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Abstract

The location of a mobile station (MS) in a cellular network can be estimated using received signal strength (RSS)
measurements that are available from control channels of nearby base stations. Most of the recent RSS-based location
estimation methods that are available in the literature rely on the rather unrealistic assumption that signal
propagation characteristics are known and independent of time variations and the environment. In this paper, we
propose an RSS-based location estimation technique, so-called multiple path loss exponent algorithm (RSS-MPLE),
which jointly estimates the propagation parameters and the MS position. The RSS-MPLE method incorporates
antenna radiation pattern information into the signal model and determines the maximum likelihood estimate of
unknown parameters by employing the Levenberg-Marquardt method. The accuracy of the proposed method is
further examined by deriving the Cramer-Rao bound. The performance of the RSS-MPLE algorithm is evaluated for
various scenarios via simulation results which confirm that the proposed scheme provides a practical position
estimator that is not only accurate but also robust against the variations in the signal propagation characteristics.
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1 Introduction
Recently, location estimation has been among the most
attractive research topics in the area of cellular commu-
nications. With accurate position estimation, a variety
of applications and services such as emergency services,
monitoring and tracking fraud protection, asset tracking,
fleet management, mobile yellow pages, and even cellular
system design and management can become feasible for
cellular networks [1]. These potential applications of wire-
less positioning have also been recognized by the IEEE,
which set up a standardization group 802.15.4a for design-
ing a new physical layer for low-data rate communications
combined with positioning capabilities [2]. Furthermore,
the Federal Communications Commission (FCC) in the
USA has required wireless providers to locate mobile
users within tens of meters for emergency 911 calls [3].
The position of amobile station (MS) can be determined

using multiple radio signals transmitted or received by
the MS. Some location estimation methods like assisted
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global positioning system (A-GPS) are based on signals
transmitted from satellites, while others rely on mea-
surements of signals between MS and base stations (BS),
the so-called network-based methods. Currently, the best
positioning accuracy in cellular systems is provided by A-
GPS at the expense of a significant increase in network
and handset complexity [4]. For instance, modifications
on the handset such as an embedded GPS receiver and
deployment of locationmanagement units (LMU) into the
network are needed in order to operate A-GPS systems
[5]. Compared to A-GPS, network-based methods are rel-
atively less complex. Moreover, they can be used in many
situations where the A-GPS method cannot be applied,
i.e., indoor positioning, but generally with a degradation
in accuracy. So far, a wide variety of network-based posi-
tioning techniques have been proposed which use mea-
surements obtained within the cellular networks, such as
received signal strength (RSS), time of arrival (TOA), time
difference of arrival (TDOA), and angle of arrival (AOA)
methods [6-15].
Positioning technology is often based on trilateration

in time-based methods like TOA and TDOA, in which
the MS position is obtained as the intersection point of
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three circles constituted by distance estimates [16]. Assur-
ance of proper operation of time-based methods requires
the deployment of LMUs [17]. These network elements
perform timing measurements of all local transmitters,
based on which the actual relative time difference for
each BS can be estimated. In a similar manner, AOA-
based positioning methods require the implementation of
adaptive array antennas, by which the direction of signal
arrival can be estimated. At the same time, the handset
typically requires software modifications to enable posi-
tioning functionality with such a method. Consequently,
these methods are not widespread in commercial systems
due to their high deployment costs. Therefore, improving
the accuracy of positioning systems based on the exist-
ing cellular network infrastructure is desired, which is the
main motivation of this study.
The system model that is used for location estimation

in this paper is based on RSS measurements. One funda-
mental MS function is to find the BSs with the strongest
signal strength for cell selection purposes. Thus, RSS-
based methods can be implemented without any hard-
ware enhancement in either the MS or the BS. Distance
information between MS and BS can be extracted from
RSS measurements using accurate information about the
propagation characteristics of the measurement chan-
nel. However, in most of the RSS-based location esti-
mation techniques in the literature, it is assumed that
the propagation parameters of the measurement channel
are accurately known a priori, either through a train-
ing period or by assuming a perfect free-space channel
condition [18-24]. Such an approach results in degraded
positioning accuracy inmany practical application scenar-
ios, including mobile tracking techniques in [25,26]. More
specifically, both [25,26] study Monte Carlo-based mobil-
ity tracking algorithms under the assumption that the
mobile moves in a 2D environment with input as accelera-
tion. In [25], RSS data are used to predict mobile position
and velocity using particle filtering techniques, but the
method relies on known propagation parameters. In [26],
the so-called interacting multiple model method has been
extended to predict the state of the mobile for indoor
applications by considering multiple fixed environment
parameters at the expense of an increase in the number of
random processes, whereas the technique herein relies on
continuous parameter adaptation.
In this paper, a method that aims to resolve major short-

comings of the existing RSS-based positioning techniques
is proposed. In particular, an RSS-based location esti-
mation technique that jointly estimates the propagation
parameters and the MS position is explained in Section 2.
The Cramer-Rao bound (CRB) derivation and accuracy
evaluation are given in Section 3 as a benchmark for per-
formance comparison. In Section 4, simulation results
under various scenarios are presented to evaluate the

performance of the proposed algorithm. Finally, some
concluding remarks are given in Section 5.

2 RSS-based location estimationmodel
Using RSS together with a path loss (PL) and shadow fad-
ing model, a distance estimate between the BS and theMS
can be obtained. The propagation model used through-
out this paper is a modified version of the log normal
model that is widely used in the literature [27-30]. The
PL exponent (PLE) is the key parameter in the log normal
model. An accurate value of the PLE is required in order
to obtain an accurate estimate of theMS-BS distance from
the corresponding RSS measurement.
In most of the existing studies of RSS-based location

estimation techniques in the literature, the channel model
is assumed to be known a priori, that is, the path loss
characteristics of the coverage area are considered known,
either by assuming that the environment is a perfect free
space or by extensive measurement and modeling prior to
the deployment of location estimation systems. However,
the PLE parameter is environment dependent [31,32].
Even in the same environment, propagation characteris-
tics may change considerably over a long period of time,
e.g., due to seasonal and/or weather changes [33]. In [32],
it is experimentally demonstrated in an omnidirectional
antenna system that the PLE is strongly dependent on the
base antenna height and the terrain category. Extension
of the experimental study in [32] to directional antenna
systems can be found in [34] where the authors show
that antenna beamwidth has an additional gain reduc-
tion influence on the PLE. In other experimental studies
that consider path loss modeling for directional antenna
systems [35,36], the authors compute different PLEs for
different areas of the cell that consist of different terrains
(but not different PLEs for different directional anten-
nas of the same base station). There are also related
studies that utilize single PLE for directional antenna
systems [37-39].
The proposed algorithm in this paper estimates the MS

location using the available RSS measurements without
any need for a training period or any need for the knowl-
edge of the PLE value in the path loss model. The PLE
values are determined and calibrated in real time for every
mobile using the RSSmeasurements. By incorporating the
antenna radiation patterns of the sectors in a BS into the
signal model, an additional improvement in position esti-
mates is provided. In determining the position of a given
mobile user, it is assumed that the PLE is the same for all
sectors of a given base station, whereas the PLE might be
different for another. This is a quite realistic assumption
in light of the discussion of the related literature in the
previous paragraph, since the mobile user is in the same
location with respect to the base station and directional
antennas are at the same height.
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2.1 Antenna model
Point to multipoint and cellular communication systems
commonly use fan-beam antennas for sector coverage. An
approximate formula describing the normalized azimuth
radiation pattern of the fan-beam antenna using three
parameters is given by:

A(φ) = exp
[
−a3dB(

|φ|
φHBW

)τ
]
, (1)

where a3dB is a unitless parameter that determines the pat-
tern value at half power bandwidth (HBW) |φ| = φHBW
(in radians) [40], i.e.,

a3dB = − ln(
1√
2
) = 0.3465 (2)

and τ is used to match the pattern to a second field value,
ν, at |φ| = |φν | where 0 < ν < 1, i.e.,

τ = ln(
− ln(ν)
a3dB )

ln(
|φν |
φ3dB

)
(3)

In this paper, τ is evaluated at |φν | = π/2, and the
value of ν is taken to be equal to 0.006 that is the inverse
of the front-to-side ratio of the normalized pattern and
φHBW = π/3 is the recommended value according to ETSI
EN 301 215-2 Class CS 2 requirement in a local multipoint
distribution service point-to-multipoint application [40]
(see Figure 1 for the radiation pattern used in this paper).

Figure 1 Normalized radiation pattern for 3-sector BS
configuration.

2.2 Path loss model
In cellular networks, anMSmeasures received signal code
power on a common pilot channel (CPICH) in Univer-
sal Mobile Telecommunications System (UMTS) and RSS
on a broadcast control channel (BCCH) in GSM systems
to determine the received signal level. Signal strength
measurements are indexed with base station and sectoral
identifiers k and s, respectively, in (4) [18] considering
that transmitting cells use different channels (CPICHs or
BCCHs):

Rk,s(x, y,αk) = PGA2
k,s(x, y)

β
(
dk,s(x,y)

d0

)αk 10
−vk,s/10. (4)

In (4), Rk,s is the received signal strength from sector s of
base station k at point (x, y) (in watts); P is the total trans-
mitted power on each sector s (in watts), andAk,s(x, y) and
G are the normalized radiation pattern and the antenna
gain in azimuth direction, respectively, that belongs to
the corresponding cell of sector s; d0 (in meters) is the
free-space reference distance; d(x, y) (in meters) is the dis-
tance between MS and BS at point (x, y); vk,s accounts
for shadow fading; αk is the PLE that is specific for kth
base station; and Ak,s(φ) is represented as Ak,s(x, y) since
it is possible to determine φ with the knowledge of MS
and BS coordinates. Herein, it is assumed that P, G, and
β are assumed to be known a priori and β is calculated
by [32]:

β =
(
4πd0

λ

)2
, (5)

where λ is the wavelength in meters and d0 is chosen to be
equal to 1 m in a microcell environment [31]. Rewriting
the RSS in decibel (dB), we have:

μk,s(dB)(θ) =10 log10
(
PG
β

)
+ 20 log10 Ak,s(x, y)

− 10αk log10
dk,s (x, y)

d0
Rk,s(dB)(θ) = μk,s(dB)(θ) − vk,s (6)

where θ = [
x y α1 . . . αk

]T .
In this paper, it is assumed that the channels used by dis-

tant BSs may have different propagation characteristics.
More specifically, the channels used by the cells that are
served by the same BS are assumed to have the same PLE,
and this PLE is not necessarily the same for other chan-
nels. Hence, the value of Rk,s and μk,s depends on αk in
addition to the mobile position, (x, y).
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2.3 Problem formulation and the positioning algorithm
Based on the path loss model described above, the distri-
bution of Rk,s(dB)(θ) is Gaussian, i.e., we have:

fRk,s(dB)

(
Rk,s(dB); θ

)= 1
σv

√
2π

exp
[
−

(
Rk,s(dB) − μk,s(dB) (θ)

)2
2σv2

]
,

(7)

where fRk,s(dB)

(
Rk,s(dB); θ

)
denotes the pdf for the determin-

istic unknown parameter θ [41]. Assuming Rk,s(dB) is inde-
pendent and identically distributed (i.i.d.), the likelihood
function, L(θ) can be written as:

L (θ) =
n∏

k=1

m∏
s=1

fRk,s(dB)

(
Rk,s(dB); θ

)
, (8)

where n is the number of BSs that have RSS measure-
ments for the MS andm is the number of sectors for each
BS. Taking into account that Rk,s(dB) is an i.i.d. Gaussian
random variable, L(θ) becomes:

L (θ) = 1
σv

√
2π

exp

⎡
⎢⎢⎢⎣−

n∑
k=1

m∑
s=1

(
Rk,s(dB) − μk,s(dB) (θ)

)2
2σv2

⎤
⎥⎥⎥⎦.

(9)

In order to obtain the maximum likelihood (ML) esti-
mate, θML that best approximates the available data, L(θ)

should be maximized over θ (see [41], pp. 177). This in
turn can be done by computing:

θML := argmin
θ

n∑
k=1

m∑
s=1

(
Rk,s(dB) − μk,s(dB) (θ)

)2, (10)

where argmin is the value of θ for which the given func-
tion is minimized over the given data set. Note that a
distinctive advantage of ML estimate is that it can always
be found for a given data set [41].
In this paper, we obtain this estimate using a recur-

sive solution of a nonlinear least squares problem. To this
end, define J (θ) to be the cost function (which is to be
minimized so that L (θ) in (9) is minimized):

J (θ) =
n∑

k=1

m∑
s=1

(
Rk,s(dB) − μk,s(dB)(θ)

)2 (11)

and

f (θ) = R − μ(θ), (12)

where R =[R1,1, R1,2, . . .Rn,m−1, Rn,m]T and μ(θ) =
[μ1,1, μ1,2, . . . , μn,m−1, μn,m]T , J (θ) can be repre-
sented in vector form as:

J (θ) = (R − μ(θ))T (R − μ(θ)) = f (θ)T f (θ) (13)

Thus, any θ∗ that satisfies (14) is a solution of (10) if
f′ (θ∗) is nonsingular, i.e.,

0 = J ′ (θ∗) = 2f′
(
θ∗)T f

(
θ∗) (14)

In this paper, the Levenberg-Marquardt (LM) method
which is a modified version of the Gauss-Newton method
is employed to solve the nonlinear least squares problem
[42,43]. The proposed algorithm which is summarized as
Algorithm 1 on the next page employs a linear approxi-
mation of the nonlinear equations to find a least squares
estimate of these equations iteratively. The vector μ(θ)

that consists of nonlinear functions is linearized using the
Taylor series expansion in which the second-order terms
are omitted:

μk,s(dB)(θ) ≈ μk,s(dB)(θ
(0)) + J(0)

(
θ − θ(0)

)
. (15)

First-order Taylor series expansion is obtained for
μk,s(dB)(θ)where θ(0) is the initial estimate for θML and J(0)
is the Jacobian matrix of μk,s(dB)(θ) at θ(0). Consequently,
the LM step size� at each iteration is obtained by solving:(

JT J + hI
)
� = JT f, (16)

where h > 0, e.g., for n = 2 BSs andm = 3 sectors for each
BS, in case θ = [

x, y,α1,α2
]
are unknown parameters, the

Jacobian matrix J can be represented as:

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂(C11(θ))
∂x

∂(C11(θ))
∂y

∂(10α1 log(d1(θ)))
∂α1

0
∂(C12(θ))

∂x
∂(C12(θ))

∂y
∂(10α1 log(d1(θ)))

∂α1
0

∂(C13(θ))
∂x

∂(C13(θ))
∂y

∂(10α1 log(d1(θ)))
∂α1

0
∂(C21(θ))

∂x
∂(C21(θ))

∂y 0 ∂(10α2 log(d2(θ)))
∂α2

∂(C22(θ))
∂x

∂(C22(θ))
∂y 0 ∂(10α2 log(d2(θ)))

∂α2
∂(C23(θ))

∂x
∂(C23(θ))

∂y 0 ∂(10α2 log(d2(θ)))
∂α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(17)

where C (θ)ks = 20 log (Aks (θ)) − 10αk log (dk (θ)) and
dk represents the distance between kth BS and the MS,
that is, dk(θ) = √

(x − xk)2 + (y − yk)2. Herein, k index
represents the BS, and s represents the sector that belongs
to BS k. Since each channel used by different BSs may have
a distinct PLE, α parameters are indexed with BS ID, k.
In Algorithm 1, kmax is themaximumnumber of allowed

iterations (kmax = 400 is used in the simulations), and ε1
is used to detect how close the estimate is to the desired
value (e.g., ε1 = 10−15 ). Both parameters are chosen
by the user. The damping parameter of the LM algo-
rithm, h, is positive, which guarantees that � is a descent
direction. Note that for large values of h, we have � =
JT (θ)f (θ)/h, which implies a short step in the descent
direction, which in turn is good if the current iterate is
far from the solution. On the other hand, if h is small,
then � is approximately equal to what we have from the
Gauss-Newton iteration. Since the damping parameter



Zeytinci et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:178 Page 5 of 14
http://jwcn.eurasipjournals.com/content/2013/1/178

Algorithm 1 LM-based algorithm for joint estimation of propagation parameters and mobile position
1: (Initialization)

(i) Let d1 be the initial radial distance estimate obtained using Cell ID + Timing advance (Cell ID + Round trip
time in UMTS case). (Both of these measurements are available from the serving cell.)

(ii) Let the number of RSS measurements from different sectors of the same BS be ns.
If ns = 1, then let φ be the azimuth angle of the serving sector
else if ns > 1, utilize the LM method (as in step 3 below) with θ =[φ,α1] and J(θ) as follows:

J (θ) =

⎡
⎢⎢⎣

∂(20 log(A11(φ)))
∂φ

−10α1 log(d1)
∂α1

∂(20 log(A12(φ)))
∂φ

−10α1 log(d1)
∂α1

∂(20 log(A13(φ)))
∂φ

−10α1 log(d1)
∂α1

⎤
⎥⎥⎦ , (18)

where φ is the angle between serving BS and MS in polar coordinates and A1s(φ) is the radiation pattern of
the sth sector of the serving BS.

φ together with d1 provides an initial estimate of the MS position in polar coordinates.
2: If the number of RSS measurements is greater than or equal to n + 2 where at least one measurement is available

from each of the BSs, then let θ = [
x, y,α1,α2, . . . ,αn

]
(this is what we call the RSS multipath loss exponent

(RSS-MPLE) algorithm in this paper); otherwise, let θ = [
x, y,α1

]
(in this case, we can compute a single-path loss

exponent, and we refer to this algorithm as the RSS single-path loss exponent (RSS-SPLE) algorithm).
3: LM method is employed to solve the stated nonlinear least squares problem iteratively.

(i) Set k = 0, θ = θ(k), h = max diag JT (θ)J(θ).
(ii) While (k ≤ kmax) and (‖JT (θ)f(θ)‖ > ε1)

Set k = k + 1 and solve � from
(
JT (θ)J(θ) + hI

)
� = JT (θ)f(θ)

Compute θnew = θ − �

Compute the step size ρ = (F(θ) − F(θnew))/(0.5�T (h� − f (θ)))

If ρ > 0 (i.e., step acceptable), then set θ = θ(k) = θnew, and
h = hmax{1/100, h/10}
else set h = 2h

end

influences both the direction and the size of the step, its
update is controlled by the gain ratio ρ in the algorithm.
A large positive value of ρ indicates a good approxima-
tion which allows us to decrease h so that the LM step is
closer to the Gauss-Newton step, whereas a small or nega-
tive ρ is a poor approximation which requires an increase
of damping by twofold in order to get closer to the steepest
direction and hence increase chances of faster conver-
gence. By this choice of parameters similar to [44], we have
observed linear to superlinear convergence in our prob-
lem, although it is harder to make specific statements on
the convergence rate for the problem in hand. However,
it is well known that the Levenberg-Marquardt method
has a quadratic rate of convergence when Jacobian is a
nonsingular square matrix and if the parameter is chosen
suitably at each step. The condition of the nonsingular-
ity of Jacobian is too strong, and it is not valid in our
problem either. Although the authors show in [42,43] that
the method has quadratic convergence under appropriate
assumptions and the choice of the damping parameter, the

results are valid only locally. In the next section, we derive
the CRB bounds for the proposed method.

3 The Cramer-Rao lower bound
The CRB for RSS estimation depends on the strength
of signal, Gaussian random variable and path loss expo-
nent. In radio propagation channel studies, the random
variable v in the path loss model (4) is considered a zero-
mean Gaussian random variable, i.e., N(0, σ 2

v ), while its
standard deviation σ 2

v depends on the characteristics of
a specific environment [45]. In the computation of the
Cramer-Rao bound, we let pk,s = 10 log10 PG/β − Rk,s,
which is the observed path loss in decibel from 1 m to
d meters. Thus, the system of nonlinear equations for
location estimation can be rewritten as [46]:

pk,s = gk,s(θ) + v, 1 ≤ k ≤ n, and 1 ≤ s ≤ 3, (19)

where gk,s(θ) = 10αk log10 dk − 20 log10 Ak,s(φ) and the
unknown vector parameter θ =[ x y α1 . . . αk]T , k is the
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index identifying the base stations, while s is the index
representing the antenna sector. For each base station k,
there are three antenna sectors s = 1, 2, 3 defined. In this
setting, the path loss observation pk defined in (19) has a
probability density function:

f (pk,s; θ) = 1√
2πσv

exp
(

− (pk,s − gk,s(θ))2

2σ 2
v

)
, (20)

which is parameterized by the unknown vector param-
eter θ . If we assume that pk,s, 1 ≤ k ≤ n, 1 ≤ s ≤
3 are statistically independent observations (which is a
reasonable assumption as the transmitted powers are
independent), the joint distribution of observation vector
p =[ p1,1, p1,2, p1,3, . . . , pn,1, pn,2, pn,3] is obtained as:

f (p; θ) =
n∏

k=1

3∏
s=1

f (pk,s; θ). (21)

The CRB on the covariance matrix of any unbiased
estimator θ̂ is defined as:

cov(θ̂) − F−1 ≥ 0, (22)

where F = −E[�θ(�θ ln f (p; θ))T ] is the Fisher informa-
tion matrix (FIM) [41].
Given the joint distribution of the observation vector

p in (21), the equivalent log-likelihood function can be
defined as:

l(θ) = − 1
2σ 2

v

n∑
k=1

3∑
s=1

(pk,s − gk,s(θ))2, (23)

from which the Fisher information matrix can be derived
as:

Fij =[F]ij = −E
[

∂2l(θ)

∂θi∂θj

]
(24)

=
⎧⎨
⎩

1
σ 2
v

∑n
k=1

∑3
s=1(

∂gk,s(θ)

∂θi
)2 if i = j;

1
σ 2
v

∑n
k=1

∑3
s=1

∂gk,s(θ)

∂θi
∂gk,s(θ)

∂θj
if i 	= j.

Recall that gk,s(θ) is defined by gk,s(θ) = 10αk log10 dk −
20 log10 Ak,s(x, y) and θ =[ x, y,α1,α2, . . . ,αk]T . Subse-
quently, the gradients of gk,s(θ) can be computed as:

∂gk,s(θ)

∂x
= −10αk

ln 10
ukx
dk

− 20
ln 10

∂ lnAk,s(x, y)
∂x

∂gk,s(θ)

∂y
= −10αk

ln 10
uky
dk

− 20
ln 10

∂ lnAk,s(x, y)
∂y

∂gk,s(θ)

∂α1
=

(
10
ln 10

ln d1
)

δk1

∂gk,s(θ)

∂α2
=

(
10
ln 10

ln d2
)

δk2

...
∂gk,s(θ)

∂αl
=

(
10
ln 10

ln dk
)

δkl (25)

where ukx = xk−x
dk , uky = yk−y

dk , δkl = 1 if k = l, and δkl = 0,
otherwise.
The (k + 2) × (k + 2) Fisher information matrix can be

represented as follows:

Fk+2,k+2 =

⎡
⎢⎢⎢⎣

F1,1 F1,2 · · · F1,k+2
F2,1 F2,2 · · · F2,k+2
...

...
. . .

...
Fk+2,1 Fk+2,2 · · · Fk+2,k+2

⎤
⎥⎥⎥⎦ .

In the next section, we further define quantitative per-
formance measures for location estimators based on CRB.

3.1 Accuracy measures
Let (x̂, ŷ) be any unbiased location estimator. Then CRB
in (22) provides a lower bound on the variance of the
unbiased estimator (x̂, ŷ), that is,

E[ (x̂ − x)2]≥[F−1]11 , E[ (ŷ − y)2]≥[F−1]22 . (26)

In location estimation applications, a more mean-
ingful performance measure of location estimators is
based on the geometric location estimation error ε =√

(x̂ − xk)2 + (ŷ − yk)2. The mean-squared error (MSE)
of any unbiased location estimator is lower bounded as
(26) describes:

ε2rms = E[ (ε2]≥[F−1]11 +[F−1]22 , (27)

where εrms is defined as the root-MSE (RMSE) of location
estimators.
Since we assume that the path loss exponent value for

each base station is independent of each other, the ele-
ments of the Fisher information matrix that include the
product of partial derivatives of distinct α values reduce to
zero. Let F̃x be the (k+1)×(k+1) special matrix obtained
by deleting the first row and column of F, i.e.,

F̃x =

⎡
⎢⎢⎢⎢⎢⎣

a f1 f2 f3 · · · fn
e1 d1 0 0 · · · 0
e2 0 d2 0 · · · 0
...

...
. . . . . . . . .

...
en 0 0 · · · 0 dn

⎤
⎥⎥⎥⎥⎥⎦ , (28)

where its components that might be nonzero are shown
with parameters a, di, ei, and fi, i = 1, . . . , n. Similarly, let
F̃y be the same type of special matrix obtained by deleting
the second row and column of F. Subsequently, (27) can
be rewritten as:

ε2rms = E[ ε2]≥[F−1]1,1 +[F−1]2,2 = det F̃x
det(F)

+ det F̃y
det(F)

,

(29)
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where det F̃x (and similarly det F̃y) can be computed as
[20]:

det F̃x =
N∏

n=1
dn.

(
a −

N∑
n=1

fnen
dn

)
(30)

For the case of three base stations with unequal path
loss exponents, the FIM matrices are of size 5 × 5
and the unknown vector parameter is given by θ =
[ x, y,α1,α2,α3]T . After some algebraic manipulation,
[ F−1]11 and [ F−1]22 can be expressed as:

[F−1]11 = (F22F33F44F55 − F2
23F44F55

− F2
24F33F55 − F2

25F33F44)/|F|
[F−1]22 = (F11F33F44F55 − F2

13F44F55
− F2

14F33F55 − F2
15F33F44)/|F|, (31)

where |F| is the determinant of the Fisher information
matrix and εrms is defined as the RMSE of location esti-
mators. The closed form expression of the CRB bound
is not explicitly given here due to its complexity; instead,
only the numerical solutions are presented. On the other
hand, each component of the FIM matrix is given in the
Appendix.

4 Simulation results
In this section, simulation results for various scenarios
are presented and discussed. We assume that all BSs in
the network have a three-sector configuration where each
sector belongs to a cell with identical coverage area and
transmit power. The considered network is composed of
three BSs as shown in Figure 2. The cell radius is assumed
to be 1 km for all cells. Sectoral antennas are modeled by
the antenna model described in Section 2. BSs are located
at Cartesian coordinates [0, 0], [1500, 0], and [0, 1500]
in meters. In order to evaluate the effect of the restric-
tions mentioned in the GSM and UMTS specifications
on the performance of the proposed algorithm, two cases
for the RSS measurements are considered separately. In
the first case, exact measurements are used in the algo-
rithm. In the second case, measurements are truncated if
they are below or above the threshold values mentioned
in the standards. In the simulations, it is assumed that BS
located at coordinates [0, 0] is the serving cell and the MS
does not change its serving cell (i.e., no handover occurs).
At each realization, the MS point MS =[ x, y] is generated
randomly with a uniform distribution inside the area in
the first quadrant of the Cartesian coordinates which is
bounded by a circle centered at [0, 0] as in Figure 2.
The proposed algorithm computes the ML estimate of

theMS position using the RSSmeasurements and concur-
rently calibrates the PLE parameters of the channels occu-
pied by different BSs. Recall that this algorithm is referred
to as RSS-MPLE algorithm. In order to demonstrate the

improvement on the positioning accuracy provided by the
RSS-MPLE algorithm, its performance is compared with
those of other algorithms, such as RSS with single PLE
algorithm (RSS-SPLE) [46], which finds and calibrates a
single PLE for all channels, and RSS with known PLE algo-
rithm (RSS-KPLE) [18] in which PLE values are known as
a priori. Furthermore, the Cramer-Rao bound has been
evaluated and compared with the RMSE results of the
proposed algorithm.

4.1 Effect of truncated RSSmeasurements
RSS measurements below −110 dBm and above −48 dBm
are truncated in GSM systems. In Figure 3, the effect
of such truncation of RSS measurements in the perfor-
mance of the proposed algorithm is investigated. The
case in which all BSs have the same PLE value, i.e.,
α1 = α2 = α3 = 3, is considered in this simulation, during
which RSS-MPLE and RSS-KPLE algorithms are operated
both with truncated and original RSS measurements. The
truncated measurements represent all RSS measurements
below −110 dBm and above −48 dBm. In Figure 3 (and
the subsequent figures in the paper), the following legend
clarification is necessary to better interpret the results:

• ‘Truncated RSS are omitted’ means that RSS
measurement are truncated and measurements
below −110 dBm and above −48 dBm are not used
in the simulations.

• ‘Truncated RSS are used’ means that RSS
measurements being truncated and measurements
below −110 dBm and above −48 dBm are used in the
simulations.
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Figure 2 Hypothetical network scheme used throughout the
simulations.MS positions are randomly distributed inside the circle
on the first quadrant.
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Figure 3 Effect of RSS truncation on position RMSE.When PLE values for all BSs are 3 for σv between 0 to 10.

• ‘RSS are not truncated’ means that RSS
measurements are not truncated.

From Figure 3, we note that the positioning RMSE
obtained with RSS-MPLE algorithm does not exceed 20m
even for σv = 10 if RSS measurements are not truncated.
On the other hand, truncation of RSS measurements dra-
matically degrades the performance of both RSS-MPLE
and RSS-KPLE algorithms due to the decrease in the
number of RSS measurements, i.e., the performance of
the proposed algorithm is expected to improve with an
increase in the number of available measurements.
Since the truncated measurements represent all RSS

measurements below −110 dBm and above −48 dBm,
they introduce a large bias in the position estimate when
incorporated in the RSS measurement set. Because of
this, positioning accuracy of the RSS-MPLE algorithm
severely degrades when the truncated RSS measurements
are not omitted. Compared to the RSS-MPLE algorithm,

the RSS-KPLE algorithm performs better for all σv val-
ues when truncated RSS measurements are used. This is
an expected result since RSS-MPLE algorithm estimates
PLE values in addition to the coordinates with the same
number of RSS measurements.

4.2 Effect of inaccurate knowledge of PLE values
In this subsection, the effect of inaccurate PLE values on
positioning accuracy is examined and depicted in Figure 4.
Throughout the simulation, the PLE values α1 = 3.5, α2 =
2.7, and α3 = 2.3 are used in the RSS-KPLE algorithm,
whereas actual PLE values are α1 = 3.8, α2 = 3.0, and
α3 = 2.6. Simulations are carried out with both truncated
and exact RSS measurements. As shown in Figure 4, the
RSS-MPLE algorithm outperforms the rivals under mild
shadow fading since the proposed algorithm is capable of
adapting PLE values in real time. On the other hand, the
PLE inaccuracy has a drastic effect on positioning accu-
racy of RSS-KLPLE. As σv increases, the adverse effect of
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Figure 4 Effect of inaccurate PLEs on position RMSE. α1 = 3.5,α2 = 2.7, and α3 = 2.3 are used in RSS-KPLE, whereas actual PLEs are
α1 = 3.8,α2 = 3.0, and α3 = 2.5.
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Figure 5 Position RMSE in meters when PLE values for all BSs are 3 for σv between 0 to 10 dB.

the inaccurate PLE values diminishes since shadow fading
becomes the main error source.

4.3 Effect of distinct PLE values
This subsection focuses on the performance analysis of
RSS-MPLE, RSS-SPLE, and RSS-KPLE algorithms under
different channel conditions. In the first scenario, it is
assumed that all channels have the same PLE value. In the
second scenario, PLE values differ for channels occupied
by different BSs.

4.3.1 Equal α1, α2, and α3
Let us first consider the rather unrealistic case where
all BSs (i.e., all channels) are assumed to have the same
PLE value which is equal to three (see Figures 5 and 6).
In Figure 5, the RMSE for the positioning algorithms of
interest is shown. Since PLE values of all channels are
identical, the RSS-SPLE algorithm is expected to outper-
form the RSS-MPLE algorithm for the same number of
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[

Figure 6 CDF of positioning error for σv = 6 dB with PLE values
of α1 = 3, α2 = 3, and α3 = 3.

RSS measurements, which is indeed the case as depicted
in Figure 5.
To evaluate the RSS-MPLE and RSS-SPLE algorithms

with respect to the FCC requirements, the positioning
error cumulative distribution function (CDF) is shown in
Figure 6 for σv = 6 dB, which is a realistic value in amicro-
cellular environment [31]. The RSS-SPLE and RSS-KPLE
algorithms satisfy the FCC requirements, which mandate
67% CERP within 100 m and 95% CERP within 300 m.
Although the RSS-MPLE algorithm does not satisfy the
FCC requirements, this algorithm offers a solution for
environments that possess distinct and variable PLEs.

4.3.2 Distinct α1, α2, and α3
From Figure 5, it is seen that the RSS-SPLE algorithm
has good performance when all PLEs are equal. How-
ever, if BSs have different α values, the RSS-MPLE algo-
rithm is expected to outperform the rival algorithms since
each PLE is treated separately in the RSS-MPLE algo-
rithm (see Figures 7 and 8). Moreover, as σv increases,
the gap between the positioning RMSE of the RSS-MPLE
and RSS-SPLE algorithms closes since the error variance
of the α estimates obtained with RSS-MPLE algorithm
increases. Such a scenario is simulated for BSs that have
different PLE values, i.e., for α1 = 3.5, α2 = 2.7, and
α3 = 2.3.
Figure 7 shows that the performance of the RSS-SPLE

algorithm deteriorates when PLE values of the BSs are
unequal. The scenario considered in this simulation can
be experienced when a BS that is in the vicinity of the MS
is in NLOS condition and other BSs are in LOS condi-
tion with the MS. Compared to the RSS-SPLE algorithm,
positioning accuracy of the RSS-MPLE algorithm does
not change significantly under these conditions. On the
other hand, position estimates obtained with RSS-SPLE
algorithm are erroneous due to the bias in the α esti-
mate. Moreover, positioning accuracy of RSS-MPLE and
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Figure 7 Position RMSE with PLE values. α1 = 3.5, α2 = 2.7, and α3 = 2.3.

RSS-KPLE algorithms are close even when PLE values
vary. Thus, RSS-MPLE algorithm satisfies the require-
ments for a position estimate with low error variance,
independent from unknown propagation parameters, i.e.,
σv and α values. The positioning error CDF shown in
Figure 8 indicates that the accuracy of mobile positioning
can substantially be improved by employing the RSS-
MPLE algorithm.

4.4 CRB performance evaluation
In this subsection, we evaluate the CRB bound for the
equal PLE case and depict the positioning RMSE for
the proposed RSS-MPLE algorithm in Figure 9. From
Figure 9, it is noted that the RMSE is relatively high in
the middle area, while it shows better results at bound-
ary areas. Actually, this is expected due to the pattern

contribution in location estimation since more signal
measurements are available for such cases. Figure 10
depicts the CRB results for the same scenario of the pro-
posed algorithm RSS-MPLE. From Figures 9 and 10, it
can be concluded that the performance degrades up to
450 m in RMSE and 400 m in CRB. Moreover, it is clearly
seen that the radiation pattern has a significant effect on
location estimation.

5 Conclusions
In this paper, a practical positioning method that can
be implemented in mobile networks with simple modi-
fications in the existing infrastructure is presented. The
proposed method, the so-called RSS-MPLE, is based on
RSS measurements and jointly estimates the MS position
and the propagation parameters, namely the PLE value of
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Figure 8 CDF of positioning error for σv = 6 dB with PLE values of α1 = 3.5, α2 = 2.7, and α3 = 2.3.
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the measurement channel. The RSS-MPLE method does
not need a training period to estimate the PLE value
of the channel. The most significant feature of the pro-
posed RSS-MPLE algorithm is its ability to separately
calibrate the PLE value of each channel occupied by dif-
ferent BSs. Moreover, the RSS-MPLE algorithm incor-
porates the antenna radiation pattern information that
provides additional improvement in positioning accuracy.
Via extensive simulations, the performance of the pro-
posed method has been compared with those of the
existing algorithms in terms of positioning RMSE, bias,
availability, and CERP under different environmental con-
ditions by changing PLE and SNR values. Simulation
results indicate that the RSS-MPLE algorithm is robust
against variations in the PLE values under different
environment conditions.

6 Appendix
6.1 Cramer-Rao bound for the three BS case
The components of the Fisher information matrix are
given as below:
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