wong, E Shen, S Pepic, R Hornsey, PJ Thomas, High
precision target tracking with a compound-eye image sensor. Can. Con. El.
Comp. En. 4, 2319–2323 (2004)

14. NJ Strausfeld, JA Campos-Ortega, Vision in insects: pathways possibly
underlying neural adaptation and lateral inhibition. Science 195(4281),
894–897 (1977)

15. X Yu, J Liu, Q Sheng, The application for underwater special monitoring
equipment based on the PELCO-D protocol. Appl. Mech. Mater. 217–219,
2550–2554 (2012)

16. J Tai, S Tseng, C Lin, K Song, Real-time image tracking for automatic traffic
monitoring and enforcement applications. Image Vision Comput. 22,
485–501 (2004)

17. R Liang, L Yan, P Gao, X Qian, Z Zhang, H Sun, Aviation video moving-target
detection with inter-frame difference. 3rd International Congress on Image
and Signal Processing (CISP) 3, 1494–1497 (2010)

18. R Yan, X Song, S Yan, Moving object detection based on an improved Gaussian
mixture background model, in ISECS International Colloquium on Computing,
Communication, Control, and Management, vol. 1 (Sanya, 2009), pp. 12–15

19. SS Al-amri, NV Kalyankar, SD Khamitkar, Image segmentation by using
threshold techniques. J. Comput. 2(5), 83–86 (2010)

20. P Soille, P Vogt, Morphological segmentation of binary patterns. Pattern
Recognit. Lett. 30(4), 456–459 (2009)

21. K Gao, M Dong, D Li, W Cheng, An algorithm of extracting infrared image
edge based on lateral inhibition network and wavelet phase filtration, in 9th
International Conference on Electronic Measurement & Instruments (ICEMI '09)
(Beijing, 2009), pp. 303–307

22. B Bansal, JS Saini, V Bansal, G Kaur, Comparison of various edge detection
techniques. J. inform. Oper. Manag. 3(1), 103–106 (2012)

doi:10.1186/1687-1499-2013-175
Cite this article as: Song et al.: A biologically-inspired embedded
monitoring network system for moving target detection in panoramic
view. EURASIP Journal on Wireless Communications and Networking
2013 2013:175.


	Abstract
	1 Introduction
	2 The system principle and implementation
	2.1 System components and setup
	2.2 Detection process

	3 Tracking algorithm and experiments in &b_k;non-&e_k;&b_k;overlapping&e_k; FOV
	3.1 &b_k;Self-&e_k;&b_k;adaptive&e_k; Gaussian background difference method
	3.2 The adaptive threshold
	3.3 Experiment of tracking in &b_k;non-&e_k;&b_k;overlapping&e_k; FOV

	4 Tracking algorithm and experiments in overlapping FOV
	5 Experiments of &b_k;multi-&e_k;&b_k;target&e_k; panoramic detection
	6 Conclusions
	Competing interests
	Acknowledgments
	References

