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Abstract

This work derives a distributed and iterative algorithm by which mobile terminals can selfishly control their transmit
powers during the synchronization procedure specified by the IEEE 802.16m and the 3GPP long-term evolution
standards for orthogonal frequency-division multiple-access technologies. The proposed solution aims at maximizing
the energy efficiency of the network and is derived on the basis of a finite noncooperative game in which the players
have discrete action sets of transmit powers. The set of Nash equilibria of the game is investigated, and a distributed
power control algorithm is proposed to achieve synchronization in an energy-efficient manner under the assumption
that the feedback from the base station is limited. Numerical results show that the proposed solution improves the
energy efficiency as well as the timing estimation accuracy of the network compared to existing alternatives while
requiring a reasonable amount of information to be exchanged on the return channel.

1 Introduction
The issue of energy efficiency has attracted considerable
interest in the information and telecommunication tech-
nology community during the last decade, as witnessed
by the extensive literature available on this subject (see,
for example, [1] and references therein). Among oth-
ers, a challenge that lies in this paradigm is to prolong
the battery life of mobile terminals based on orthogo-
nal frequency-division multiple-access (OFDMA) tech-
nologies such as those operating according to the IEEE
802.16m [2] and the 3GPP long-term evolution (LTE)
[3] standards. The first operation that must be accom-
plished by any terminal when joining the network is
achieving correct synchronization with its serving base
station (BS). This procedure is called initial ranging in
IEEE 802.16m [2] and random access in LTE [3]. It relies
on a contention-based approach taking place over a speci-
fied set of subcarriers, which are used by each terminal to
notify its entry request by transmitting a packet consisting
of a randomly chosen code. Code identification as well as
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multiuser timing estimation are the main tasks of the BS
during this procedure. These problems have received sig-
nificant attention in the past few years, and some solutions
are currently available in the literature (see, for example,
[4-7] and references therein). All the aforementioned
works assume to increase the transmit power upon suc-
cessful synchronization without taking into account any
energy efficiency issue. This is motivated by the fact that
the energy efficiency problem in OFDMA-based tech-
nologies has been mainly analyzed for the data transmis-
sion phase (see [8] and [9] and references therein). A first
attempt to reduce the power consumption during the ini-
tial synchronization phase can be found in [10], in which
a low-complexity and iterative algorithm is proposed to
allow each synchronization terminal (ST) and the BS to
locally choose the transmit power and the detection strat-
egy, respectively. The goal is to obtain a good trade-off
between detection capabilities and power consumption
while satisfying quality-of-service (QoS) requirements
given in terms of timing estimation error and probabil-
ity of false code lock. The proposed solution is based on
a noncooperative game-theoretic formulation, and it is
shown to provide significant gains in terms of reduced
synchronization time and parameter estimation accuracy
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compared to existing alternatives based on a determinis-
tic increase of the transmit power. Although interesting
from a theoretical point of view, the analysis provided in
[10] is not suited for practical applications since it relies
on the assumption of a continuous set of transmit pow-
ers. Moreover, comparisons with existing alternatives are
carried out assuming that STs have perfect knowledge
of the signal-to-interference-plus-noise ratio (SINR) mea-
sured at the BS. A similar game-theoretic line of reason-
ing has been recently used for achieving synchronization
in code-division multiple-access networks operating in a
flat-fading scenario [11,12] and in a frequency-selective
one [13].
Motivated by the above considerations, in this work

we return to the problem discussed in [10] and extend
both the power allocation approach and the numeri-
cal analysis as follows. We first assume that a finite set
of transmit powers is available at each terminal. Com-
pared to [10], this more application-oriented assumption
changes completely the nature of the energy-efficient opti-
mization problem, as the tool of finite noncooperative
game theory is used to find its solution [14]. The set of
Nash equilibria of the game is investigated and compared
to that of the continuous-power noncooperative game
discussed in [10]. The theoretical analysis of the finite
game is adopted to derive an iterative and distributed
power allocation algorithm for achieving synchronization
under the assumption of a limited feedback from the BS.
Numerical results are used to compare the performance
of the proposed solution with that achieved by exist-
ing alternatives based on a deterministic increase of the
transmit power (with and without contention resolution
methods). It turns out that the proposed solution provides
benefits in terms of energy efficiency and parameter esti-
mation accuracy, using a reasonable amount of feedback
resources.
The remainder of this paper is structured as follows.a

Section 2 describes the system model and introduces the
problem. Section 3 formulates the game and investigates
its equilibria. The analysis is used in Section 4 to derive an
iterative and distributed synchronization algorithmwhose
performance is assessed by means of numerical results.
Finally, Section 5 concludes the paper and discusses
the applicability of this technique to current wireless
standards.

2 Systemmodel and problem formulation
2.1 Systemmodel
We consider the uplink of an OFDMA-based system
employing N subcarriers with index set {0, 1, . . . ,N −
1}. To avoid aliasing problems, 2Nv null subcarriers are
placed at the spectrum edges. The remaining N − 2Nv
subcarriers are grouped into synchronization subcarriers
and data subcarriers. The former are used by the STs

entering the network through a contention-based synchro-
nization procedure, while the latter are assigned to mobile
terminals for data transmission and channel estimation.
We denote by K the number of STs and assume that
the synchronization subcarriers are divided into M sub-
bands, each composed of a set of V adjacent subcarriers,
which is called a tile. We denote by c� = [c�(0), c�(1), . . . ,
c�(MV − 1)] the code chosen by the �th ST and call θ� the
timing offset of the �th ST (normalized to the sampling
period Ts).
As in [10], we consider a quasi-synchronous system

in which no interblock interference is present at the BS
receiver, and we neglect any residual carrier frequency
offset.b Moreover, we assume that the channel frequency
response is nearly flat over each tile and independent
across tiles. In addition, users other than those perform-
ing synchronization have been successfully synchronized
to the BS so that they do not generate significant interfer-
ence. Under the above assumptions, the V - dimensional
vector X(m) containing the mth-tile discrete Fourier
transform outputs at the BS can be written as

X(m) =
K∑

�=1

√p�C�(m)a(θ�)H�(m) + n(m) for

m = 0, 1, . . . ,M − 1 (1)

where p� denotes the transmit power of the kth ST,
C�(m) = diag{c�(mV ), . . . , c�(mV + V − 1)}, the vector
a(θ�) is given by

a(θ�) = [1, e−j2πθ�/N , . . . , e−j2π(V−1)θ�/N ]T (2)

and n(m) is the additive white Gaussian noise (AWGN)
with zero mean and covariance matrix σ 2

n IV .
As mentioned above, themain tasks of the BS during the

synchronization procedure are code detection and timing
offset estimation. This is achieved by exploiting the obser-
vation vectors {X(m);m = 0, 1, . . . ,M−1}. Following [10],
the kth code ck is declared as detected if the following
generalized likelihood ratio test (GLRT) is satisfied:

�k(θ̂k)∑M−1
m=0 ‖X(m)‖2 ≥ λ (3)

where the threshold λ is a design parameter chosen so
as to achieve a desired probability of false alarm �fa, and
�(θ̂k) is given by

�(θ̂k) = 1
V

M−1∑
m=0

∣∣∣aH(θ̂k)CH
k (m)X(m)

∣∣∣2. (4)

In the above equation, θ̂k is the maximum likelihood
estimate of θk , given by [10]

θ̂k = arg max
0≤θ̃k≤θ

�(θ̃k) (5)
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with θ being the (normalized) round trip propagation
delay for a user located at the cell boundary [15].

2.2 Problem formulation
Without loss of generality, we focus on the kth ST and
rewrite the right-hand side of (1) as

X(m) = √pk Ck(m)a(θk)Hk(m) + wk(m) (6)

where

wk(m) =
K∑

�=1,� �=k

√p�C�(m)a(θ�)H�(m) + n(m) (7)

accounts for the contribution of the other STs plus ther-
mal noise. To make the problem tractable, we model the
channel frequency responsesH�(m) form = 0, 1, . . . ,M−
1 experienced by the �th user across tiles as independent
Gaussian random variables with zero means and pow-
ers |H(m)|2. In these circumstances, the vector wk =
[wk(0),wk(1), . . . ,wk(M − 1)]T has zero mean and a
variance given by

σ 2
wk

= σ 2
n +

K∑
�=1,� �=k

α�p� (8)

where α� = 1/M
∑M−1

m=0 |H�(m)|2 is ST �’s average chan-
nel power gain across the tiles. To proceed further, we
let p = [ p1, p2, . . . , pK ]T and denote by γk the SINR of
the kth ST over the observation vectors {X(m);m =
0, 1, . . . ,M−1}. Using (8), from (6) it easily follows that γk
takes the form [10]

γk = νk(p\k)pk (9)

where p\k = p \ pk = [ p1, . . . , pk−1, pk+1, . . . , pK ]T , and
νk(p\k) is defined as

νk(p\k) = Vαk
σ 2
wk

= Vαk
σ 2
n + ∑

� �=k α�p�

. (10)

Following [10], the energy-efficient optimization problem
can be mathematically formalized for all STs k ∈ K =
{1, . . . ,K} as

p�
k = arg max

pk∈Pk

�d,k(γk)

pkT
(11)

subject to MSE(θ̂k) ≤ MSEθ (12)

where Pk denotes the set of transmit powers and T is
the duration of the cyclically extended OFDMA block,
whereasMSE(θ̂k) = E{|θ̂k −θk |2} is the mean-square error
(MSE) of the timing estimate θ̂k , and MSEθ is the network
QoS requirement in terms of maximum timing estimation
MSE. In addition, �d,k(γk) represents the probability of
correct detection of code ck given by [10]

�d,k (γk) = I (1+γk )(1−λ)

1+(1−λ)γk
[M(V − 1),M] (13)

where Ix[ ·, ·] is the incomplete beta function [16]. Unlike
[10], we assume that the power strategy setPk is finite and
given by

Pk =
{
π

(1)
k ,π(2)

k , . . . ,π(Qk)
k

}
(14)

where the number of power levels Qk is computed as

Qk = 1 + pk |dB −pk |dB

k |dB (15)

with 
k > 1 being the quantization step, and pk and
pk denoting the minimum and maximum power levels,
respectively, where pk is assumed to be sufficiently large
[17].c From (14) and (15), it follows that π

(1)
k = pk ,

π
(Qk)
k = pk , and π

(q)
k = pk · 


q−1
k .

SettingPk as specified in (14) allows us tomeet the tech-
nical requirements of practical systems in which transmit
powers are usually equally spaced on a logarithmic scale
to reduce the complexity of the front-end architecture
and to increase the efficiency of power amplifiers (see, for
example, the specifications provided by the IEEE 802.16m
and 3GPP LTE standards in [2] and [3], respectively). For
simplicity, in all subsequent derivations, we assume that

k = 
, pk = p, and pk = p for all k ∈ K. This also
implies that Qk = Q.
As mentioned previously, the aim of this work is to

solve (11) taking into account the discrete nature of the
power strategy sets {Pk}. In the sequel, this is achieved by
resorting to the analytical tools of finite game theory [14].

3 Game formulation and analysis
Using the results illustrated in [10], it follows that theMSE
in (12) can be met provided that

pk ≥ γreq
νk(p\k)

(16)

where γreq denotes the minimum SINR such that the MSE
constraint (12) is satisfied with equality, i.e., MSE(θ̂k) =
MSEθ . In particular, γreq is found to be [10]

γreq = 3N2

2Mπ2(V 2 − 1)
· 1
ρ

(17)

where ρ is defined as ρ = MSEθ − μ2(θ̂k) with μ(θ̂k) =
E{θ̂k} − θk denoting the bias of the timing estimate θ̂k .
Using (16), the optimization problem in (11) can be refor-
mulated as

p�
k = arg max

pk∈Ak(p\k)

�d,k(γk)

pkT
(18)

where

Ak(p\k) =
{
pk ∈ Pk : pk ≥ γreq

νk(p\k)

}
(19)
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is the power strategy subset that allows the kth ST to
meet the MSE constraint in (11). For notational simplic-
ity, in all subsequent derivations, we omit the functional
dependence ofAk on p\k .
The power allocation problem in (18) can be formulated

as a generalizedd noncooperative game with complete
information [14], denoted by G = [K, {Ak}, {uk}]. In par-
ticular, K = {1, 2, . . . ,K} is the player set,Ak is the action
set of the kth player, and uk is its payoff (utility) function
given by

uk(p) = �d,k(γk)

pkT
(20)

which depends on the power allocation p through γk as in
(9). The discrete nature of Ak places G into the category
of finite generalized noncooperative games. Asmentioned
previously, this is much different from [10], in which the
continuous nature of the action sets allows us to formal-
ize the optimization problem as an infinite generalized
noncooperative game Gc.

3.1 Analysis of the equilibria
The existence and uniqueness of the generalized Nash
equilibria (GNE) of G are studied in the following. The
analysis is conducted only for pure (i.e., deterministic)
strategies. This choice is motivated by the fact that, in
compact strategy spaces, mixed (i.e., statistical) strategies
are generally less attractive due to (a) implementation dif-
ficulties in wireless communications systems [17], as they
require the presence of an arbitrator in the network to
properly coordinate the players, and (b) Pareto inferior-
ity [14] of any mixed-strategy profiles to pure-strategy
profiles [18] that reduces the total utility of the network.
To proceed further, we recall that a vector p� =[
p�
1, p�

2, . . . , p�
K
]T is a pure-strategy GNE of G if, for any

k ∈ K,

uk
(
[ p�

k ,p
�
\k]

)
≥ uk

(
[ pk ,p�

\k]
)

(21)

for all transmit powers pk ∈ Ak . Another way to define a
pure-strategy GNE is to make use of the concept of best
response [14]. In particular, we have that a vector p� is a
GNE if each element p�

k is the best response rk(p
�
\k) to the

powers p�
\k chosen by the other players, with rk(p�

\k) being
the solution of the following problem:

rk(p�
\k) = arg max

p̃k∈Ak

�d,k(νk(p�
\k)p̃k)

p̃kT
(22)

in which we have used (20), and we have explicitly writ-
ten the functional dependence of the detection probability
�d,k on p̃k and p�

\k through γk in (9).

Theorem 1. Let us define the SINR γ � as

γ � = max(γreq, γ̃ ) (23)

with γ̃ being the solution of
∂�d,k(γ )

∂γ

∣∣∣∣
γ=γ̃

= �d,k(γ̃ )

γ̃
. (24)

Then, the game G admits pure-strategy GNE provided that

γ �(K − 1) < V . (25)

The proof can be found in Appendix 1.

Theorem 2. If condition (25) is satisfied, then the cardi-
nality of the set E� of pure GNE for G is such that

|E�| ≥ 1. (26)

The proof can be found in Appendix 2.
Theorem 1 provides a sufficient condition for the set of

GNE not to be empty,e and Theorem 2 states that the GNE
is not necessarily unique. This means that the unique-
ness property proven in [10] for Gc no longer holds for G.
In other words, quantizing the set of actions makes the
game G lose the uniqueness property for the GNE. In this
context, it is interesting to show the following result.

Theorem 3. Among all p� ∈ E�, the smallestf GNE p�

 is

such that

p�

 = arg max

p�∈E�

K∑
k=1

uk(p�). (27)

The proof can be found in Appendix 3.
The above result states that p�


 is the best GNE in terms
of social welfare (joint optimization) or, equivalently, it is
themost efficient GNE in a social sense [19]. Note that this
does not amount to saying that p�


 is the socially optimum
solution of (11), as noncooperative equilibria are known
to be generally inefficient [19]. Improving the equilibrium
efficiency is out of the scope of this paper and is left as a
future work.

3.2 Numerical analysis
Unlike the unique GNE of Gc in [10], the multiple equilib-
ria of G cannot be expressed in a closed form as a function
of the network parameters because of the ‘argmax’ opera-
tor in (22). A numerical analysis is thus conducted tomake
comparisons and to evaluate the impact of the discretiza-
tion of the action sets. To this aim, we concentrate on the
optimal (in a social sense) p�


 and resort to the exhaus-
tive search method described in [20] to solve (27). The
numerical results are averaged over 20, 000 independent
realizations of a network with the following parameters:
Ts = 89.28ns, N = 1, 024, M = 4, V = 36, �fa = 10−5,
and MSEθ = 324, which yield ρ = 128, λ = 0.12,
γreq |dB= −6.19, and γ � |dB= γ̃ |dB= 7.09 (see [10] for a
detail discussion on this parameter setting). The normal-
ized power constraints are fixed to p/σ 2

n |dB= −20 and
p/σ 2

n |dB= +30 for all k, whereas the ST distances dk are
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randomly chosen from a uniform distribution in [R/10,R]
with R being the cell radius. The channel power gains are
normalized to a distance R/2 and are modeled using the 6-
tap ITU modified vehicular-A model [21] with a path loss
exponent ς = 2.
Figure 1 reports the normalized MSE defined as

NMSE(p�
c) = E{‖p�

c − p�

‖2/‖p�

c‖2} as a function of K
for different quantization steps, where p�

c is the unique
GNE of Gc. The maximum number of STs is fixed to
�1 + V/γ �	 = 8. Observe that the condition K ≤
8 is required to meet (25). In addition, it represents
a necessary and sufficient condition for the existence
of the unique GNE p�

c [10]. As expected, NMSE(p�
c)

decreases as 
 becomes smaller since the discrete action
sets Ak in G tend to better approximate the continu-
ous ones in Gc. As can be seen, NMSE(p�

c) increases as
K increases, meaning that the difference between ‖p�


‖2
and ‖p�

c‖2 becomes larger as the number of STs increases.
In particular, we see that NMSE(p�

c) is almost constant
up to K = 4, whereas it rapidly increases for larger
values.
To evaluate the impact of this difference on the system

performance in terms of social welfare, Figure 2 reports
the experimental

∑
k uk(p�


)/
∑

k uk(p�
c) as a function

of K in the same operating conditions of Figure 1. As
seen, the ratio

∑
k uk(p�


)/
∑

k uk(p�
c) is approximately 1

for K ≤ 6 while it increases for larger values of K. A

similar behavior (not shown for the sake of brevity) is
observed if the user-basis ratio uk(p�


)/uk(p�
c) is consid-

ered. From these results, it follows that limiting the STs
to use a discrete set of strategies Ak increases the global
system performance rather than introducing a detrimen-
tal effect. This phenomenon is known as a Braess-type
paradoxg [22], and it has already been observed in other
different contexts (such as routing in [23,24] and wire-
less communications in [25,26]). Roughly speaking, the
Braess-type paradox occurs because the average number
of GNEs increases when K becomes larger. For exam-
ple, when 
 |dB= 1, the numerical results indicate that
the average number of GNE for K = {2, 3, 4, 5, 6, 7, 8} is
{1.0, 1.1, 1.2, 1.3, 1.7, 2.7, 20.9}, respectively. As mentioned
before, the latter are found by solving (27) for each net-
work realization by means of the exhaustive search proce-
dure illustrated in [20].

4 Energy-efficient distributed synchronization
In what follows, we first show how to exploit the GNE
analysis provided so far to derive a practical power control
algorithm for achieving synchronization in a distributed
manner. The performance of the provided solution is then
investigated by means of numerical results.

4.1 Implementation of the algorithm
We begin by observing the following result.

Figure 1 Normalized MSE between power allocations at the GNE forGc andG as a function of K .
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Figure 2 Normalized social welfare increase of p�
�
with respect to p�

c as a function of K .

Corollary 1. If the powers of all active STs are initial-
ized to the lowest levels p, an iterative algorithm operating
according to the best response dynamics given in (22)
converges to p�


 under the hypothesis (25).

Proof. Since the best response dynamics reported in (22)
possesses the ascending property [27] (see Appendix 1),
using [28] the thesis follows.

Denote by pk[n] the transmit power of the kth ST at the
nth iteration step. Using Corollary 1, it follows that an iter-
ative algorithm operating according to the best response
dynamics in (22):

pk[n + 1]= arg max
p̃k∈Ak

�d,k
(
νk(p\k[n] )p̃k

)
p̃kT

(28)

converges to the most socially efficient GNE p�

 if pk[0]=

p for k = 1, 2, . . . ,K .
Note that the computation of pk[n + 1] in (28)

requires knowledge of νk(p\k[n] ). Using (9), it follows that
νk(p\k[n] ) can be obtained as

νk(p\k[n] ) = γk[n]
pk[n]

(29)

where γk[n] is ST k’s SINRmeasured at the BS at time step
n. While pk[n] is locally available at the transmitter, γk[n]

can only be estimated at the BS and sent to the kth ST on
a downlink control channel. Following [10], an unbiased
estimate γ̂k[n] of γk[n] can be computed as

γ̂k[n]= V�k(θ̂k) − ∑M−1
m=0 ‖X(m)‖2∑M−1

m=0 ‖X(m)‖2 − �k(θ̂k)
. (30)

To reduce the amount of information to be exchanged, we
assume the quantity γ̂k[n] to be quantized on a logarith-
mic scale using a uniform B-bit quantizer. This produces

μk[n] |dB= 
γ |dB ·bk[n] (31)

where

bk[n]=

⎢⎢⎢⎢⎣
([

γ̂k[n]
]γ
γ

− γ
)∣∣∣

dB

γ |dB

⎤
⎥⎥⎥⎥

(32)

and


γ |dB=
γ |dB −γ |dB

2B − 1
(33)

is the quantizer resolution (also known at the ST side,
e.g., selected by the system standard), with γ and γ being
the maximum and minimum expected values for γ̂k[n],
respectively. The BS sends on a broadcast downlink chan-
nel the integer bk[n], which is used by the kth ST to
retrieve the quantized version of γ̂k[n] using (31).
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Replacing γk[n] withμk[n] into (29) and substituting the
result into (28), we eventually obtain

pk[n + 1]= arg max
p̃k∈Ak

�d,k
(
μk[n] p̃k/pk[n]

)
p̃kT

. (34)

Recalling (31), it follows that its evaluation at the ST side
requires only the knowledge of bk[n].

Algorithm 1 Discrete and limited feedback best response
synchronization algorithm (DLF-BRSA)
a. Initialization: each ST k = 1, 2, . . . ,K

a1. initializes the transmit power pk[0] to the
lowest power value p;

a2. sets n = 0.

b. Iterative algorithm: at each step n, each ST k

b1. receives on a common downlink channel the
result of the GLRT (3) for code ck and the
integer bk[n] computed through (30)–(33);

b2. if the GLRT for code ck is verified and
μk[n]> γreq, exits the algorithm (i.e., ST k is
successfully associated to the BS), otherwise
goes to the next step;

b3. adjusts its transmit power according to (34);
b4. updates n = n + 1.

Collecting all the above facts together leads to the
energy-efficient synchronization algorithm illustrated in
Algorithm 1, which allows each ST to operate in a com-
plete distributed manner without any knowledge of other
users’ power allocation strategies (as if in a single-user
scenario).
Observe that Algorithm 1 is reminiscent of the best

response synchronization algorithm (BRSA) illustrated in
[10], except for the discrete action sets and the limited
feedback from the BS, which makes it more suited for a
practical implementation. In the sequel, we call the iter-
ative procedure described in Algorithm 1 as discrete and
limited feedback best response synchronization algorithm
(DLF-BRSA).

Remark 1. An iterative algorithm using (28) as the
power update criterion using γk[n], pk[0]= p for all STs
k, without the exit condition on the GLRT converges to
p�


, as confirmed by Corollary 1. However, for a practi-
cal implementation, Algorithm 1 introduces (a) estimated
SINRs γ̂k[n], (b) limited feedback bk[n], and (c) the exit
condition on the GLRT (step b2). These modifications
affect the performance of the algorithm, and their impact
will be studied in Section 4.2. Note that the minimum
power initialization (step a2) is expedient to avoid the

maximum power constraint pk to be violated for some
steps n of the algorithm.

Remark 2. It is worth observing that, in their most
basic forms, iterative algorithms based on best response
dynamics require a significant amount of information to
be locally available at the player (transmitter) [29]. For
example, they usually require knowledge of the number
of players and of the actions played by all the other play-
ers. To overcome this problem, other algorithms based
on reinforcement learning techniques have been adopted
in the literature [29]. The main advantage of these solu-
tions is that they do require each player to know only its
corresponding utility. Although based on best response
dynamics, DLF-BRSA possesses most of the advantages
shown by other reinforcement learning-based algorithms,
as it allows each ST to operate in a distributed and iter-
ative way requiring only knowledge of its own estimated
SINR, as illustrated in Algorithm 1 bymeans of simulation
results.

Remark 3. Most of the computational complexity of
DLF-BRSA is represented by the exhaustive search in
(34), which must be performed at each iteration step n
over the Q discrete power levels of the set Ak . In those
applications characterized by large values of Q, this may
represent an implementation impairment. In such cases,
one may resort to the supermodularity properties of the
utility function uk (see Appendices 1 and 2) and reduce the
search complexity looking only at the values of p̃k ∈ Ak in
the neighborhood of pk[n].

4.2 Simulation results
Numerical simulations are now used to assess the per-
formance of DLF-BRSA and to make comparisons with
existing alternatives. As in Section 3.2, the numerical anal-
ysis is conducted by averaging over 20, 000 independent
realizations of a network whose parameters are fixed as
follows: Ts = 89.28 ns, N = 1, 024, M = 4, V = 36,
�fa = 10−5, and MSEθ = 324, which yield ρ = 128,
λ = 0.12, γreq |dB= −6.19, and γ � |dB= γ̃ |dB= 7.09.
The minimum and maximum expected values of γ̂k[n] in
(33), based on an extensive simulation campaign, are fixed
to γ |dB= −8 and γ |dB= +16, whereas the appropriate
number of bits B is chosen later on the basis of the fol-
lowing numerical analysis. Without loss of generality, we
concentrate on the first ST (i.e., k = 1) and assess the per-
formance of the investigated solutions when its distance
d1 is kept constant. All other STs are assumed to be ran-
domly located in [R/10,R] with R being the cell radius.
The normalized power constraints are fixed to p/σ 2

n |dB=
−20 and p/σ 2

n |dB= +30, and the same power initializa-
tion pk[0]= p is used for all STs k ∈ K, which also use a
common power quantization step 
 |dB= 1.
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Figure 3 reports the average normalized power expen-
diture pavg/σ 2

n (in dB) required by ST 1 when using
DLF-BRSA, from the time it accesses the network until
it successfully completes the synchronization procedure.
The numerical results are plotted as functions of K for
B = {1, 2, 3, 8}. The results obtained with DLF-BRSA
when B → ∞ (i.e., with continuous SINR feedback) are
used as a benchmark. Comparisons are alsomade with the
BRSA illustrated in [10] in which the action sets are con-
tinuous and perfect knowledge of the estimated SINRs is
available at the STs. The results of Figure 3 indicate that
the quantization of the SINRs has only a marginal effect
on the performance of DLF-BRSA. In fact, it has practi-
cally the same performance for B = 3, 8 and B → ∞,
whereas a significant degradation is observed only for
B = 1. We argue that the quantization of the estimated
SINRsmarginally impacts the system performance since it
is basically perceived at the STs as an additional estimation
error introduced by the BS (which, on the other hand, can
actually exploit real-valued estimation methods). Based
on the above results, in all subsequent simulations, we
set B = 3. From (33), recalling that γ |dB= −8 and
γ |dB= +16, we have 
γ |dB= 3.43.
To evaluate the impact of the discretization of the action

sets, we now compare the performance of BRSA with that
of DLF-BRSA. From Figure 3, it follows that they do per-
form identically when the DLF-BRSA uses B ≥ 3. This
seems to contradict the numerical results of Figure 2,
discussed at the end of Section 3.2, which show that

discretizing the set of strategies is beneficial for individ-
ual (and, consequently, global) performance. On the basis
of the analysis of Section 3.2, the DLF-BRSA is expected
to outperform the BRSA. The motivation behind this con-
tradictory result can be understood by recalling that the
considered ST takes part in the synchronization proce-
dure as long as it is not correctly detected by the BS. As a
consequence, what really impacts on the performance of
DLF-BRSA and BRSA is its power evolution from the time
it enters the network (n = 0) to the time step nexit in which
the exit conditions (detailed in step b2 of DLF-BRSA) are
satisfied.
To this aim, Figure 4 reports the average number of

iterations nexitavg as a function of K, which turns out to
be the same for the both the BRSA and the DLF-BRSA
(with B ≥ 3) with good approximation. Interestingly,
numerical simulations confirm that, when 0 ≤ n ≤ nexit,
the difference between the power updates across the two
schemes is negligible. On the contrary, the performance
measured in Figure 2 corresponds to that achieved by
the BRSA and the DLF-BRSA schemes without the exit
conditions listed in step b2 (as the GNE, computed in
Section 3.2 through an exhaustive search [20], can also
be achieved using the best response dynamics described
in Section 4), whose convergence time is usually much
higher than nexit. This is the reason why the performance
in terms of total energy expenditure reported in Figure 3
is similar in the two cases. On the basis of the above
results, we can conclude that DFL-BRSA yields the same

Figure 3 Average power consumption as a function of the number of STs.
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Figure 4 Average number of iterations as a function of the number of STs.

performance of BRSA. However, this is achieved while
(a) reducing the complexity of the user terminals (thanks
to the discretization of the power amplifier) and (b)
requiring a limited amount of feedback from the BS
(thanks to the finite number of bits B used to send the
estimated SINRs).
The performance of DLF-BRSA is now compared with

those achieved by two alternative solutions based on a
deterministic increase of the transmit power: the deter-
ministic synchronization algorithm (DSA), in which the
update rule is pk[n + 1] |dB= pk[n] |dB +
 |dB, and
the binary exponential backoff DSA (BEB-DSA), in which
pk[n + ne] |dB= pk[n] |dB +
 |dB, where ne is an expo-
nentially distributed backoff counter (see [10] for more
details). In all subsequent simulations, we set 
 |dB= 1
and pk[0]= p for k = 1, 2, . . . ,K .
Figure 5 shows pavg/σ 2

n for all investigated solutions
as a function of the normalized distance d1/R when
K = 5, and Figure 6 illustrates the average time Tavg
needed to complete the synchronization procedure in the
same operating conditions. In particular, Tavg is com-
puted as Tavg = Tf · nexitavg , where Tf = 5 ms accounts
for the time interval (frame time) between two suc-
cessive synchronization attempts. In addition, Figure 7
shows the MSE of the timing estimate θ̂1 in the same
simulation setup of Figures 5 and 6. From the results
of Figure 5, it follows that DLF-BRSA provides roughly
the same power consumption of BEB-DSA, which is

significantly lower than that needed by DSA. However,
the results of Figure 6 show that the time required by
DLF-BRSA to achieve synchronization is much shorter
than that needed by DSA and BEB-DSA, especially when
d1/R increases. In addition, Figure 7 shows that the esti-
mation accuracy with DLF-BRSA is higher than that with
both DSA and BEB-DSA. Note also that simulation results
(not reported here for the sake of brevity) show that
the performance of the DLF-BRSA does not change as a
function of pk provided that pk � σ 2

n , whereas the aver-
age synchronization time achieved by the deterministic
increase techniques (especially the DSA) increases as pk
increases. This is due to the fact that in this case collid-
ing users transmit at comparable power levels for a longer
time.
Similar conclusions can be drawn in the case of a vari-

able number of STs K, by comparing the performance
in terms of average synchronization time achieved by
the DLF-BRSA (obtained by scaling the average number
of iterations of Figure 4 by the frame interval Tf ) with
that provided by the DSA and the BEB-DSA [10, Figure
eleven]. Since the slope of the curve provided by the
DLF-BRSA, which scales linearly with K, is always lower
that that achieved by a deterministic power increase,
we can conclude that the proposed solution is par-
ticularly suitable when users are required to be syn-
chronized in a short time interval with a limited
amount of power.
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Figure 5 Average power consumption as a function of the normalized distance.

Figure 6 Average synchronization time as a function of the normalized distance.
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Figure 7 Average timing MSE as a function of the normalized distance.

Collecting all the above facts together, we may con-
clude that DLF-BRSA provides better results in terms of
energy efficiency and parameter estimation accuracy, also
providing some performance that slightly depends on the
transmitter-receiver distance. This is achieved at the price
of a slight increase of information to be fed back over the
control channel. In particular, the amount of information
to be exchanged during each frame and for each c� ∈ C
is the following: 1 bit to broadcast the outcome of the
GLRT and B = 3 bits to transmit the quantized SINRs.
This means that a total of 4|C| bits per frame time Tf
is required by DLF-BRSA, which corresponds to a feed-
back rate on the order of a few tens of kilobits per second,
given that |C| is usually on the order of tens to hundreds
(e.g., see [2,3]).

5 Conclusion
In this work, we have formalized the power allocation
problem for energy-efficient contention-based synchro-
nization in OFDMA-based networks as a finite con-
strained noncooperative game. The generalized Nash
equilibria have been analytically studied and numerically
evaluated. The above results have been used to derive
a distributed and iterative energy-efficient power con-
trol algorithm with discrete powers and limited feed-
back. The performance of the above solution has been
evaluated and compared with alternatives by means of

numerical simulations. Using realistic system parame-
ters and widely agreed-upon channel models, we have
shown that the proposed solution incurs only a negligible
degradation with respect to the scheme illustrated in
[10], while a significant gain is achieved with respect to
deterministic-based power allocation approaches (both
with and without contention resolution methods). The
derived technique requires a feedback on the down-
link on the order of a few tens of kilobits per sec-
ond, which can be easily accommodated in current
IEEE 802.16m [2] and LTE [3] standards. Since the
proposed solution shows a (much) faster synchroniza-
tion time than deterministic methods, it can be used
to further increase the energy efficiency of mobile
terminals by reducing the frequency of periodic rang-
ing procedures, which are currently used by 4G com-
munication systems to meet the transmission latency
requirements.

Endnotes
a The following notation is used throughout the paper.

Matrices and vectors are denoted by boldface letters. In,
0n, and 1n are the n× n identity matrix, the n× 1 all-zero
vector, and the n × 1 all-one vector, respectively, whereas
A = diag{a(n) ; n = 1, 2, . . . ,N} denotes an N × N
diagonal matrix with entries a(n) along its main diagonal.
We use E{·}, (·)T , and (·)H for expectation, transposition,
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and Hermitian transposition, respectively; ‖·‖ for the
Euclidean norm of the enclosed vector; �x	 to round x to
the nearest integer towards zero; �x
 to round x to the
nearest integer; x |dB= 10 log10 x; and finally,
[x]ba = max(a, min(x, b)).

b This assumption is reasonable as long as downlink
estimation errors are within a few percents of the
subcarrier spacing and low mobility applications are
considered [2].

c In practice, it suffices that pk is at least a couple of
orders of magnitude larger than the AWGN power σ 2

n ,
which is normally verified in all communication
standards.

d The game is generalized sinceAk depends on the
other STs’ power p\k (see, for example, [14] and [30] for
more details).

e Please note that, following the steps reported in
Appendix 1, the maximum power constraint is active
when deriving (25).

f The smallest vector in a set of vectors refers to the
component-wise comparison between vectors in that set.
For example, for any two vectors x, y ∈ R

n, x < y if and
only if xi < yi for all i = 1, 2, . . . , n.

g Braess’s paradox states that adding extra strategies to
a network when the entities operate selfishly can, in some
cases, reduce the overall performance. This is because
the Nash equilibrium of such system is not necessarily
optimal. In the problem at hand, this means that relying
on continuous power sets does not necessarily bring
benefits to the synchronization procedure due to the
inefficiency of the unique Nash equilibrium of the
continuous-power game.

Appendices
Appendix 1
Proof of Theorem 1
Figure 8 shows a pictorial representation of the typical
shape of the utility uk(p) as a function of the power pk =
π

(q)
k for a fixed interference p\k (all quantities are on a log-

arithmic scale, although the subscript ‘dB’ is suppressed
for the sake of presentation). The relevant points of the
utility function in terms of SINR, scaled by the quan-
tity νk(p\k), are also reported: in addition to γreq and γ̃ ,
defined in (17) and (24), respectively, Figure 8 also shows
the inflection point γ̇ , γ̇ < γ̃ ≤ γ �, such that �d,k(γk)
is strictly convex for γk < γ̇ and strictly concave for
γk > γ̇ . It is worth observing that γ̇ is easily found from
(13). Although Figure 8 depicts the case γreq < γ̃ , the
considerations drawn in the following apply in the case
γreq ≥ γ̃ as well. Circular markers report uk([π

(q)
k ,p\k] )

for q = 1, . . . ,Q (in this example, Q = 8). Note that the
best response map defined in (22) may yield rk(p\k) <

γ �/νk(p\k), as occurs in this example.

A GNE in the game G exists provided that the K sets
Ak(p\k) ⊆ Pk , k ∈ K, are nonempty, which translates,
using (19), into ensuring that there exists at least a power
level π

(q)
k ∈ Pk such that π

(q)
k ≥ γreq/νk(p\k) for all k.

Since γreq ≤ γ � by hypothesis, it is sufficient to show that
γ �/νk(p�

\k) ≤ rk(p�
\k) = p�

k ≤ pk for all k ∈ K. By follow-
ing the same steps as in [11], we can derive the sufficient
condition (25), which becomes also necessary in the case
γ � = γreq. Note that, unlike [11], here we cannot derive a
necessary condition that holds for any γ̃ > γreq, because
of the inequality γ �/νk(p\k) ≤ rk(p\k) that is originated
from using a finite set, and hence, GNE might exist even
though (25) is not fulfilled. This is also in accordance to
what is highlighted in (22), as an equilibrium can exist
even if p�

k < γ �/νk(p�
\k), provided that γ � > γreq.

To proceed further with the proof of existence, it is
useful to introduce the following definition:

Definition 1 ([27]). A best response rk(p\k) possesses
the ascending property if rk(p\k) ≤ rk(p′

\k) for all k ∈ K
when p\k �= p′

\k is such that p� ≤ p′
� ∀� �= k.

To show that the best response (22) is ascending, let us
define rk = rk(p\k), r′k = rk(p′

\k), νk = νk(p\k), and
ν′
k = νk(p′

\k) for notational convenience. Note that assum-
ing p\k �= p′

\k with p� ≤ p′
� ∀� �= k implies that νk > ν′

k .
Let us consider two different cases:

1. rk < γ �/νk : in this domain, uk([ pk ,p′
\k]) is an

increasing function of pk . Hence, power vector p′
\k ’s

best response is r′k = argmaxpk uk([ pk ,p′
\k]) ≥ rk .

2. rk ≥ γ �/νk : in this domain, since νk > ν′
k , both

uk([ pk ,p\k]) and uk([ pk ,p′
\k]) are decreasing

functions of pk . Hence, for rk to be a best response,
the condition uk([ rk ,p\k]) > uk([ rk/
,p\k]) must
hold, with rk/
 < γ �/νk . Due to the asymmetry of
uk([ pk ,p\k]) with respect to the point of maximum
γ �/νk , rk/
 < p̌k , where p̌k ,
2γ �/νk − rk < p̌k < γ �/νk < γ �/ν′

k , is the power
level such that uk([ p̌k ,p\k]) = uk([ rk ,p\k]). Since
uk([ pk ,p′

\k]) is increasing in the region pk < γ �/ν′
k ,

uk([ p̌k ,p\k]) < uk([ p̌′
k ,p\k]), where p̌′

k > p̌k is the
counterpart power on uk([ pk ,p′

\k]) such that
uk([ p̌′

k ,p
′
\k]) = uk([ rk ,p′

\k]), where the inequality
p̌′
k > p̌k follows from the fact the maximum of

uk([ pk ,p′
\k]) is placed at γ �/ν′

k > γ �/νk . Hence,
uk([ rk/
,p\k]) < uk([ p̌′

k ,p
′
\k]) = uk([ rk ,p′

\k]),
which implies that r′k = rk .

As a conclusion, rk(p\k) is an ascending best response
function. In particular, if (25) is satisfied, this implies
that rk(p\k) ≥ rk(ṗ\k) for all k and for all p such that
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Figure 8 Utility as a function of the transmit power for a fixed interference p\k .

pk ≥ ṗk , where the vector ṗ = [ ṗ1, . . . , ṗK ]T is the min-
imum component-wise power allocation such that γk =
νk(ṗ\k)ṗk ≥ γ̇ for all ṗk , with γ̇ < γ̃ defined above. In
other words, the equilibrium points of G (if any) are equal
to the equilibria of a modified (generalized) game, which
differs from G as now the strategy space is the subset ofPk
such that any vector allocation p is such that pk ≥ ṗk , and
hence, γk ≥ γ̇ . To conclude the proof, let us introduce the
following definition:

Definition 2 ([14,31]). A game is supermodular if
uk(p) has increasing differences in p = [ pk ,p\k], i.e., if

uk(p) − uk([ p′
k ,p\k]) ≥ uk([ pk ,p′

\k]) − uk(p′) (35)

for all p and p′ such that, for all k, pk ≤ p′
k , and p� ≤ p′

�

for all � �= k.

To prove that the utility uk(p), which is twice dif-
ferentiable, satisfies (35), we can show, using [31],
that it possesses the necessary and sufficient condition
∂2uk(p)/∂p�∂pk ≥ 0 for any two components p� �= pk .
Using (20), we can easily derive

∂2uk(p)

∂p�∂pk
= − α�

Vαk
· �′′

d,k(γk)γ
2
k − 2f (γk)
p4k

≥ 0 (36)

where the inequality follows from the fact that �′′
d,k(γk) =

∂2�d,k(γk)/∂γ 2
k ≤ 0 for γ̇ ≤ γk ≤ γ̃ and f (γk) =

γk · ∂�d,k(γk)/∂γk − �d,k(γk) > 0 for γk ≤ γ̃ (see
[10,11] for further details). Proving the property of super-
modularity concludes the proof, as supermodular games
admit pure-strategy equilibria [14]. As a consequence,
the original game G has pure-strategy GNE, under the
sufficient condition (25).

Appendix 2
Proof of Theorem 2
To show that the GNE of the game G is not necessar-
ily unique, we use a counterexample. Let us focus on one
GNE p�, whose existence is ensured by Theorem 1, and let
us suppose that p� is such that p�

k ≤ γ �/(ν′
k
√


), where
ν′
k = νk(p′

\k) is obtained using the vector p′
\k = 
p� such

that all components are scaled by the quantization step 
,
i.e., p′

k = 
p�
k . Under this hypothesis, p

′ is also a GNE of
G, i.e., rk(p′

\k) = p′
k ∀k ∈ K.

To show this property, let us note first that ν�
k < ν′

k <

ν�
k/
, where ν�

k = νk(p�
\k). Hence, if p�

k ≤ γ �/(ν′
k
)

is the best response p�
k = rk(p�

\k), it implies that p′
k =


p�
k ≤ γ �/ν′

k is also p′
k = rk(p′

\k), as |p′
k − γ �/ν′

k| <

|p�
k − γ �/ν�

k | and uk([ pk ,p′
\k]) is an increasing function of

pk . If γ ′/(ν�
k
) < p�

k ≤ γ ′/(ν�
k
√


), then γ ′/ν�
k < p′

k ≤
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γ �
√


/ν�
k , i.e., p

′
k = 
p�

k is greater than the point of max-
imum γ ′/ν�

k . Furthermore, |p′
k − γ �/ν′

k| < |p�
k − γ �/ν′

k|.
Due to the asymmetry of uk([ pk ,p′

\k]), this ensures that
uk([ p′

k ,p
′
\k]) > uk([ p�

k ,p
′
\k]), and thus, p′

k = rk(p′
\k).

As a conclusion, p′ = 
p� is also a GNE of G, and this
concludes the proof.
Note that, whenK � 1 (e.g.,K = �1+V/γ �	), it is often

the case that
∑

� �=k α�p�
� � σ 2

n , ∀k. Hence, ν′
k � ν�

k/
,
and the condition p�

k ≤ γ �/(ν′
k
√


) occurs frequently.
This is the reason why the number of GNE increases as
K increases. However, such condition is not necessary,
and other GNE might exist, e.g., vectors p′ in which some
elements are p′

k = 
p�
k and some others are p′

k = p�
k .

Appendix 3
Proof of Theorem 3
By using relation (21), uk(p�


) = uk([ p�

,k ,p

�

,\k] ) ≥

uk([ pk ,p�

,\k]) for all k and for all pk ∈ Pk . In particu-

lar, uk([ p�

,k ,p

�

,\k]) ≥ uk([ p�

k ,p
�

,\k]) for any p�

k in any
p� ∈ E�, p� �= p�


. Note also that γ ′
k = νk(p�


,\k)p
�
k ≥

νk(p�
\k)p

�
k = γ �

k for all k, and γ ′
k > γ �

k for some k, under the
hypothesis p�


,k ≤ p�
k for all k, p

�

 �= p�. As a consequence,

uk([ p�
k ,p

�

,\k]) = �d,k(γ

′
k)/p

�
k ≥ �d,k(γ

�
k )/p�

k = uk(p�).
Since uk(p�


) ≥ uk(p�) for all k ∈ K, with strict inequality
for some k, (27) follows.
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