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Abstract

The performance of wireless communication systems can be significantly improved using the modulation diversity
technique, which is based on the combination of a suitable choice of the reference angle of a signal constellation with
independent interleaving of the symbol components. This technique has been evaluated considering different fading
channel models, such as Rayleigh, Rice and Nakagami-m. However, in some specific scenarios, the tails of those fading
distributions do not properly fit the experimental measured data, which demands the use of more general channel
distributions. This article presents a performance evaluation of the modulation diversity technique for κ-μ fading
channels. New expressions for the PEP (Pairwise Error Probability) are obtained using numerical integration, series
representation and upper/lower bounds. The evaluation, based on Monte Carlo simulation, demonstrates that the
performance gain of the modulation diversity increases as the fading becomes more severe. Communications
channels exhibit some degree of time correlation, which cannot be perfectly estimated, affecting the performance of
the modulation diversity system. Thus, a performance evaluation of the system, concerning the presence of temporal
correlation and estimation errors in the channel is also presented in the article.
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1 Introduction
Multipath fading can significantly degrade the perfor-
mance of communication systems. Several techniques
have been proposed to mitigate the effects of fading
to improve their performance, and diversity techniques
appear as a solution to the problem [1-3]. Diversity tech-
niques provide replicas of the transmitted signals to the
receiver [4].
A useful diversity technique is based on the combination

of a suitable choice of a reference constellation rotation
angle (θ ) with the independent interleaving of the symbol
components before the transmission [4,5]. The optimal
rotation angle depends on the chosen constellation order
(M), as well as on the fading severity degree [6]. In this
article, this technique is referred to as modulation diver-
sity [4,7], but it is also known as constellation rotation [8],
signal space diversity [9,10] and rotation and component
interleaving diversity [11].
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The performance of the modulation diversity tech-
nique has been evaluated considering different scenarios,
which include M-ary phase shift keying (M-PSK) and
M-ary quadrature amplitude modulation (M-QAM) con-
stellations for Rayleigh fading channels [5,7,8,12], Rician
fading channels [13,14] and Nakagami-m fading channels
[11,15]. However, in some specific scenarios, the tails of
those fading distributions do not properly fit the experi-
mental measured data, as discussed in [16].
Yacoub [17] proposed two fading distributions, namely

κ-μ and η-μ, to allow flexibility to model the wireless
channels fading fluctuations. Those distributions are fully
characterized in terms of measurable physical parame-
ters. The κ-μ distribution includes the Rice (Nakagami-n),
Nakagami-m, Rayleigh and One-Sided Gaussian distribu-
tions as special cases. On the other hand, the η-μ dis-
tribution includes the Hoyt (Nakagami-q), Nakagami-m,
Rayleigh and One-Sided Gaussian distributions as special
cases. As discussed in [17], the versatility provided by the
use of those distributions shows a good fit to experimen-
tal data (particularly for low values of the fading envelope)
[17]. It is worth to mention that this article is focused on
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κ-μ distribution, but the proposed methodology could be
extended to η-μ distribution.
Recently, many articles deal with the κ-μ and η-μ dis-

tributions. Considering the application of diversity tech-
niques, useful formulas for the pdf (probability density
function) and CDF (Cumulative Distribution Function)
of the sum of squared κ-μ variates were presented
[18], and an analytical expression for the switching
rate of a dual branch selection diversity combiner was
derived in [19]. A systematic investigation on the fad-
ing characteristics experienced in body to body commu-
nications channels, for fire and rescue personnel, was
presented in [20], and the parameters κ and μ were
obtained for transmission in the 2.45GHz range. Using
a similar approach, the authors in reference [21] inves-
tigated the distribution of signal phase in body area
networks.
This article presents a performance evaluation of the

modulation diversity technique for the κ-μ fading dis-
tribution. Novel approximate expressions for the PEP
(Pairwise Error Probability) for κ-μ fading channels are
derived. Based on the degrees of freedom provided by
the κ-μ distribution, the optimum rotation angle and the
system performance are evaluated for different scenarios,
including time correlated channels, subject to estimation
errors. It is shown that modulation diversity improves the
performance of digital communication systems, especially
under severe fading.
The remaining sections are organized as follows.

Section 2 presents the system and channel models
adopted in this article. An analytical framework for the
optimization of modulation diversity technique for κ-μ
fading channels is described in Section 3. The perfor-
mance evaluation results are presented in Section 4.
Section 5 discuss the effects of the temporal correla-
tion in the performance of the system, while the results
concerning the presence of channel estimation errors
are presented in Section 6. Section 7 is devoted to the
conclusions.

2 System and channel models
The modulation diversity technique mitigates the effects
of the multipath fading in the transmitted signals. In
this technique, the introduction of redundancy can be
obtained by combining the rotation of the signal constel-
lation, by an appropriate reference angle θ , with the inde-
pendent interleaving of the symbol components. Figure 1
illustrates the block diagram for the modulation diversity
technique [4].
The channel model is characterized by a slowly varying

flat fading. Thus, the received signal, denoted by r(t), can
be written as

r(t) = α(t)ejφ(t)s(t) + n(t), (1)

in which s(t) represents the transmitted signal, α(t) is the
fading amplitude, φ(t) is the phase shift produced by the
channel and n(t) represents the additive noise, modeled
as a complex white Gaussian process (AWGN), with zero
mean and variance N0/2 by dimension.
The fading amplitude α(t) is modeled as a κ-μ station-

ary random variable. The κ-μ distribution is a general
fading distribution that can be used to represent the
small-scale variation of the fading signal in a line-of-sight
condition. It is modeled by the parameters κ and μ, that
define the shape of the distribution. The κ-μ distribution
includes Rice (κ = K , μ = 1), Nakagami-m (κ → 0,
μ = m), Rayleigh (κ → 0, μ = 1) and One-Sided
Gaussian (κ → 0, μ = 1/2) distributions as special cases
[17].
The fading model for the κ-μ distribution considers a

signal composed of clusters of multipath waves, propagat-
ing in a non-homogeneous environment. The phases of
the scattered waves, within each cluster, are random and
have similar large delay times. Furthermore, the clusters
of multipath waves are assumed to have scattered waves
with identical powers, but a dominant component is found
within each cluster, which presents an arbitrary power
[17].
The κ-μ normalized probability density function (pdf)

is expressed as [17]

p(α) = 2μ(1 + κ)
μ+1
2

κ
μ−1
2 exp [μκ]

αμ exp
[−μ(1 + κ)α2]

× Iμ−1
[
2μ

√
κ(1 + κ)α

]
, α ≥ 0,

(2)

in which E[α2]= 1, Iν(·) denotes the modified Bessel
function of the first kind and order ν ([22], 8.431), κ ≥ 0
is the ratio between the total power of the dominant com-
ponents and the total power of the scattered waves, and
μ > 0 is given by μ = 1

Var[α2]
1+2κ

(1+κ)2
. It is assumed that

the fading amplitude is perfectly estimated at the receiver,
i.e., α̂(t) = α(t). Moreover, by coherent detection, the
effect of the fading on the phase of the received signal is
completely compensated.
For the rotated and interleaved system, the transmitted

waveform model can be written as

s(t) =
+∞∑

n=−∞
xnp(t − nTS) cos(ωct)

+
+∞∑

n=−∞
yn−kp(t − nTS) sin(ωct),

(3)

in which k is an integer that represents the delay
(expressed in number of symbols) introduced by the inter-
leaving between the I (in-phase) and Q (quadrature) com-
ponents (also named interleaving depth), p(t) denotes the
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Figure 1 Block diagram for the modulation diversity technique.

symbol pulse shape, TS is the symbol period, ωc is the
carrier frequency and

xn = an cos θ − bn sin θ , (4a)

yn = an sin θ + bn cos θ . (4b)
In addition,

an, bn = ±d,±3d, . . . ,±(
√
M − 1)d,

in which d is the minimum distance between the constel-
lation points andM is the modulation order.
Since the transmitted symbols do not share common

components, the I and Q components are independently
affected by fading. Thus, after the deinterleaving, each
received symbol vector r can be expressed as

r =[ rI(t), rQ(t)] , (5)
r =[αI(t)sI(t) + nI(t), αQ(t + k)sQ(t) + nQ(t + k)] ,

(6)

in which sI(t), sQ(t) are the I and Q signal components
of the symbol s(t), αI(t), αQ(t) represent the fading that

affects the I and Q components, and nI(t), nQ(t) are the
I and Q components of noise. Finally, the receiver applies
maximum likelihood (ML) metric on the deinterleaved
signals to detect the source symbol, as follows

ŝ = argmin
s∈S

(|r − α � s|2), (7)

ŝ = argmin
s∈S

(|rI(t) − αI(t)sI |2 + |rQ(t) − αQ(t + k)sQ|2),
(8)

in which | · | denotes the standard Euclidean norm, � rep-
resents the component-wise product and S represents the
signal constellation withM signals.

3 Optimization analysis of themodulation
diversity technique for κ-μ fading channel

The constellation rotation angle θ represents an impor-
tant design criterion of the modulation diversity tech-
nique. However, the optimal rotation angle depends on
the chosen constellation order (M) and the fading severity
degree (defined by the κ and μ parameters). The opti-
mal rotation angle evaluation can be accomplished in
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two ways: (a) by using Monte Carlo simulation; or (b) by
the optimization of the system SER (Symbol Error Rate)
expression.
The first approach requiresmore computing power than

the second one, since many simulations must be per-
formed in different settings and with different rotation
angles. On the other hand, obtaining an exact closed-form
expression for the SER of diversity modulation systems is a
difficult problem, and a common approach to evaluate the
error probability of a two-dimensional signal constellation
is the use of upper bounds, such as the union bound (UB)
[23]. Assuming equiprobable symbols, the SER is upper
bounded by [12]

Pe ≤ PUBe = 1
M

∑
s∈S

∑
ŝ∈S
s	=ŝ

P(s → ŝ), (9)

in which S represents the signal constellation withM sig-
nals and P(s → ŝ) is the pairwise error probability (PEP)
and ŝ is estimated by the receiver when s has been trans-
mitted (i.e., if |r − α � ŝ|2 < |r − α � s|2). Furthermore, if
only the nearest neighbors of each symbol are considered
in the performance evaluation, Pe can be approximated by

Pe ≈ PNN
e = 1

M
∑
s∈S

∑
ŝ∈N (s)

P(s → ŝ), (10)

in whichN (s) is the set of the nearest neighbors of s in S .
Since interleaving is employed for the transmitted sym-

bols, the I andQ symbol components experience indepen-
dent fading. Let αI and αQ be the κ-μ distributed fading
amplitudes in the I and Q channels, respectively. Thus, the
PEP for a system with modulation diversity, subject to κ-μ
fading, is given by [23]

P(s → ŝ) =
∫ ∞

0

∫ ∞

0
Q

⎛
⎝

√
γ̄d2I α

2
I

2
+ γ̄d2Qα2

Q
2

⎞
⎠ (11)

× p(αI)p(αQ)dαIdαQ,

P(s → ŝ) = 4μ2(1 + κ)μ+1

κμ−1 exp [2μκ]

×
∫ ∞

0

∫ ∞

0
Q

⎛
⎝

√
γ̄d2I α

2
I

2
+ γ̄d2Qα2

Q
2

⎞
⎠

× α
μ
I α

μ
Q exp

[
−μ(1 + κ)

(
α2
I + α2

Q

)]
·

Iμ−1
[
2μ

√
κ(1 + κ)αI

]
Iμ−1

[
2μ

√
κ(1 + κ)αQ

]
dαIdαQ, (12)

in which γ̄ is the channel mean SNR, and d2I , d
2
Q are the

Euclidean distances between the symbols s and ŝ in the I

and Q components, respectively. The distances are given
by

d2I = [cos(φ1 + θ) − cos(φ2 + θ)]2 , (13)
d2Q = [sin(φ1 + θ) − sin(φ2 + θ)]2 , (14)

in which φ1, φ2 represent the phases of the two signal
constellation points under consideration.
Applying Craig’s formula for the Q(·) function [24],

given by

Q(x) = 1
π

∫ π/2

0
exp

(
− x2

2 sin2 φ

)
dφ, (15)

into (12), the PEP expression becomes

P(s → ŝ) = 4μ2(1 + κ)μ+1

πκμ−1 exp [2μκ]

×
∫ π/2

0

∫ ∞

0

∫ ∞

0
exp

[
− γ̄d2I
4 sin2 φ

α2
I

]

× exp
[
− γ̄d2Q
4 sin2 φ

α2
Q

]
α

μ
I exp

[−μ(1 + κ)α2
I
]·

Iμ−1
[
2μ

√
κ(1 + κ)αI

]
α

μ
Q exp

[
−μ(1 + κ)α2

Q

]
Iμ−1

[
2μ

√
κ(1 + κ)αQ

]
dαIdαQdφ.

(16)

The integral in (16) can be calculated in different ways,
as presented in the following sections.

3.1 Exact numerical integration
Different numerical integration techniques can be used
to calculate the PEP. In order to make the calculations
easier and computationally efficient, the authors have sim-
plified (16). After performing the integration in αI and
αQ, using the change of variable x = cos2 φ and some
analytical manipulations, the PEP expression becomes

P(s → ŝ) = 1
2π

[
(1 + cI)(1 + cQ)

]μ · ϒ
(
κ ,μ, cI , cQ

)
,

(17)

in which cI = γ̄d2I
4μ(1+κ)

, cQ = γ̄d2Q
4μ(1+κ)

and ϒ(·) is a special
defined function that should be numerically evaluated.
This function is defined as

ϒ (a, b, c, d) =
∫ 1

0
x−1/2 (1 − x)2b−1/2

×
[(

1 − x
1 + c

) (
1 − x

1 + d

)]−b
·

exp
[
−ab

(
c

1 + c − x
+ d

1 + d − x

)]
dx.

(18)
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The function in (18) can be computed using a software
package, such as Mathematica, Maple or Matlab.

3.2 Series representation
An alternative form for the PEP can be obtained using a
series representation for the Bessel function of the first
kind in the integrand of (16), which can be expressed by
the following expression ([22], 8.445)

Iν(x) =
∞∑

m=0

1
m!�(m + ν + 1)

(x
2

)2m+ν

. (19)

Introducing (19) into (16), performing the integrations
and other analytical manipulations, the PEP expression
becomes

P(s → ŝ) = exp [−2μκ]
2π

[
(1 + cI)(1 + cQ)

]μ
×

∞∑
m=0

∞∑
n=0

(μκ)m+nB
(
m + n + 2μ + 1

2 ,
1
2
)

m! n! (1 + cI)m(1 + cQ)n
·

F1
(
1
2
,m+μ, n+μ,m+n+2μ+1;

1
1+cI

,
1

1+cQ

)
,

(20)

in which F1(·) represents the Appell hypergeometric func-
tion ([22], 9.180.1) and B(·) is the Beta function ([22],
8.380.1).
The infinite series form presented in (20) can be trun-

cated to a few number of terms, becoming an approxima-
tion for the PEP expression. Thus, (20) can be rewritten as

P(s → ŝ) ≥ exp [−2μκ]
2π

[
(1 + cI)(1 + cQ)

]μ
×

W∑
m=0

W∑
n=0

(μκ)m+nB
(
m + n + 2μ + 1

2 ,
1
2
)

m! n! (1 + cI)m(1 + cQ)n

× F1
(
1
2
,m + μ, n + μ,m + n + 2μ + 1;

1
1 + cI

,
1

1 + cQ

)
.

(21)

The number of terms in each series (denoted by W and
assumed equal in both summations) should be adjusted
according to the severity of the fading. Since the PEP
approximation is composed of a double summation, a
number of W 2 terms should be computed. Figure 2
depicts the PEP approximation based on the series rep-
resentation considering different values of W and the
randomly chosen symbols 0.3162 + 0.9487j and 0.9487 −
0.3162j.
As can be seen in Figure 2a, a small number of terms

is required to obtain a precise approximation when the
channel is characterized by severe fading (κ = 0.5,

μ = 1.5) – in this case, a total number of W 2 = 16
terms is used. However, in a less severe fading scenario
(κ = 4.5, μ = 4.5), as illustrated in Figure 2b, more terms
are required for a better precision (in this case, a total
number ofW 2 = 676 terms is used).
An important characteristic of the proposed approxi-

mation is that it converges to the exact PEP for high SNR
values, even using a small number of terms in the series.

3.3 Lower bounds
A classical approach to derive approximations for analyti-
cal functions is the use of bounds. Thus, the authors have
derived lower and upper bounds for the PEP expression
to be used in the evaluation of the modulation diversity
in κ-μ fading. In this article, two different lower bounds
were derived. The first lower bound (referred to as Lower
Bound A) is obtained truncating the PEP series form, pre-
sented in (21), to only one term (i.e.,m = 0 and n = 0). In
this case, (21) can be rewritten as

P(s → ŝ) ≥ exp [−2μκ] B
(
2μ + 1

2 ,
1
2
)

2π
[
(1 + cI)(1 + cQ)

]μ
× F1

(
1
2
,μ,μ, 2μ + 1;

1
1 + cI

,
1

1 + cQ

)
.

(22)

Another lower bound can be derived replacing the
exponential functions of (16) by their equivalent power
series ([22], (1.211)) and applying ([22], (3.211)). After
the analytical manipulations, the PEP function can be
rewritten as

P
(
s → ŝ

) = B
(
2μ + 1

2 ,
1
2
)

2π
[
(1 + cI)

(
1 + cQ

)]μ
×

∞∑
m=0

∞∑
n=0

(−1)m+n

m! n!

(
μκcI
1 + cI

)m (
μκcQ
1 + cQ

)n

× F1
(
1
2
,μ + m,μ + n, 2μ + 1;

1
1 + cI

,
1

1 + cQ

)
.

(23)

Using the fact that the Appell hypergeometric function
in (23) converges to 1 at high SNR valuesa and trans-
forming the series again to exponential functions, the PEP
lower bound (referred to as Lower Bound B) can be written
as

P
(
s → ŝ

) ≥ B
(
2μ + 1

2 ,
1
2
)

2π
[
(1 + cI)

(
1 + cQ

)]μ
× exp

[
−μκ

(
cI

1 + cI
+ cQ

1 + cQ

)]
.

(24)
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Figure 2 Series approximation for the PEP considering the randomly chosen symbols 0.3162 + 0.9487j and 0.9487 − 0.3162j. The figure
presents the performance of the series approximation proposed in (20) for the PEP of modulation diversity.

The lower bound presented in (24) is much sim-
pler than the one presented in (22), since it does not
require the computation of the Appell hypergeometric
function.

3.4 Upper bounds
Two PEP upper bounds are proposed to evaluate the
modulation diversity system. The first upper bound is
obtained assuming that (1 + cI) and (1 + cQ) in the
denominator of (23) converge, respectively, to cI and cQ
at high SNR values, the F1(·) function converges to 1
at high SNR values, and the series become exponen-
tial functions. Since, for low SNR values, [ (1 + cI)(1 +
cQ)]μ � (cIcQ)μ and [(1+cI )(1+cQ)]μ

(cI cQ)μ
� F1(·) func-

tion, then (23) becomes an upper bound and can be
rewritten as

P
(
s → ŝ

) ≤ B
(
2μ + 1

2 ,
1
2
)

2πcμI c
μ
Q

× exp
[
−μκ

(
cI

1 + cI
+ cQ

1 + cQ

)]
.

(25)

Furthermore, if κ → 0 and μ = m, then (25) coin-
cides with the PEP upper bound for Nakagami-m fading
channels presented in ([11], Eq.(13)).
The second upper bound is based on the use of the

Chernoff bound (i.e., Q(x) ≤ 1
2e

− x2
2 ). It is obtained sub-

stituting the Chernoff bound into (12) and performing the

integration in αI and αQ. Finally, the PEP can be upper
bounded by (26)

P
(
s → ŝ

) ≤ μ2μ(1 + κ)2μ

2

×
[(

γd2I
4

+ μ(1 + κ)

) (
γd2Q
4

+ μ(1 + κ)

)]−μ

× exp
[
−γ κμ

(
d2I

d2I γ + 4(1 + κ)μ

+ d2Q
d2Qγ + 4(1 + κ)μ

)]
.

(26)

3.5 Performance evaluation of the PEP bounds
The proposed bounds serve as approximations for the PEP
function and are used to optimize the θ angle. However,
each proposed approximation exhibits a different perfor-
mance when compared to the exact PEP value, as well as
different complexity.
A performance comparison of the proposed lower and

upper bounds for the PEP is presented in Figure 3. In the
evaluation different values of κ and μ and the constella-
tion symbols 0.3162 + 0.9487j and 0.9487 − 0.3162j are
considered.
As can be seen in Figure 3, the Lower Bound B is more

accurate than the other bounds. Furthermore, it is rela-
tively simpler than the other bounds, making its adoption
quite attractive. However, an important aspect to note is
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Figure 3 PEP bounds considering the symbols 0.3162 + 0.9487j and 0.9487 − 0.3162j. Figure 3 depicts a comparison among the proposed
PEP approximations (namely Upper Bound, Chernoff Bound, Exact, Lower Bound A and Lower Bound B) for κ-μ channels. The same symbols and fading
scenarios from Figure 2 are used in Figure 3.

that, whenever a lower bound is used as a PEP approxima-
tion, the union bound becomes an approximation and not
an upper bound anymore.

4 Results
The adoption of the κ-μ fading model allows the eval-
uation of communication systems in channel conditions
which are not covered by other channel models, such
as the Nakagami-m. The flexibility provided by the
κ-μ distribution is adequate to evaluate the perfor-
mance of modulation diversity. This section presents the
performance analysis of the diversity modulation tech-
nique for a κ-μ fading channel. Numerical evaluations
and Monte Carlo simulations were performed, respec-
tively, to optimize the θ angle in (13) and (14), and to
verify the gains obtained by the modulation diversity
scheme considering different channel parameters and PEP
expressions.

4.1 Evaluation of the optimum rotation angle θ

The performance of the modulation diversity technique
is directly affected by the constellation rotation angle
θ , requiring its optimization, to obtain the value of θ

that generates the lowest overall SER. The evaluation of
the optimal rotation angle is accomplished by replacing
the different PEP expressions in (9). The evaluation was
performed considering QPSK and 16-QAM constellations
and two different channel scenarios: (a) severe fading con-
ditions (κ = 0.1, μ = 0.25) and (b) typical fading
conditions (κ = 1.5, μ = 1.75) [25].
Figures 4 and 5 depict the SER of the modulation diver-

sity system (with QPSK and 16-QAM constellations) for

a κ-μ fading channel. As can be seen in the figures, the
optimal angle depends on the constellation order and
the channel characteristics. Moreover, the SER curves are
symmetric with respect to the angle 45 ◦, since analogous
constellations are generated regardless of the rotation
direction (i.e., clockwise or counterclockwise).
Comparing Figures 4 and 5, one can note that the

overall performance of the PEP approximations depends
on the fading parameters κ and μ. For severe chan-
nel conditions (i.e., Figures 4a and 5a), the Cher-
noff bound presents the worst performance considering
the SER approximation. One can note that the other
bounds exhibit a similar performance to the Exact PEP
calculation.
On the other hand, in typical fading scenarios (i.e.,

Figures 4b and 5b), the upper bound shown in (25)
performs worse than the Chernoff bound. The Exact,
Series and Simulation curves are indistinguishable, and
the Lower Bound B curve is very close to them. Finally, the
Lower Bound A approximation has the worst performance
when compared to the Exact PEP.
An overview of the optimum rotation angle in modu-

lation diversity systems subject to κ-μ fading is shown
in Figure 6 which contains the curves of the optimal θ

as a function of the parameters κ and μ and considering
the use of QPSK and 16-QAM constellations, respec-
tively. The optimization process was conducted using the
Lower Bound B approximation, due to its simplicity and
accuracy.
As can be seen in Figure 6a, the optimum angle in a

QPSK constellation assumed values in the range 27 ◦ to
32 ◦. The largest optimum angle value (31.4 ◦) is achieved
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Figure 4 SER of the QPSKmodulation diversity system as a function of the rotation angle θ . The simulated and approximated SER values for a
modulation diversity system (with QPSK) are shown in the figure. Two fading scenarios were used in the evaluation: (a) severe fading (κ = 0.1,
μ = 0.25) and (b) typical fading (κ = 1.5, μ = 1.75). The fading scenarios were evaluated for an SNR = 20 dB.

at high values of μ and low values of κ (i.e., the fading
conditions are less severe). In contrast, the lowest opti-
mum angle value (27.8 ◦) should be used for low κ and μ

values (i.e., in very severe channel fading). Furthermore,
other intermediate values should be selected according to
the channel fading conditions, using the results shown in
Figure 6a.
Figure 6b presents the optimum rotation angle θ for

the 16-QAM constellations as a function of the chan-
nel fading parameters. As shown in the figure, there
are abrupt transitions in the graphic, the result of small
changes in the minimum values of the system SER (i.e.,

minor changes in the sidelobes of the SER curves—refer to
Figure 5).
If a Nakagami-m channel fading model is considered

(i.e., κ → 0 and μ = m), the optimum θ values are con-
firmed by the values presented in ([11], Table one) (for
QPSK constellations), which confirms the precision of the
Lower Bound B approximation.

4.2 Evaluation of the execution time
In addition to the SER evaluation, the authors evalu-
ated the average execution time of 900 union bound
calculations, considering the different proposed PEP
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Figure 5 SER of the 16-QAMmodulation diversity system as a function of the rotation angle θ . The simulated and approximated SER values
for a modulation diversity system (with 16-QAM) are presented in the figure. The same fading scenarios from Figure 4 were used. The fading
scenarios were evaluated for an SNR = 26 dB.
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Figure 6 Optimum angle θ as a function of different channel
fading parameters. The evaluation was performed using the
proposed Lower Bound B PEP approximation (presented in (24)).

approximations. Furthermore, each round of the experi-
ment was executed 30 times, in order to provide statis-
tical inferences. Table 1 shows the execution times for
the QPSK and 16-QAM union bounds considering the
proposed PEP expressions.
As can be seen in the table, considering the most accu-

rate approximations (as discussed in Section 4.1), the
Lower Bound B presented the lowest execution time. Its
running time is slightly above the Chernoff and Upper
Bound approximations, but presents an improved accu-
racy, and is attractive to use in the rotation optimization
process.

4.3 Evaluation of the System Symbol Error Rate
Based on the use of the of the Lower Bound B approx-
imation, this section presents the SER evaluation of
communication systems that use the modulation diver-
sity technique for κ-μ fading channels. Monte Carlo

Table 1 Average execution time for 900 calculations of the
union bound considering the proposed PEP
approximations

Constellation Fading PEP expression Exec. time (sec.)

QPSK Severe Upper bound 0.020

Chernoff 0.022

Exact 0.922

Series 148.490

Lower bound A 1.064

Lower bound B 0.023

Typical Upper bound 0.026

Chernoff 0.019

Exact 1.701

Series 168.540

Lower bound A 1.985

Lower bound B 0.031

16-QAM Severe Upper bound 0.170

Chernoff 0.124

Exact 17.924

Series 2956.030

Lower bound A 20.827

Lower bound B 0.167

Typical Upper bound 0.172

Chernoff 0.126

Exact 30.335

Series 3226.570

Lower bound A 34.965

Lower bound B 0.187

Table 1 presents the average execution time for 900 calculations of the union
bound considering the proposed PEP approximations and simulations. Two
fading scenarios were used in the evaluation: (a) severe fading (κ = 0.1,
μ = 0.25) and (b) typical fading (κ = 1.5, μ = 1.75).

simulations were performed to evaluate the efficiency
as modulation diversity is used for fading. The sys-
tem dynamically adapts the rotation angle according
to the channel SNR using the golden section search
method ([26], Section 10.2). The same channel and system
parameters used in the experiments of Section 4.1 were
adopted (Figures 4 and 5).
Symbol error rates for the QPSK and 16-QAM systems,

with and without the use of modulation diversity, are
depicted, respectively, in Figures 7 and 8. In addition to the
simulated values, the union bound and nearest neighbor
curves are also plotted to be compared to the simulated
values. The union bound curve (Equation (9)) is calculated
using the exact PEP expression (Equation (17)), while the
nearest neighbor curve (Equation (10)) is calculated with
the Lower Bound B approximation (Equation (24)).



Lopes et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:17 Page 10 of 18
http://jwcn.eurasipjournals.com/content/2013/1/17

10−3

10−2

10−1

100

 0  5  10  15  20  25  30  35  40

S
E

R

SNR (dB)

Union Bound − exact PEP
Nearest Neighbor − Lower Bound B
Simulation − without rotation
Simulation − with rotation

10−6

10−5

10−4

10−3

10−2

10−1

100

 0  5  10  15  20

S
E

R

SNR (dB)

Union Bound − exact PEP
Nearest Neighbor − Lower Bound B
Simulation − without rotation
Simulation − with rotation

a b

Figure 7 SER of a QPSK systemwith and without rotation in severe and typical fading conditions.

In a conventional transmission, the fading peaks can
completely degrade the information of the transmitted
symbols (in-phase and quadrature components). How-
ever, using themodulation diversity technique, the symbol
components are transmitted at different instants of time,
creating a redundancy between those components. In this
context, the gain provided by the modulation diversity
is higher under severe fading conditions, but it does not
affect the system performance when the signals are trans-
mitted in AWGN channels, since the Euclidean distance
between the symbols remains constant regardless of the
rotation angle θ . This aspect can be verified in Figures 7
and 8, the rotated constellation outperforms the refer-
ence system (i.e., without rotation). However, one can note
that the gain provided by this technique decreases as the
fading severity is reduced (i.e., as the values of κ and μ

are increased).

For the QPSK system, the modulation diversity gain is
16.86 dB (for a SER of 4.35 × 10−2) considering severe
fading conditions (κ = 0.1, μ = 0.25), and is 4.80 dB
(for a SER of 4.04 × 10−4) in a typical fading scenario
(κ = 1.5, μ = 1.75). On the other hand, for the 16-QAM
system, a gain of 11.28 dB (for a SER of 9.30 × 10−2) is
obtained in severe fading, while in typical fading, themod-
ulation diversity system has a gain of 3.74 dB (for a SER of
1.34 × 10−3).
Another important aspect to note is that the union

bound is not a good approximation for channels sub-
ject to severe fading conditions, but it becomes a
suitable approximation for better channel conditions.
Instead, the nearest neighbor, with the Lower Bound
B PEP, fits well in severe fading (e.g., Figure 7a), but
becomes a lower bound in typical fading scenario (e.g.,
Figure 7b).
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Figure 8 SER of a 16-QAM systemwith and without rotation in severe and typical fading conditions.
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5 Performance evaluation of themodulation
diversity technique in time correlated channels

The previous evaluation of the modulation diversity tech-
nique considered that the in-phase (I) and quadrature
(Q) components are independently affected by the fading.
That assumption is based on the fact that the interleaving
depth (i.e., the temporal shift between a pair of inter-
leaved symbols, denoted by k) is larger than the channel
coherence bandwidth. However, in an actual scenario, the
channel conditions constantly change, and the perfect
channel state informationmay not be available, preventing
the system from dynamically adapt the interleaving depth.
Moreover, the coherence bandwidth changes according
to the Doppler frequency, which depends on the relative
velocity between the transmitter and the receiver. There-
fore, some degree of temporal correlation between the
fading coefficients appears, affecting the performance of
the modulation diversity technique.
This section presents an evaluation of the modulation

diversity assuming a time correlated channel. An analysis
of the influence of the correlation on the rotation angle
and on the performance of the technique is also shown.

5.1 Generation of a time correlated κ-μ fading channel
The first challenge to be faced in the proposed evalua-
tion is the generation of a time correlated κ-μ fading. The
developed κ-μ time correlated fading generator is based
on the adaptation of the classical time correlated Rayleigh
fading generator, on the properties of the Gaussian pro-
cesses and on the κ-μ fading physical model.
According that model [17], the received signal is a

composition of multiple clusters, each one consisting of
scattered waves of identical powers and of a dominant
component of arbitrary power. Thus, the envelope R of the
κ-μ distribution can be defined in terms of its in-phase
and quadrature components, as follows

R2 =
n∑

i=1
(Xi + pi)2 +

n∑
i=1

(Yi + qi)2, (27)

in which Xi and Yi are independent Gaussian random
processes with means E[Xi]= E[Yi]= 0 and variances
V [Xi]= V [Yi]= σ 2, pi and qi are, respectively, the mean
values of the in-phase and quadrature components of the
ith cluster and n is the number of clusters.
As discussed in Section 2, the parameters κ andμ define

the shape of the distribution, with κ representing the ratio
between the total power of the dominant components and
the total power of the scattered components, analytically
defined as follows [17]

κ =
∑n

i=1(p2i + q2i )
2μσ

, (28)

and μ is a real extension of n, given by [17]

μ = E2[R2]
V [R2]

× 1 + 2κ
(1 + κ)2

. (29)

The parameter μ extends the original meaning of the
parameter n to include some specific channel character-
istics, such as [17]: (a) non-zero correlation among the
clusters of multipath components; (b) non-zero correla-
tion between the in-phase and quadrature components
within each cluster; and (c) the non-Gaussian nature of
the in-phase and quadrature components of each cluster
of the fading signal, among other characteristics.
Based on the physical model of the κ-μ channel, Figure 9

presents the block diagram of the proposed fading gener-
ator (with pi, qi = m, ∀ 1 ≤ i ≤ n). As can be seen in the
figure, the resultant correlated κ-μ process is composed
by a sum of n correlated Rician processes (with each pro-
cess representing a cluster of multipath waves, containing
a dominant component).
The first step performed by the proposed system is the

generation of a time correlated Rayleigh fading. Differ-
ent techniques are available in the literature to generate
time correlated Rayleigh fading channels, including the
well-known techniques of Smith spectrum [27] and sum
of sinusoids [28]. The corresponding normalized autocor-
relation function for the Rayleigh fading is given by [29]

R(τ ) = J0(2π fDτ), (30)
in which τ is the time shift delay and fD is the maxi-
mum Doppler frequency. The power spectrum density of
a time-correlated Rayleigh fading is given by the classical
Jake’s Doppler spectrum [27,30], as follows

S(f ) =
⎧⎨
⎩

1

π fD

√
1−

(
f
fD

)2 , |f | ≤ fD,

0, |f | > fD,
(31)

in which f is the frequency shift relative to the carrier
frequency.
The Rayleigh random variable is transformed, by a

suitable function, to produce the Rice fading. Since the
Rayleigh fading is a circularly symmetric Gaussian pro-
cess, its statistics can be modified, without losing its
Gaussian characteristics. Thus, the Rice fading is obtained
from the complex Gaussian process α = X + jY , in which
the real and imaginary components have mean m and
standard deviation s, i.e., X,Y ∼ N(m, s2), given by [31]

m =
√

K
2(K + 1)

(32)

s =
√

1
(K + 1)

, (33)

in which K (the Rice factor) is the ratio of the line-
of-sight (LOS) the non-line-of-sight (NLOS) component,
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Figure 9 Block diagram of the time correlated κ-μ fading envelope generator.

K = 0 corresponds to a Rayleigh fading channel and
K → ∞ corresponds to a non-fading (i.e., constant)
channel.
The Rice fading generation process must be repeated n

times, with n being the corresponding integer value of the
channel parameterμ. An optional Gaussian generator can
be used for half-integer values of the parameter μ.
This limitation requires the adaptation of the previously

used channel scenarios to new values, as follows: (a) the
severe fading conditions (κ = 0.1, μ = 0.5) and (b) typical
fading conditions (κ = 1.5, μ = 2.0).
Finally, the squared norm of the Rician processes are

added and a square root is applied to generate the time
correlated κ-μ process. A normalization of the fading
samples is also required.
Figure 10 presents the histograms of the envelopes for

the two κ-μ fading scenarios (generated using the devel-
oped system) and their corresponding theoretical pdfs. As
can be seen, the histograms fit well with the theoretical
pdfs.
The normalized autocorrelation function, for both sce-

narios, was calculated using the generated fading samples.
Figure 11 shows the autocorrelation for the fading sce-
narios, considering a sampling frequency of 270833 sym-
bols/second (analogous to the one used in GSM–Global
System for Mobile Communications), and two different
Doppler frequencies.
As expected, the presence of dominant components and

a non-unitary number of clusters (i.e., determined by μ),

create a correlation among the fading samples. As a result,
the channel does not become uncorrelated (instead, the
correlation reduces or increases according to the tempo-
ral separation of the samples). Finally, the generated fading
samples are ready to be used for the evaluation of the
modulation diversity technique.

5.2 Performance over time correlated channel
The overall performance of the modulation diversity tech-
nique for uncorrelated channels is only affected by the
rotation angle of the signal constellation (that must be
defined according to the channel characteristics). Corre-
lated channels require that the interleaving depth k should
be carefully defined, to reduce the correlation between the
interleaved channel fading samples. Therefore, the smaller
the maximum Doppler frequency fD, the larger should be
the interleaving depth, requiring the analysis of the effect
of the change in the interleaving depth.
Figure 12 presents the Bit Error Rate (BER) curves for

a 16-QAM system as a function of the interleaving depth
k. The evaluation was performed considering the typical
fading scenario (κ = 1.5, μ = 2.0), a sampling frequency
of 270833 symbols/second and three different values of
SNR (10, 15, and 20 dB). For each SNR value, three curves
were generated: (a) a system without rotation (0.0 ◦) in a
correlated channel, (b) a system with rotation (30.2 ◦ and
45.0 ◦) in an uncorrelated channel, and (c) a system with
rotation (30.2 ◦ and 45.0 ◦) in a correlated channel. Max-
imum Doppler frequencies of 100 Hz and 200 Hz were
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a b

Figure 10 Histograms of two generated κ-μ fading channels and their corresponding theoretical pdfs (represented by the red dashed
lines).

considered in the evaluation. The rotation angle for each
scenario was optimized using the union bound with the
proposed PEP approximation Lower Bound B (presented
in (24)).
As can be seen in the figures, in correlated channels,

the BER of the system with modulation diversity changes
with the interleaving depth. The BER reduces as the cor-
relation between the interleaved symbols also reduces.
For instance, the minimum BER in Figure 12a is achieved
when the k value is approximately 1650 symbols (which is
equivalent to the smallest correlation value in Figure 11b,
fD = 100 Hz). Similarly, in Figure 12b, the minimum BER
is obtained when k is approximately 825 symbols (which is
equivalent to the smallest correlation value in Figure 11b,
fD = 200 Hz, and the double of the 100 Hz scenario).
An important characteristic to be noted in the presented
curves is that, for the minimum correlation points, the

BER of time correlated channels is smaller than the value
obtained for uncorrelated channels.
In the absence of rotation (0.0 ◦), the system becomes

invariant to changes in the interleaving depth, since
there is no redundancy between the I and Q interleaved
components of the transmitted symbols. Finally, a chan-
nel without time correlation is equivalent to a channel
with fD → ∞ (i.e., any pair of interleaved symbols is
uncorrelated). Since the correlation among the transmit-
ted symbols is null, the interleaving depth k also does
not affect the performance of the modulation diversity
system.
The system BER was evaluated as a function of the rota-

tion angle, to access the influence of the time correlation
in the optimum rotation angle. Figure 13 illustrates the
obtained curves for a 16-QAM system subject to a typical
fading scenario (κ = 1.5, μ = 2.0), a sampling frequency
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Figure 11 Normalized autocorrelation function calculated from the generated samples for both fading scenarios.
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Figure 12 BER of themodulation diversity system as a function of the interleaving depth considering a 16-QAM system in a typical fading
scenario (κ = 1.5, μ = 2.0), a sampling frequency of 270833 symbols/second and three different values of SNR (10, 15, and 20 dB).

of 270833 symbols/second, an SNR of 20 dB, different
maximum Doppler frequencies and interleaving depths.
The performance of the system for fD = 100 Hz and k =

1650 is equivalent to the performance for fD = 200 Hz and
k = 825, since in both scenarios the system experiment
the same correlation level. The figure shows the absence
of significant variations in the value of the optimum angle
between correlated and uncorrelated channels. Further-
more, as discussed earlier, for the minimum correlation
points, the system BER for time correlated channels is
smaller than the value obtained for uncorrelated channels.
Finally, Figure 14 shows the BER curves of the mod-

ulation diversity as a function of the SNR. The rotation
angle used in that evaluation was obtained averaging the
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Figure 13 BER of the modulation diversity system as a function
of the rotation angle. The evaluation was performed considering a
16-QAM system under a typical fading scenario (κ = 1.5, μ = 2.0), a
sampling frequency of 270833 symbols/second, an SNR of 20 dB and
different maximum Doppler frequencies.

optimum rotation angles presented in Figure 12. In the
experiments, a 16-QAM system subject to a typical fad-
ing scenario (κ = 1.5, μ = 2.0), and a sampling frequency
of 270833 symbols/second (for a time correlated chan-
nel) were considered. Similar results were obtained for
fD = 100 Hz and k = 1650, and for fD = 200 Hz and
k = 825, therefore, only one curve is shown in the figure.
The addition of modulation diversity gives a gain

improvement of 5.7 dB (for a BER of 10−5). However, the
system gain increases when correlated channels are con-
sidered and an appropriate value of k is defined, which
represents an additional gain of approximately 1 dB when
compared to the uncorrelated channel scenario (for the
same BER value).
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Figure 14 BER of the modulation diversity system as a function
of the SNR for a 16-QAM system under a typical fading scenario
(κ = 1.5, μ = 2.0) and for a sampling frequency of 270833
symbols/second.
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Based on the experiments, one concludes that, for time
correlated channels, the interleaving depth must be care-
fully defined to improve the overall system performance.
The correct choice of the interleaving depth reduces the
system BER to lower values than the obtained in uncor-
related channels (i.e., channels with fD → ∞). Another
consequence of using the optimum interleaving depth
is that there are no significant changes in the optimum
rotation angle.

6 Performance evaluation of themodulation
diversity technique subject to channel
estimation errors

In the previous sections, the performance of the mod-
ulation diversity system was evaluated considering the
existence of ideal channel state information (CSI), i.e., the
channel gain is perfectly known. In a practical imple-
mentation, the channel gain is not known and should be
estimated at the receiver. The estimated values are used
to compensate the fading effects on the received symbols.
However, the larger the system error estimation, the larger
the degradation in performance of the communication
system.
Monte Carlo simulation was conducted to verify the

influence of the estimation errors on the performance
of the modulation diversity. Those experiments aim to
investigate the impact of using classical channel amplitude
and phase estimation algorithms on the optimum rotation
angle value and on the overall system performance.
An analysis of the impact of the estimation errors on

the modulation diversity system, as well as the results of
the experiments are presented in this section. The least
mean square (LMS) and the first order phase-locked loop
(PLL) [32] algorithms, adopted to track the amplitude and
phase of the wireless communication channel, are also
described.

6.1 Estimation algorithms
The estimation algorithms are used to track the amplitude
and phase of the channel impulse response. This allows
the system to compensate the effects of the fading in the
received signals, improving the overall performance. This
section presents two estimators: (a) LMS, for amplitude
estimation and (b) PLL, for phase estimation.

6.1.1 Amplitude estimator
In the evaluation, the LMS algorithm was used to esti-
mate the amplitude of the channel impulse response.
The algorithm operates by using a recursive relation, that
continuously updates the estimated channel amplitude
α̂(n), as follows [32]

α̂(n + 1) = α̂(n) + λs(n)e∗(n), (34)

in which λ is the step-size parameter of the LMS
algorithm, (·)∗ is the complex conjugate operator and e(n)

is the error signal given by

e(n) = r(n) − α̂(n)ŝ(s), (35)

in which r(n) is the nth received signal sample, α̂n is the
nth estimated fading amplitude sample and ŝ(s) is the nth
estimated transmitted signal. During the training process
ŝ(s) = s(s). After the training process, the signal estimate
is provided by the detector.

6.1.2 Phase estimator
Since the performance of the modulation diversity is
affected by the constellation rotation angle, the channel
phase estimation becomes a crucial aspect to be han-
dled in the system. For the evaluation a first order PLL
algorithm was used.
Similarly to the LMS algorithm, the PLL uses a recursive

filter in the estimation. The phase updating is performed
using the following expression

φ̂(n + 1) = φ̂(n) + ρ uφ(n), (36)

in which ρ is the step of the recursive filter and uφ(n) is
the phase error detector, given by [33]

uφ(n) = Im[ e−jφ̂s∗(n)r(n)] . (37)

The PLL algorithm aims to maximize the phase likeli-
hood function, which is obtained when the output of the
phase error detector is zero. A more complete description
of the PLL algorithm can be found in [33].

6.2 Evaluation of the optimum rotation angle
considering channel estimation errors

In actual communication systems, the fading estimation
algorithms are unable to perfectly track the amplitude and
phase of the channel impulse response. The presence of
estimation errors degrades the performance of the modu-
lation diversity, as well as affects the value of the optimum
rotation angle.
The fading estimation is independently performed on

each block of symbols (using a training sequence trans-
mitted at the beginning of each block). The larger the
size of the training sequence, the better the performance
of the estimator (at the cost of a reduction in the sys-
tem throughput). In the performed evaluation, 20% of
each block of symbols consists of training symbols (sim-
ilar to the value adopted in the GSM system, that uses
approximately 17.6% of the block size for training).
The performance of the LMS and PLL algorithms

depend on the value of the λ and ρ parameters. There-
fore, the step-size parameters were defined by computer
simulation, to reduce the system BER. In the experiments,
the optimization of λ (LMS) was performed assuming
that the phase is perfectly estimated, and the optimization
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Table 2 Values of the steps of LMS (λ) and PLL (ρ) for
different scenarios

Scenario 1 (κ = 0.1, μ = 0.5) 100 Hz 200 Hz

M = 4 θ = 0.0 ◦ λ 0.5 0.5

ρ 0.5 0.5

θ = 29.2 ◦ λ 0.25 0.25

ρ 0.25 0.45

M = 16 θ = 0.0 ◦ λ 0.35 0.5

ρ 0.3 0.5

θ = 10.7 ◦ λ 0.5 0.6

ρ 0.35 0.5

Scenario 2 (κ = 1.5, μ = 2.0) 100 Hz 200 Hz

M = 4 θ = 0.0 ◦ λ 0.85 0.5

ρ 0.3 0.8

θ = 41.0 ◦ λ 0.1 0.2

ρ 0.25 0.45

M = 16 θ = 0.0 ◦ λ 0.1 0.2

ρ 0.7 0.8

θ = 35.1 ◦ λ 0.15 0.2

ρ 0.4 0.5

Table 2 shows the optimized values of the parameters of the LMS and PLL
algorithms (λ and ρ). The step-size parameters were defined by computer
simulation, to reduce the system BER. In the experiments, the optimization of λ
(LMS) was performed assuming that the phase is perfectly estimated, and the
optimization of ρ (PLL) considered the amplitude perfectly estimated.

of ρ (PLL) considered the amplitude perfectly estimated.
Table 2 shows the values obtained for the step parameters
in different scenarios.
Based on the optimized values of λ and ρ, Monte

Carlo simulation was performed to evaluate the impact of

channel estimation errors on the optimal rotation angle.
Figure 15 presents the BER curves of the modulation
diversity system as a function of the rotation angle, consid-
ering different parameters for the estimation algorithms
(LMS and PLL), a 16-QAM system under a typical fad-
ing scenario (κ = 1.5, μ = 2.0), a sampling frequency of
270833 symbols/second, an SNR of 20 dB and 100 Hz of
maximum Doppler frequency.
As can be seen in the figure, the presence of channel

estimation errors modifies significantly the value of the
optimum rotation angle, requiring that the optimization
of θ considers the existence of errors in the estimation of
channel amplitude and phase. However, to evaluate the
efficiency of the modulation diversity when operating in
the presence of estimation errors, in the following exper-
iments, the same rotation angles obtained for perfectly
estimated channels are used. Thus, the simulation results,
considering the impact of channel estimation errors on
the system BER (as a function of the channel SNR), are
presented in Figure 16. The curves with rotation were gen-
erated using an interleaving depth of 1650 symbols for
fD = 100 Hz and 825 symbols for fD = 200 Hz. The per-
formance curves with the absence of channel estimation
errors were also included for comparison.
Although the estimation errors have modified the opti-

mum value of θ , the use of the modulation diversity
technique have improved the performance of the QPSK
system (fD = 100 Hz) when compared to conventional
systems (i.e., systems that do not use this technique, or
0.0 ◦), as can be seen in Figure 16a. As can be seen in
the figure, the rotated scheme outperforms the conven-
tional system by approximately 3.65 dB for a BER value of
4.13 × 105.
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Figure 15 BER of the modulation diversity system, subject to amplitude and phase estimation errors, as a function of the rotation angle.
The evaluation was performed considering the optimized values of λ and ρ , a 16-QAM system under a typical fading scenario (κ = 1.5, μ = 2.0), a
sampling frequency of 270833 symbols/second, an SNR of 20 dB and 100 Hz of maximum Doppler frequency.
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Figure 16 BER of the modulation diversity system, subject to amplitude and phase estimation errors, as a function of the channel SNR.
The evaluation was performed considering a QPSK and a 16-QAM system under a typical fading scenario (κ = 1.5, μ = 2.0), a sampling frequency of
270833 symbols/second and maximum Doppler frequencies of 100 and 200 Hz.

However, the same conclusion cannot be obtained if
a 16-QAM system is considered (Figure 16b). Instead,
the use of a non-optimal rotation angle (35.1 ◦) has sig-
nificantly degraded the performance of the conventional
system (0.0 ◦). The degradation caused by the incorrect
choice of the rotation angle can be confirmed compar-
ing the BER for both θ values in Figure 15. For a BER of
6.3 × 10−4, a loss of approximately 12.92 dB is observed
when comparing the rotated and unrotated systems.
Finally, as a consequence of the presence of channel esti-

mation errors in correlated fast fading channels, a bit error
rate floor appear in the curves. The error floor increases
with the value of the maximum Doppler frequency (fD).
That happens because, for higher values of fD, the channel
variations are faster, increasing the number of estimation
errors generated by LMS and PLL algorithms.

7 Conclusions and future research
The used fading models provide flexibility to characterize
wireless channels in terms of measurable physical param-
eters. The recently proposed κ-μmodel is a general fading
distribution that can be used to represent the small-scale
variation of the fading signal in a line-of-sight condition.
The versatility obtained with the use of the κ-μ distribu-
tion provides a good fit to experimental data (particularly
for low values of the fading envelope).
Diversity techniques are important resources to miti-

gate the effect of fading in wireless communications.Mod-
ulation diversity represents a relevant technique which
combines a reference constellation rotation angle θ with
the independent interleaving of the symbol components.
This article presented a performance evaluation of the

modulation diversity technique for κ-μ fading channels.

To the best of authors’ knowledge, the performance of the
modulation diversity technique has not been evaluated
considering the κ-μ fading model. Novel expressions to
calculate the PEP of modulation diversity systems subject
to κ-μ fading are derived, and they are numerically evalu-
ated and compared. Finally, Monte Carlo simulations were
used to evaluate the performance of the modulation diver-
sity technique and to compare communication systems
with and without this technique.
In actual systems, the performance of the modulation

diversity can be affected by different impairments, such
as the temporal correlation and the presence of estima-
tion errors. Thus, different evaluations were performed
in order to verify the impact of those impairments in the
performance of the system.
When evaluating the modulation diversity in corre-

lated channels, the authors have concluded that, if the
interleaving depth is appropriately defined, the overall
system performance is improved in correlated channels.
The correct choice of the interleaving depth reduces the
system BER to lower values than the obtained in uncor-
related channels (i.e., channels with fD → ∞). Further-
more, the use of the optimal interleaving depth does
not cause significant changes in the optimum rotation
angle.
On the other hand, the estimation errors modify signif-

icantly the optimum rotation angle value, requiring that
the optimization of θ consider the presence of these errors
in the system (in order to minimize the system BER). In
some experiments (with QPSK systems) the performance
loss caused by the estimation errors does not exceed the
gain obtained by the modulation diversity technique, but
this not occurs in all cases (e.g., in 16-QAM systems).



Lopes et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:17 Page 18 of 18
http://jwcn.eurasipjournals.com/content/2013/1/17

Finally, the authors have verified that in the correlated
channels, the estimation errors create a bit error rate floor,
whose values increase with the value of the maximum
Doppler frequency (fD).
Future research includes the evaluation of the modu-

lation diversity technique in η-μ fading channels. The
authors also intend to develop closed-form form expres-
sions or more accurate approximations for the symbol
error probability of those systems.

Endnote
aThe value of the F1(·) function in (23) is greater than or
equal to 1.
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