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Abstract

We consider an energy harvesting transmitter broadcasting individual data to two receivers. Data packets intended
for each user are assumed to arrive at arbitrary but known instants. The goal is to minimize the total transmission time
of the packets arriving within a certain time window, using the energy harvested during this time. Energy harvests are
also modelled to occur at known discrete instants. An achievable rate region with structural properties satisfied by the
two-user additive white Gaussian noise broadcast channel capacity region is assumed. Structural properties of power
and rate allocations are established, as well as the uniqueness of the optimal policy. An iterative algorithm, DuOpt, is
devised for efficient solution of this offline problem. DuOpt is compared with the sequential unconstrained
minimization (SUMT) solution technique on randomly generated problem instances and is observed to solve the
problem two orders of magnitude faster on average than SUMT.
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1 Introduction
The basic offline problem of energy-efficient packet
transmission scheduling [1-5] is to assign code rates
(consequently, transmission durations) to a set of pack-
ets whose arrival times are known beforehand, so that
they are all transmitted within a given time window with
minimum total energy. The solution needs to strike a
trade-off between energy efficiency and delay: lowering
energy expenditure per bit of information calls for lower-
ing transmission rates, which causes delay. Recently, the
dual problem of minimizing transmission duration of a
given amount of data has been formulated with a model
where energy gets “harvested” or replenished at certain
known instants [6]. The irregularity in the availability of
energy introduced additional richness to the problem.
While in former formulations, transmission rate needs

to be adapted to the arrival rate of information, in [6], it
is adapted to the rate of generation of energy. The prac-
tical motivation for this formulation was the case of a
communication system that relies on energy harvesting
from the environment (e.g., through solar, thermal, vibra-
tion sources) to supply its battery [7]. When the delay
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constraints for the data are relatively relaxed (consider-
ing the energy harvesting time scale) and battery size
is small, as in the case of a distributed wireless sensor
network (consider, for example, a structural monitoring
WSN on a building, bridge or aircraft, where most of the
data is for periodic network maintenance where battery
replacement for nodes is out of the question such that the
network has to sustain itself energy obtained from vibra-
tions [8]), it will be reasonable to adapt transmit power
and rate to the availability of energy [9]. By conservatively
transmitting at low power during low energy harvest peri-
ods, the communication node may increase its longevity,
such that it will not need to entirely power off until the
next recharge. Nodes could thus achieve what is some-
times termed ‘perpetual operation’ by self-sustaining on
environmental energy.
The point-to-point problem in [6] was recast for finite

energy storage [10] and for a fading wireless channel
[11]. The formulation has been extended to a broadcast
channel (BC) in [12,13], considering a static pool of data
to be sent at the beginning of the schedule. The same
BC problem was also studied under a limited battery
constraint [14].
The problem in [12] and [13] has recently been refor-

mulated in [15] by relaxing the assumption that data
are ready at the beginning of the schedule. The sender
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(transmitter) gets replenished with arbitrary amounts of
energy as well as data packets of arbitrary length des-
tined to each user at arbitrary points in time. The rates
at which information is transmitted to each user, given
a total instantaneous power, are assumed to be selected
from an achievable rate region that obeys certain struc-
tural properties satisfied by the additive white Gaussian
noise (AWGN) BC. This paper, extending the work in [15],
shows the uniqueness of the optimal power and rate allo-
cation for the problem and exhibits a fast algorithm for
obtaining it.
The choices of power level and the rates to individ-

ual receivers across time is called a schedule. An optimal
scheduling policy is defined to be one that transmits all
the bits that have arrived within a certain time window,
W, in the minimum possible amount of time Topt ≥ W .
The policy is allowed to use as many energy harvests as
it needs, provided it respects causality (no energy or data
are transmitted before it becomes available).
The problem considered in this paper is an offline prob-

lem, where data arrival and energy harvest instants and
amounts are assumed to be known in advance. Although
this kind of prior information of data and energy arrivals
may not be possible in all practical settings, analysis of
the offline optimal solution nevertheless shed light on
the nature of a good power/rate policy and boundaries
on the best performance. Moreover, in many scenarios,
energy harvest processes are predictable (e.g., solar energy
harvest rate determined by daily and seasonal irradiation
patterns), and data arrivals could also be deterministic
depending on session or protocol requirements (e.g., peri-
odic transmissions made by a sensor node). The offline
assumption could be a good approximation in the case of
predictable processes.
Online formulations have also appeared in the liter-

ature. For example, Chen et al. and Gatzianas et al.
[16,17] develop online scheduling policies for multihop
networks on finite-horizon and infinite horizon problem
formulations, respectively. In [18], another finite-horizon
throughput maximization problem is investigated. Con-
sidering fading conditions, a dynamic programming
solution is proposed. Similarly, Ozel et al. [19] also
addresses the optimal online solution through stochas-
tic dynamic programming. Online formulations tend to
be sensitive to the particulars of the stochastic mod-
els assumed for data and energy processes and con-
sequently do not often lead to clean structural results
(with the exception of threshold-type results, e.g., [20])
which is another aspect that makes the offline approach
attractive.
This paper essentially bridges the formulation that con-

sidered offline scheduling of data that become available
at arbitrary points in time [1,2] (where there is no energy
harvesting) and the formulation in which chunks of energy

becoming available at arbitrary points in time [11,12]
on a BC (where data are pooled at the beginning). We
employ some of the methods of [2] to strictly address
this more general problem. The contribution of this paper
can also be described as an extension to the BC prob-
lem considered in [6]. Specifically, this paper completes
the results of [1,2,11,12] with the following novel contri-
butions: (1) establishment of structural properties of the
transmission time minimizing scheduling policy in the
energy harvesting BC with packet arrivals, (2) the unique-
ness of the optimal policy, (3) an iterative algorithm,
DuOpt, which is proved to return the optimal schedule
when all the data of the user with the weaker channel
is pooled, observed on numerical examples to solve the
problem in the general case as well, (4) comparison of
the computation time of the proposed method against
solving the same problem with the well-known sequen-
tial unconstrained minimization technique (SUMT). It
is shown in section 2 that in an optimal policy, trans-
mit power used is constant within each epoch and may
only rise from one epoch to the next so that once it
starts, the transmitter never lowers its power until it
finally goes silent. On the other hand, the transmitter
should increase its power only under certain conditions.
These conditions, along with other structural properties
of power and rate are established in section 3. Next, the
uniqueness of the optimal policy is established under the
condition that all of the weak user’s bits are available
at the beginning. In section 5, the DuOpt Algorithm,
which returns a feasible schedule carrying the same struc-
tural properties that the optimal is shown to have, is
described. It is proved that DuOpt returns the optimal
schedule when all the data of the user with the weaker
channel has been pooled at the beginning of the sched-
ule. Next, through defining an equivalent convex problem,
which proves the uniqueness of the optimal solution in the
general case, the optimum is shown to be attainable using
SUMT in section 6. Finally, studying numerical exam-
ples in section 7, DuOpt is observed to be much faster
than SUMT in converging to the optimal solution found
by the latter, even when the data pooling condition is
lifted.
We start bymaking the problem statement precise in the

next section.

2 Systemmodel
We consider a BC with one transmitter and two receivers.
Arbitrary amounts of energy, {Ei < ∞, i = 1, 2, . . .},
as well as data intended for each user {B(1)

i ,B(2)
i <

∞, i = 1, 2, . . .} become available to the sender at arbi-
trary times ti. A possible sequence of data and energy
arrivals is illustrated in Figure 1. E(t) denotes the total
energy that has been harvested in [0, t) (regardless of
how much of it has been used.) Similarly, B(1)(t) and
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(a)

(b)

(c)

(d)
Figure 1 SystemModel. Example for (a) a sequence of energy and data arrivals, (b,c) the corresponding E(t) and B(t), and (d) the schedule P(t)
and {r1i , r2i}.

B(2)(t) denote the total number of bits destined to the
first and second user, respectively, that the sender has
obtained in [0, t). The interval between any two sequen-
tial arrival events (regardless of energy or data) will be
called an inter-arrival epoch. The length of the ith epoch
is ξi = ti − ti−1.
Arrival times and amounts of energy and bits in the time

window t ∈ [0,W ) are known by the sender at t = 0.
It is assumed that harvested energy and data are stored
in infinite capacity buffers and available for use instan-
taneously as they arrive. It is also assumed that code
rate and transmission power decisions can be changed
instantaneously. However, codeword block lengths will

be chosen such that each codeword is sent completely
within a single epoch (note that starting and ending
times of epochs are known ahead of time), so that no
arrival event occurs during a codeword. Consequently, the
power and rate pair decision will be fixed throughout each
codeword.
We are interested in minimizing the total transmission

time for packets arriving by a certain time W < ∞, so
W.L.O.G., set B(i)(t) = B(i)(W ) for t > W , i = 1, 2.
A schedule, which is a sequence of power and rate allo-
cations, is feasible if it sends B(1)(W ) < ∞ bits to the
first user and B(2)(W ) < ∞ to the second user (with
a certain level of reliabilitya), without violating causality
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(at any time, using available energy and data by that time).
We are interested in finding among all feasible schedules
one with the smallest completion time, Topt.
The structure of the achievable rate region will be based

on the two-user AWGN BC. The capacity region of a
two-user discrete time AWGN BC with average power
constraint P, noise variance σ 2, where the first user’s chan-
nel gain (s1 > 0) is larger than the second user’s (s2 > 0),
consists of rate pairs (r1, r2) satisfying:

r1 ≤ 1
2
log2

(
1 + αs1P

σ 2

)
, r2 ≤ 1

2
log2

(
1 + (1 − α)s2P

αs2P + σ 2

)
(1)

where α, (0 ≤ α ≤ 1), denotes the fraction of P used
for the first user [21]. Since s1 > s2, the first user will
be referred as the “strong user” and the second as the
“weak user”. We assume that the relative channel gains
of the users stay fixed throughout the scheduling period.
This models the case of static channels, or when chan-
nel variations are too slow with respect to the scheduling
period, or channel variations are small with respect to the
difference of path loss between the users, such as when
one user is markedly more distant to the transmitter than
the other.
Using capacity-achieving codes, the rate pair (r1, r2) can

be selected from the boundary of the rate region, where
inequalities in Equation 1 becomes equalities. Combining
these equalities, power can be expressed in terms of the
user rates, P = g(r1, r2). Moreover, each user’s rate can be
expressed as a function of P and the other user’s rate, such
as

r1 = h1(P, r2) = 1
2
log2

(
s1(s2P + σ 2)

s2σ 222r2
− s1 − s2

s2

)
(2)

r2 = h2(P, r1) = 1
2
log2

( s2P
σ 2 + 1

s2
s1 (2

2r1 − 1) + 1

)
. (3)

The rate functions h1 and h2 defined on�+ ×�+ satisfy
the following properties:

(i) Nonnegativity: h1(P, r) ≥ 0, h2(P, r) ≥ 0.
(ii) Monotonicity: h1(P, r), h2(P, r) are both
monotone decreasing in r, and monotone increasing
in P.
(iii) Concavity: h1(P, r), h2(P, r) are strictly concave
in P > 0 and r > 0: ∂2hi(P,r)

∂P2 < 0, ∂
2hi(P,r)
∂r2 < 0, for

i ∈ 1, 2.
(iv) ∂2h1(P,r)

∂r∂P ≥ 0, ∂2h1(P,r)
∂P∂r ≤ 0.

(v) ∂2h2(P,r)
∂r∂P = 0, ∂2h2(P,r)

∂P∂r = 0.

The results in the rest of the paper will be valid for any
rate function satisfying (i,ii,iii,iv,v), which are also satisfied
by the AWGN BC [12].
It is established in the following lemma that one can

limit attention to schedules that do not change their power
and rate allocations within epochs. This is a simple and
well-known consequence of our choice of concave rate
functions, as has been proved previously in [12]: when
there are no constraints, an even (equal across time) allo-
cation is optimal. By definition, there are no data or energy
arrivals during an epoch, hence an even allocation dur-
ing an epoch is always possible. Given any schedule that
has variation in an epoch, it can simply be modified to
one with even rate, which will only improve the policy. In
fact, proof of the claim is identical with the one stated and
proved in Lemma 2 of [12]; however, we summarize it here
for clarity.

Lemma 1. In an optimal schedule, the power and rate
pair remain constant within each epoch, except for the
epoch during which the schedule ends.

Proof. During an epoch, there are no energy or data
arrivals, hence a constant rate and power allocation is fea-
sible. By concavity of the functions h1(P, r) and h2(P, r),
and Jensen’s inequality, equalizing r2 across time mini-
mizes the power needed to maintain a rate r1 in time,
i.e., if r1 = αh1(P1, r21) + (1 − α)h1(P2, r22) and r1 =
h1(P,αr21 + (1 − α)r22), then P ≤ αP1 + (1 − α)P2.
Further details are given in [12]. As any allocation that is
claimed to be optimal can be modified and can only be
improved to obtain a constant rate and constant power
across each epoch, one can limit attention to policies that
has constant allocations within epochs. The only excep-
tion to this is the last epoch used by the schedule. In the
last epoch, when the schedule ends, the power will drop
to zero. �

Accordingly, let Pi be the total transmit power and rji be
the rate assigned to the jth user during epoch i. Let Pji rep-
resent the power assigned to jth user during epoch i. We
are now ready to state the problem in terms of power and
rate allocations to epochs, more precisely, an assignment
of total power and the strong user’s rate to each epoch (the
weak user’s rate is then determined by r2i = h2(Pi, r1i).
A final technical assumption will be useful in stating the
problem: we shall assume that there is some kup < ∞ such
that there is at least one feasible schedule that ends within
the first kup epochs. In other words, kup is an upper bound
for both the number of epochs and the number of harvests
to be considered (please see Figure 1a). If k∗ + 1 denotes
the number of epochs used by an optimal schedule,
then k∗ + 1 ≤ kup.
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Problem 1. Transmission time minimization of data
arriving at arbitrary points on an energy harvesting
BC:

Minimize: T = T({Pi, r1i}1≤i≤kup)

subject to: Pi ≥ 0 , 0 ≤ r1i ≤ h1(Pi, 0) , r2i = h2(Pi, r1i)
k∑

i=1
Piξi ≤ E(tk)

k∗∑
i=1

Piξi + P(k∗+1)(T −
k∗∑
i=1

ξi) ≤ E(T) (4)

k∑
i=1

r1iξi ≤ B(1)(tk) ,
k∑

i=1
r2iξi ≤ B(2)(tk)

(5)

for k = 1, 2, ..., k∗ = max{i :
i∑

j=1
ξj < T}

k∗∑
i=1

r1iξi + r1(k∗+1)(T −
k∗∑
i=1

ξi) = B(1)(W )

(5a)
k∗∑
i=1

r2iξi + r2(k∗+1)(T −
k∗∑
i=1

ξi) = B(2)(W ).

(5b)

We will refer to Equations 4 and 5 as energy and data
causality constraints, respectively, as these ensure no
energy is consumed and no bit is transmitted before
becoming available. In addition, when the kth inequality in
Equation 4 holds with equality, we shall say that kth energy
constraint is active. Similarly, equality case in Equation 5
will be referred as a data constraint being active. Finally,
the feasibility constraints (Equations 5a and 5b) ensure all
the data bits destined to each user are transmitted.
In the next section, we investigate structural properties

that any optimal schedule has to satisfy.

3 Structure of an optimal policy
Lemma 1 recorded that in an optimal schedule, power can
only change upon a data arrival or energy harvest. The
next result states that when power changes, it can only
increase. The key to the proof is that more “bits per Joule”
can be sent by evenly distributing energy across a time
interval (i.e., maintaining a constant power level, which
is a consequence of the convexity properties of our rate
functions.) If an even distribution of power requires trans-
ferring energy or bits to the latter epoch, it can always be
done; hence, total transmit power never decreases in time,
but power may increase in time because even distribution
of power may result in unmet causality constraints. We
state these results in Lemma 2.

Lemma 2. Consider an optimal schedule that ends dur-
ing epoch k∗+1. Power is non-decreasing with epoch index,
i.e, Pi ≤ Pi+1 for i = 1, 2, . . . k∗.

Proof. See Appendix. �

As stated in Lemma 2, power cannot decrease, yet may
rise in time like a staircase function formed bands of con-
stant power that last for several epochs (see Figure 1d). In
the next lemma, we note a necessary condition for such a
rise to occur in an optimal policy.

Lemma 3. In an optimal policy, power can only rise at ti
(end of epoch i) if at least one of the conditions below holds:

a. Energy constraint is active at point ti. (i.e., the ith
energy constraint is active)

b. The data constraints for both users are active at point
ti. (i.e., the set of constraints in Equation 5)

c. The weak user’s data constraint is active and data
arrival to the weak user occurs at time ti.

Proof. See Appendix. �

The next set of results illustrate the structure of rate
allocation in conjunction with the power allocation in an
optimal policy.

Corollary 1. In an optimal policy,

1. If power increases upon a data arrival for the weak
user, all available data destined to the weak user have
been transmitted by this point in time.

2. If power rises upon a data arrival for the strong user,
all available bits have been sent by this event.

3. If power increases upon an energy harvest, all energy
available at the beginning of the former constant
power band has been consumed by this energy
harvest.

Proof.

1. Suppose that power increases upon a bit arrival for
the weak user occurring at ti. As there is no energy
constraint at ti, bringing power levels closer does not
contradict with the energy causality in this case. This
implies that conditions (b) or (c) stated in Lemma 3
must hold. However, we know that there is a data
arrival for the weak user at ti; so, if (b) were true, then
(c) would be true as well. Therefore, condition(c)
holds in either case.

2. Suppose that power increases upon a bit arrival for
the first user. With similar reasoning to part 1,
condition (a) of Lemma 3 cannot hold. As there is
also no data arrival for the weak user, condition (b)
must be satisfied.
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3. As there is no data arrival at the time when power
increases, the only possibility that power increases
upon an energy harvest is condition (a) of Lemma 3.

�

In the rest, some properties will be proved under the
assumption that weak user data constraint would not be
active. This assumption is guaranteed if all the weak user
data is ready at the beginning. We shall abbreviate this
condition as follows:

Definition 1. Weak user full buffer condition (WUFBC)
is said to be satisfied whenever all of the data of the weak
user is available at the beginning of transmission. That is,
B(2)(W ) = B(2)(0).

The following lemma states an important feature of the
strong user’s rate policy under WUFBC.

Lemma 4. Consider two consecutive epochs i and i + 1
of a given schedule, ending at ti and ti+1 by definition, and
suppose WUFBC holds for the problem instance. The fol-
lowing is necessary for the rate and power allocation to
these two epochs of the given schedule to be locally opti-
mal: The strong user’s rate is constant throughout [ti−1, ti),
and [ti, ti+1). Furthermore, the rate may jump up at t = ti
(staying constant otherwise) if at least one of the below is
true:

1. There is data arrival to the strong user at t = ti, and
all the data that arrived before ti has been
transmitted by ti.

2. An energy harvest occurs at t = ti, and all of the
power has been used for the strong user during
epoch i.

Proof. Suppose that r1i ≤ r1(i+1). Since WUFBC is
assumed, weak user’s data constraint would never be
active and one can find a better schedule by bring-
ing the rates of the strong user closer by Lemma 6 of
[12]b. Therefore, the strong user’s rate cannot decrease.
However, the strong user’s rate may increase because it
would violate either bit or energy causality to transfer
some strong user bits from epoch i + 1 to i. First, it
is against bit causality to transfer strong user bits from
epoch i + 1 to epoch i, if the first condition holds. Sec-
ondly, if the second condition is satisfied, we cannot
bring strong user’s rates in the two consecutive epochs
closer to each other as doing so would violate energy
causality. �

We establish the uniqueness of the solution of Problem 1
under WUFBC in the next section.

4 Uniqueness of the optimum schedule under
WUFBC

In the following lemma, we note that an optimal schedule
uses all energy harvested by the time the schedule ends
completely.

Lemma 5. The energy consumed by an optimal schedule
that ends at Topt is equal to E(Topt).

Proof. Note that, as E(Topt) is the total energy that has
been harvested by Topt, it is impossible for the schedule
to have consumed more than E(Topt). Hence it sufficies to
show that the energy used by an optimal schedule cannot
be less than E(Topt). Consider a schedule that completes
the transmission of all data at Topt by consuming less
energy than harvested and has leftover energy in its energy
bufferc at Topt. The remaining energy in the buffer could
have been used in the last epoch to strictly reduce the
transmission completion time. This contradicts the opti-
mality ofTopt. Hence, we have proved that the energy used
cannot be less than E(Topt). This in turn implies that the
energy used must be exactly equal to E(Topt). �

Next, we show the uniqueness of the optimal schedule
under WUFBC.

Theorem 1. There is a unique optimum schedule under
WUFBC, i.e., a unique power-rate allocation achieving
Topt.

Proof. See Appendix. �

5 The DuOpt Algorithm
The problem in [12] which is a special case of Problem 1,
where both users’ data is available at the beginning, was
shown to be solved in [12] by the FlowRight Algorithm
[22]. Along similar lines, we develop an algorithm that
we call DuOpt for solving Problem 1 in its general form.
As a matter of fact, DuOpt simply reduces to FlowRight
when the given problem instance has all the data arriv-
ing at t = 0. Similarly to FlowRight, DuOpt starts with
any feasible schedule and reduces the transmission com-
pletion time iteratively. Let the number of epochs and
the transmission completion time of the initial schedule
be kup and Tup, respectively. In each iteration, DuOpt
sequentially updates rates and powers of two consecu-
tive epochs at a time, i.e., epochs (1, 2), (2, 3), ..., until all
epochs are updated. Then, starting from the first epoch
pair, DuOpt continues with the next iteration. DuOpt
stops after N iterations such that N = min{n : Tn−1 −
Tn ≤ ε, i = 1, ..., kn, j = 1, 2}, where Tn ≤ Tup is
the transmission completion time, kn ≤ kup is the num-
ber of epochs used at the end of nth iteration, and ε is a
predefined threshold.
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Hereafter, we will briefly outline the local optimizations
over epoch pairs. In Theorem 2, it will be shown that local
optimizations can only improve the schedule. We will also
prove that under WUFBC, successive iterations strictly
improves the schedule unless it is optimal.

5.1 Local optimizations
Let Eni denote the energy used during the ith epoch and
bnji denote the number of bits transmitted to the jth user
during epoch i at the end of nth iteration. Suppose that
DuOpt is at the nth iteration and running a local optimiza-
tion over epoch pair (i, i + 1). The values of bnjz and Enz ,
∀z ∈ {1, 2, ..., i − 1} have already been found by previous
local optimizations. At the end of this optimization, Eni
and bnji will be determined; En−1

i+1 , E
n−1
i+2 , and bn−1

j(i+1) will be
reset to new values that conserve total energy consump-
tion and data transmission in these epochs. The goal of the
local optimization is surely tominimize the total transmis-
sion completion time of all the packet arrivals. Hence, it is
logical tominimize the transmission time in the local opti-
mization problem, which results in a gapd if transmission
ends before the end of (i+ 1)th epoch. This gap is used in
the next local optimization to further reduce the transmis-
sion time via transferring bits or energy between epochs
(i+1) and (i+2); hence, a new gap occurs at the end of the
next local optimization. This new gap propagates to the
end of the transmission resulting a reduction in the total
transmission completion time [12]. However, in some
cases, an epoch long gap occurs, and this gap is useless
for the next local optimization, i.e., energy or data transfer
between epochs in the next local optimization is impossi-
ble because of constraints. In that case, it is better to just
spread the data out till the end of the second epoch in
the local problem and minimize the energy consumption
so that the excess energy can be used to further reduce
the transmission time in the next local optimization. This
leads to two different local optimization functions: time
minimization and energy minimization. These functions
both support the global objective in different ways. Time
minimization aims to find the minimum amount of time,

Tn
(i,i+1), to transmit bnj(i,i+1) = bn−1

ji + bn−1
j(i+1) bits to each

user using the energy available in epoch pair (i, i + 1), i.e.,
En−1

(i,i+1) = En−1
i + En−1

i+1 . On the other hand, energy min-
imization aims to find the minimum energy, En(i,i+1), to
transmit bnj(i,i+1) bits to each user in two epoch durations,
i.e., ξi + ξi+1, and excess energy, En−1

i + En−1
i+1 − En(i,i+1),

is transferred to the (i + 2)th epoch in order to conserve
energy. Both of the optimizations respect energy and bit
causalities, i.e., Eni ≤ E(ti) − ∑i−1

s=1 Ens and bnji ≤ B(j)(ti) −∑i−1
s=1 bnjs, j ∈ {1, 2}. For details of the local optimization,

see Appendix.
Suppose that all the feasible packets have been trans-

mitted until the end of the ith epoch and there are
still packets to arrive after ti. Then, further minimiza-
tion of transmission completion time of sequential epochs
before ti will be suboptimal. On the other hand, we can
minimize the energy consumption until ti and use the
excess energy to minimize the transmission completion
time. Therefore, utilization of energy minimization for
local optimizations in Problem 1 is very crucial. If it is
guaranteed that current schedule uses at least the same
amount of energy as optimal schedule until ti, DuOpt
uses the energy minimization function up to to ith epoch
pair and the time minimization function for the rest. In
order to determine when to switch from energy mini-
mization to time minimization, a Flag is placed at the ith
epoch pair. Initially, the Flag is set to zero, and DuOpt
starts with performing time minimization on epoch pairs.
During the nth iteration, if all the feasible bits are trans-
mitted by the ith epoch for ∃i ∈ {1, 2, ..., kn}, then
the Flag is set to i (Flag < i). In the following iter-
ations, energy minimization function is used up to the
ith epoch pair. Figure 2 illustrates the Flag usage and
the pseudo-code in Algorithm 1 outlines the DuOpt
Algorithm.

Theorem 2. The following statements hold:
1. Successive iterations of DuOpt can only improve the

schedule.
2. DuOpt stops and returns a schedule with {r∞1i , r∞2i }.

Figure 2 Illustration of DuOpt Flag. Illustration of the Flag and local optimizations, where all the feasible bits have been transmitted until the end
of the fifth epoch; hence, a Flag is set to the fifth epoch pair, i.e., Equations 4 and 5. Energy minimization is performed upto epoch pair with the Flag,
and time minimization is performed for the rest.
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Algorithm 1 DuOpt Algorithm

1: Initialize();
2: n ← 0, Flag ← 0, T0 ← Tup

3: repeat
4: n++
5: for i = 1 to (kn − 1) do
6: eni,max ← E(ti) − ∑i−1

m=1 enm
7: bn1i,max ← B(1)(ti) − ∑i−1

m=1 bn1m
8: bn2i,max ← B(2)(ti) − ∑i−1

m=1 bn2m
9: bn1 ← bn−1

1i + bn−1
1(i+1)

10: bn2 ← bn−1
2i + bn−1

2(i+1)
11: if i ≤ Flag then
12: [bn1i,b

n−1
1(i+1),b

n
2i,b

n−1
2(i+1),E

n
i ,E

n−1
i+1 ,E

n−1
i+2 ]

= Minimize_Energy(En−1
i ,En−1

i+1 ,E
n−1
i+2 ,

bn1,b
n
2,e

n
i,max,b

n
1i,max,b

n
2i,max)

13: else
14: [bn1i,b

n−1
1(i+1),b

n
2i,b

n−1
2(i+1),E

n
i ,E

n−1
i+1 ]

= Minimize_Time(En−1
i ,En−1

i+1 ,b
n
1,b

n
2,

eni,max,b
n
1i,max,b

n
2i,max)

15: end if
16: if bn1i,max == bn1i && bn2i,max == bn2i && Flag <

i && i < kn − 1 then
17: Flag = i
18: end if
19: end for
20: Calculate_{T}(&Tn ) {Calculate current trans-

mission completion time.}
21: until Tn == Tn−1

Proof.

1. Suppose that DuOpt is running its nth iteration.
After the local optimization on the ith epoch pair, we
obtain {(rn1i, rn2i),Eni } and reset the values of
{(rn−1

1(i+1), r
n−1
2(i+1)),E

n−1
i+1 ,E

n−1
i+2 }. If the Flag is not placed

before the ith epoch pair, i.e., Flag ≥ i, then the aim
of the local optimization will be energy minimization.
Following the local optimization on the ith epoch
pair, the excess energy will be transferred to En−1

i+2 . In
the next local optimization, this excess energy is
either further transferred or is used to reduce the
transmit time. On the other hand, if Flag < i, then
the aim of the local optimization on the ith epoch
pair will be time minimization. After the local
optimization the transmission completion time of the
bits in epochs, (i, i+1)will either be equal to or before
the end of the epoch (i + 1). That is, a gap may occur
within ith epoch pair. In the next local optimization,
this gap would propagate to the (i + 2)th epoch [12].
During the nth iteration of DuOpt, if a gap occurs or
excess energy is transferred during local
optimizations, then the gap (or the excess energy,

respectively) will propagate to the last epoch pair
resulting in an ultimate reduction the transmission
completion time at the end of the iteration, i.e.,
T(rn1i, r

n
2i) < T(rn−1

1i , rn−1
2i ). If neither excess energy

nor a gap occurs during local optimizations, then
transmission completion time cannot be decreased
and DuOpt will stop by definition.
Both local optimizations are in favor of the next local
optimization. Therefore, if in either one of the local
optimizations, a gap occurs or excess energy is
transferred, then it would propagate till the last
epoch pair, and finally the transmission completion
time would decrease at the end of nth iteration, i.e.,
T(rn1i, r

n
2i) < T(rn−1

1i , rn−1
2i ). If neither excess energy

nor gap occurs during local optimizations, then
transmission completion time would not be
decreased and DuOpt would stop.

2. In Part 1, we have shown that transmission
completion time, T(rn1i, rn2i), is strictly decreasing in
each iteration; meanwhile, it is bounded below by
TOPT . Therefore, the iterations of DuOpt stop and
return a schedule, {r∞1i , r∞2i }.

�

5.1.1 Optimality of the DuOpt Algorithm underWUFBC
Theorem 3. Under WUFBC, the schedule returned by

DuOpt is optimal, i.e., T({r∞1i , r∞2i }) = Topt.

Proof. See Appendix.

6 SUMT Algorithm
Theorem 1 states that the solution of Problem 1 is
unique under WUFBC. In order to generalize the unique-
ness result, we shall introduce the following equivalent
problem:

Problem 2. Energy ConsumptionMinimization of an
Energy Harvesting Transmitter with Data and Energy
Arriving at Arbitrary Points on a BC:

Minimize : E =
k∗∑
i=1

g(r1i, r2i)ξi+g(r1(k∗+1), r2(k∗+1))

× (T−
k∗∑
i=1

ξi)

subject to : ∀k ∈ {1, .., k∗} , k∗ = max{i :
i∑

j=1
ξj ≤ T}

r1k ≥ 0 , r1(k∗+1) ≥ 0 , r2k ≥ 0 , r2(k∗+1) ≥0
k∑

i=1
g(r1i, r2i)ξi ≤ E(tk)
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k∑
i=1

r1iξi ≤ B(1)(tk) ,
k∑

i=1
r2iξi ≤ B(2)(tk)

k∗∑
i=1

r1iξi + r1(k∗+1)(T −
k∗∑
i=1

ξi) = B(1)(W )

k∗∑
i=1

r2iξi + r2(k∗+1)(T −
k∗∑
i=1

ξi) = B(2)(W )

(6)

The objective function of Problem 2 is strictly convex as
it is a weighted sum of g(r1i, r2i)‘s, i ∈ {1, 2, ..., k∗ + 1} each
of which are strictly convex and increasing [23]. The set of
constraints (6) are also convex by the same reasoning, and
the rest of the constraints are linear. Hence, Problem 2 is a
strictly convex problem, with a unique solution.
The power function P = g(r1, r2) can be rearranged

to obtain an energy function E = 1
T g(

B1
T , B2T ), where E

is the energy consumption, T is the transmission dead-
line and B1 and B2 are the total data to be transmitted.
For constant B1 and B2, this energy function turns out to
be strictly decreasing with the transmission deadline in
AWGN BC. Using this fact, it can be proved by induc-
tion that energy consumption of a multi-epoch optimal
schedule is a strictly decreasing function of transmission
deadline. Hence, there is a unique transmission comple-
tion time by which an optimal policy consumes a given
amount of energy, and vice versa. Now, suppose that
schedules S1 and S2 are optimal solutions of Problems 1
and 2, defined with the deadline T, respectively. Both
schedules must consume the same amount of energy since
the opposite claim would contradict the optimality of the
schedules: S2 cannot use more energy by T than S1, by
definition. Suppose less energy is used, implying that S1
has used some extra energy to deliver the same amount of
data as S2. However, this extra energy could be used in the
last epoch to decrease the completion time by a nonzero
amount, which would contradict optimality. Therefore, S1
and S2 are two schedules completing the transmission of
the same amount of data at the same time by consuming
same amount of energy. Hence, the solution of Problem 1
having a transmission completion time of Topt, is also a
solution to Problem 2 with transmission deadline Topt.
Combining this result with the uniqueness of the solution
of Problem 2, we conclude that the solution of Problem 1
is also unique [24]. Next, we consider the solution of
Problem 2.
Gradient descent and Newton’s method are two com-

monly used techniques for solving linear equality con-
strained convex problems. Problem 2 is strictly convex
but has both linear equality and convex inequality con-
straints. Interior-point methods are utilized for solving
inequality constrained convex problems [23]. Specifically
for this problem, we use the sequential unconstrained

minimization technique (SUMT) which has been pro-
posed by Fiacco and McCormick [25]. SUMT Algorithm
converts a constrained convex problem into an uncon-
strained problem by adding penalty terms into objective
function.
The main objective of the SUMT method is to mini-

mize F(r) = E(r) + μP(r), where E(r) is the objective
function of Problem 2, μ is the penalty parameter, and
P(r) is the penalty function. P(r) forces the solution to sat-
isfy all the constraints, and μ is used to control the effect
of P(r). Selecting a sufficiently large μ, we can reach the
optimal solution with an arbitrarily small error. However,
choosing a very large μ might also have some computa-
tional disadvantages, and choosing a very small μ might
also lead to a slow convergence or early termination [26].
Hence, an arbitrary small penalty parameter, i.e., μ = 1, is
selected at the beginning of algorithm and doubled after
each iteration of the SUMT Algorithm until a predefined
maximum value, i.e., μmax = 1010, is reached. Start-
ing from an initial rate vector, SUMT Algorithm updates
the rate vector, r, in each iteration by utilizing the gen-
eralized Newton’s method and then increase the penalty
parameter. The algorithm terminates if either μ reaches
the maximum value or P(r) is smaller than a predefine
threshold εS. Algorithm 2 represents the pseudo code of
the SUMT Algorithm.

Algorithm 2 SUMT Algorithm

1: r1i ← B(1)(T)
T , r2i ← B(2)(T)

T , μ ← 1
2: repeat
3: r ← NewtonsMethod(r)
4: μ ← 2μ
5: until μ ≥ μmax ∨ P(r) ≤ εS

So far, we have seen that Problem 2, which minimizes
the energy consumption given a transmission deadline,
can be solved by SUMT Algorithm, and Problem 2 is
equivalent of Problem 1 by means of solutions. As total
energy consumption of an optimal schedule is a strictly
decreasing function of total transmission time [24], we can
find lower and upper bounds on the transmission com-
pletion time of Problem 1 using the SUMT Algorithm.
Then, we iteratively narrow down the distance between
the bounds and finally obtain the solution of Problem 1
within some error, i.e., ε > 0. A pseudo code of this
algorithm is given in Algorithm 3.

7 Convergence rate and examples
The main difference between the two algorithms
described above for solving Problem 1 is the parameter
update procedure. DuOpt acts like a block coordinate
descent technique (while, strictly speaking, it is not) and
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Algorithm 3 Time minimization with SUMT Algorithm

1: N ← argmin
k∈{1,2,...kup}

(B(1)(tkup) = B(1)(tk) ∨ B(2)(tkup) =
B(2)(tk))

2: repeat
3: N ← N + 1
4: Emin ← SUMT_Algorithm(tN )

5: until Emin ≤ E(tN )

6: Tmin ← tN−1 , Tmax ← tN
7: repeat
8: T ← (Tmin + Tmax)

/
2

9: Emin ← SUMT_Algorithm(T)

10: if Emin < E(T) then
11: Tmax ← T
12: else
13: Tmin ← T
14: end if
15: until Tmax − Tmin ≤ ε

16: Tmin ← T

optimizes only a portion of parameters (rates and powers
in consecutive epochs) at a time; whereas SUMT updates
all parameters at the same time.
In the SUMT Algorithm, after finding an upper and

a lower bound on the transmission completion time,

using bisection method that the distance between the
lower and the upper bound is halved in each iteration.
The average number of iterations is at most �log2 (

ξ̄
ε
)
,

where ξ̄ is the average epoch length. Hence, the num-
ber of iterations does not depend on the epoch count
and has a complexity of O(1). In each iteration, New-
ton’s method, which scales well the problem size (number
of epochs) [23], is performed. In every step of New-
ton’s method a 2k × 2k Hessian matrix is constructed
and its inverse is calculated. Computational complexity of
matrix inversion with Gaussian elimination is polynomial
with O(n3), yet it can be as low as O(n2 log(n)) theoreti-
cally, which is the lower bound on matrix multiplication.
Since the average iteration count for SUMT and the step
count of Newton’s method, does not change with epoch
count, the complexity of SUMTAlgorithm, which is deter-
mined by complexity of Newton’s step, is polynomial. We
have simulated DuOpt and SUMT Algorithms on ran-
domly generated problem instances with different lengths
and observed that simulation time for both algorithms
increase quadratically as the number of epochs increases.
The termination time of DuOpt Algorithm is almost two
orders of magnitude shorter than the SUMT Algorithm,
as the number of epochs is varied (see Figure 3).
We should also compare the memory requirements of

algorithms. In each step of DuOpt, only two consecutive
epochs are considered; therefore, memory requirement of
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Figure 3 Comparison of DuOpt and SUMT Algorithms. Average computation time (log scale) versus number of epochs for the optimal solutions
of Problem 1 with DuOpt and SUMT Algorithms: Solid blue line is the average computation time of the optimal schedule with DuOpt and black
dashed line represents the computation time of SUMT Algorithm. A two-user AWGN BC with 1-KHz bandwidth and noise spectral density of
N0 = 10−12 W/Hz is considered. Path loss factors on the links of the strong and the weak user are assumed to be s1 = 70 and s2 = 75 dB, respectively.
There is a probability of 0.25 that no energy harvest occurs at the start of an epoch. With probability 0.75 energy harvest amounts (in W) are chosen
from a Pareto distribution with parameters b = 2 and α = 2. Similarly, there is a probability of 0.25 that no data arrival occurs; otherwise, data arrival
amounts (in Kbits) are selected from a Pareto distribution with parameters b = 4, α = 2 and then rounded to the nearest integer.
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an iteration is constant across a varying number of epochs.
On the other hand, SUMT constructs a Hessian matrix
in each iteration and the size of this matrix increases
quadratically with increasing number of epochs. The only
drawback of DuOpt seems to be the termination process.
In SUMT Algorithm, the ultimate distance of the opti-
mal schedule is known at the beginning of each iteration,
and this distance is halved at each iteration. However,
transmission time reduction of DuOpt Algorithm can be
erratic and may induce an early termination. We have
observed that controlling total power levels before ter-
mination is very useful in DuOpt Algorithm. If the total
power level decreases greater than a predefined threshold,
i.e., an ε of average power level, then we should not let the
algorithm terminate.
Next, we will illustrate and discuss some properties of

the optimal schedule on two numerical examples. In both
examples, we consider a two-user AWGN BC with 1-
Khz bandwidth with noise spectral density N0 = 10−12

W/Hz. Path losses from the sender to the strong and the
weak user are assumed to be 70 and 75 dB, respectively.
First, we will consider a WUFBC such that 25 Kbits of
data to be transmitted to the weak user is ready at the
beginning of the schedule and 8, 25,12, 20, and 15 Kbits
of data to be transmitted to the strong user arrives at

respective times 0, 2, 4, 8, and 10 s. Energy harvesting
profile is assumed to be 3, 10, 4, 7, 13, 3, 5, 8, 6, and
12 J at respective times 0, 3, 5, 8, 9, 10, 11, 13, 15, and
17 s. The main objective in this example is to transmit the
given data arrivals as soon as possible. Under these cir-
cumstances, we run both DuOpt and SUMT Algorithms
on a 3-GHz Core2Duo processor and obtain the optimal
schedule (See Figure 4) in 0.3 and 8.7 s, respectively. The
optimal schedule finalize the transmission at t = 12.903 s
with a total power allocation vector 1.000, 1.000, 2.800,
and 5.710 W and the strong user power allocation vector
of 0.150, 0.708, 0.708, and 1.399 W with durations 2, 1, 5,
and 4.903 s.
The following example illustrates a general scenario,

i.e., transmitter has energy harvest and data arrivals for
both users after the beginning of the schedule: 15, 12,
and 8 Kbits of data to be transmitted to the strong user
arrives at times 0, 5, and 8 s; and 2, 6, and 12 Kbits of
the weak user data arrives at 0, 2, and 5 s. Energy har-
vesting profile is assumed to be 1, 2, 1, 2, 2, 1, 2 J at
times 0, 2, 5, 7, 8, 10, and 12 s. The main objective in this
example is to transmit the given data arrivals as soon as
possible. Under these circumstances, we run both DuOpt
and SUMT Algorithms on a 3-GHz Core2Duo proces-
sor and obtain the optimal schedule (See Figure 5) in

(a)

(b)
Figure 4 Numerical Example 1. A numerical example of optimal schedule for Problem 1. Top figure (a) illustrates the energy harvest and bit arrival
sequences and the transmission completion time: 3, 10, 4, 7, 13, 3, 5, 8, 6, and 12 J of energy is harvested at respective times 0, 3, 5, 8, 9, 10, 11, 13, 15,
and 17 s; and 8, 25, 12, 20, and 15 Kbits of the strong user data arrive at respective times 0, 2, 4, 8, and 10 s whereas 25 Kbits of the weak user data is
ready at the beginning. Optimal schedule finalized at t = 12.903 s by transmitting 80 and 25 Kbits to the the strong and the weak user, respectively.
Bottom figure (b) depicts the strong user power level and the total power level during transmission. Blue line represents the total transmitter power
level, Pt , whereas the red line represents the power reserved for transmission to the strong user, Ps , during transmission. Total power levels and the
strong user power levels are 1.000, 1.000, 2.800, and 5.710 W and 0.150, 0.708, 0.708, and 1.399 W with durations 2, 1, 5, and 4.903 s.
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Figure 5 Numerical Example 2. A numerical example of optimal schedule for Problem 1. Top figure illustrates the energy harvest and bit arrival
sequences and the transmission completion time: 1, 2, 1, 2, 2, 1, and 2 J of energy is harvested at times 0, 2, 5, 7, 8, 10, and 12 and 15, 12, and 8 Kbits
of the strong user data arrives at 0, 5, and 8 s whereas 2, 6, and 12 Kbits of the weak user data arrives at 0, 2, and 5 s. Optimal schedule finalize at
t = 9.531 s by transmitting 35 and 20 Kbits to the strong and the weak users, respectively. Bottom figure depicts the strong user power level and the
total power level during transmission. Blue line represents the total transmitter power level, Pt , whereas the red line represents the power reserved
for transmission to the strong user, Ps , during transmission. Total power levels and the strong user power levels are 0.254, 0.297, 1.300, 1.580, and
1.580 and 0.111, 0.051, 0.150, 0.150, and 0.364 W with durations 2, 3, 2, 1, and 1.531 s, respectively.

0.5 and 4.3 s, respectively. The optimal schedule final-
ize the transmission at t = 9.531 s with a total power
allocation vector 0.254, 0.297, 1.300, 1.580, and 1.580 W
and the strong user power allocation vector of 0.111,
0.051, 0.150, 0.150, and 0.364 W with durations 2, 3, 2, 1,
and 1.531 s.
As stated in Lemma 2, the total power is non-decreasing

in both examples, and it increases only if at least one of
the conditions in Lemma 3 occurs, i.e., in the first exam-
ple energy constraint is active at t = 3 and both energy
and the strong user data constraints are active at t = 8,
whereas in the second example the weak user data con-
straint is active at t = 2, both the weak and the strong user
data constraint is active at t = 5 and finally energy con-
straint is active at t = 7.We should also note that, as stated
in Lemma 4, the strong user power is non-decreasing in
the first example, yet it increases at t = 2 due to the
strong user data constraint and at t = 8 s due to both
energy and the strong user data constraints. However, in
the second example, both the weak and the strong user
powers decrease and increase during transmission due to
packet arrivals. The weak user power in the second exam-
ple decrease at t = 8 in order to preserve the total transmit
power at a constant level. On the other hand, the strong
user power decreases at t = 2 while the total power level
increases. In fact, when only the weak user constraint is
active, at t = 2 in the second example, it is optimal to
preserve the sum of rates (not the sum of powers) at a
constant level [24].

8 Conclusions
With the new advances in energy harvesting technologies,
optimization of communication systems that depend on
renewable energy resources has emerged as an important
problem. A large body of recent research effort in the field
has focused on transmission scheduling policies.
This paper continued the work on to the solution of

the previous formulation of the problem stated in [12]
and [13]. In particular, it aimed to find the power and
rate allocation policy in a broadcast channel with two
users, that minimizes the total transmission completion
time of data that becomes available at arbitrary points
in time, with energy that is harvested at arbitrary points
in time. It should be noted that this line of work relies on
offline problem formulations where exact knowledge of
data and energy arrival events is assumed. The approach
is useful for obtaining structures and guidelines as well
as benchmarks for online problems which may be more
applicable in practical transmission scenarios.
In this study, structural properties about the solution

of the general optimal offline broadcast packet schedul-
ing policy for an energy harvesting broadcast channel
have been established. The uniqueness of the optimal
policy has been shown. An iterative algorithm, DuOpt,
that returns a feasible schedule is devised and the algo-
rithm is shown to possess the same structural properties
with the optimal. Moreover, DuOpt was shown to obtain
the unique optimal policy under the WUFBC. By devis-
ing a convex problem that is shown to be equivalent to
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the general problem, an alternative iterative algorithm
that utilizes the SUMT is proposed. SUMT converges to
the optimal transmission completion time without the
WUFB condition assumption. However, it is observed
on numerical examples that DuOpt iterations converges
on average two orders of magnitude faster and DuOpt
returns the same schedule as the one found by SUMT.
This makes us believe that DuOpt converges to the opti-
mal solution even in lieu of the WUFBC condition, and
it achieves this much faster than standard optimization
methods.

Endnotes
a The achievable rate regions will be implicitly assumed

to correspond to a certain constant tolerable error
probability respecting which it is possible to transmit a
finite number of bits with a finite amount of energy
per bit.

b Lemma 6 of [12] originates from the observation in
[13] (See Lemma 4 and Corollary 1 in) that there is a
cut-off level for the total power, below which no power is
assigned to the weak user.

c The term “energy buffer” refers to an abstraction of
an energy storage unit such as a rechargeable battery. A
realistic battery would have imperfections: not all energy
harvested can be retrieved, and there is a finite capacity
for storage. On the other hand, the energy buffer
abstraction can store an arbitrary amount Ei at time ti, all
of which can be used after ti. This abstraction could
model the net energy, taking into account any leakage or
other imperfections, that becomes available at ti after the
battery is charged between ti−1 and ti.

d A gap is a time period with zero power allocation.

Appendix
Proof of Lemma 2
The claim is that power is non-decreasing with epoch
number i. Equivalently, power is non-decreasing in time.
To show this, we will argue that given a schedule in which
power decreases at some time ti, this schedule can only
be improved by equating the power levels before and after
ti. Consider a time interval (τ1, τ2), so that power is con-
stant at P1 > 0 during (τ1, ti), and at P2 < P1 during
(ti, τ2). As illustrated in Figure 6 , let t = τ2 − τ1, and the
lengths of the constant-power slots be βt and (1 − β)t,
where 0 < β < 1 in order to have two epochs exactly.
Denote the rate pairs in the first and second slots as (r11,
r21) and (r12, r22), respectively.
We will show that keeping the total consumed energy

constant, and transferring some amount of energy 	E
from the first slot to the second such that power levels are
reallocated closer to each other, the sender can transmit
at least the same number of bits within the same duration.
Let us denote the average rate of the weak user as r̄2 �

Figure 6 Transmission scheme of Lemma 2. Illustration of the
transmission scheme used in proof of Lemma 2.

βr21+(1−β)r22. Provided r21 > 0, the sender could trans-
fer some energy and some of user 2’s bits from the first
epoch to the second while keeping user 1’s rates r11 and
r12 constant. As energy and bits are simply being deferred
for later use, this operation does not violate feasibility.
Specifically, let

P′
1 = P1 − (1 − β)	P , P′

2 = P2 + β	P, (7)

such that the new power allocation to the slots (P′
1,P

′
2)

is satisfying P2 < P′
2 ≤ P′

1 < P1. With this new alloca-
tion, the weak user’s rate in the first slot is h2(P′

1, r11) <

h2(P1, r11) = r21 > 0. Its new average rate over the
duration of t is:

¯̄r2 = h2(P′
1, r11)β + h2(P′

2, r12)(1 − β)

≥ h2(P1, r11)β + h2(P2, r12)(1 − β) (8)
= r̄2.

This is shown by straightforward application of the prop-
erties listed in section 2.
Equation 8 follows from the fact that

h2(P
′
1, r11)β + h2(P

′
2, r12)(1 − β)

− h2(P1, r11)β − h2(P2, r12)(1 − β) ≥ 0 (9)

for all β = {0, 1} with equality achieved at β = 0, 1.

f (β) = h2(P1 − (1 − β)	P, r11)β
+ h2(P2 + β	P, r12)(1 − β)

− h2(P1, r11)β − h2(P2, r12)(1 − β) (10)

The concavity of f (β) in β combined with the fact that,
f (β) is zero for β values {0, 1} implies that Equation 9
holds.
The first- and second-order derivatives of f with respect

to β are the followinge

∂f
∂β

= h2(P1 − (1 − β)	P, r11) − h2(P2 + β	P, r12)

+ β
{
h2x(P1 − (1 − β)	P, r11)(	P)

}
+ (1 − β)

{
h2x(P2 + β	P, r12)(	P)

}
− h2(P1, r11) + h2(P2, r12)

(11)
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∂2f
∂β2 =2(h2x(P1−(1−β)	P, r11)(	P)−h2x(P2+β	P, r12)(	P)︸ ︷︷ ︸

≤0

)

+ β

⎧⎪⎨
⎪⎩h2xx(P1 − (1 − β)	P, r11)(	P)2︸ ︷︷ ︸

≤0

⎫⎪⎬
⎪⎭

+ (1 − β)

⎧⎪⎨
⎪⎩h2xx(P2 + β	P, r12)(	P)2︸ ︷︷ ︸

≤0

⎫⎪⎬
⎪⎭

≤ 0
(12)

In the remaining case which is r21 = 0, we know
that r11 > 0 must hold (as P1 > 0). In this case,
the allocation can similarly be improved by bringing
power levels closer and transferring some of the first
user’s bits to the right, while keeping the rate alloca-
tion of the weak user unchanged. Let r̄1 � βr11 +
(1 − β)r12 be the average rate of the strong user over
the duration t. After the reallocation, the average rate
of the strong user becomes

¯̄r1 = h1(P
′
1, r21)β + h1(P

′
2, r22)(1 − β)

≥ h1(P1, r21)β + h1(P2, r22)(1 − β) (13)
= ¯r1.

Equation 13 follows from the fact that

h1(P′
1, r21)β + h1(P′

2, r22)(1 − β) − h1(P1, r21)
× β − h1(P2, r22)(1 − β) ≥ 0 (14)

for all β = {0, 1} with equality achieved at β = 0, 1.

q(β) = h1(P1 − (1 − β)	P, r21)β − h1(P2, r22)(1 − β)

+ h1(P2 + β	P, r22)(1 − β) − h1(P1, r21)β .

We can show that Equation 14 holds by proving q(β) is
concave in β .
The first- and second-order derivatives of qwith respect

to β are the followingf:

∂q
∂β

=h1(P1 − (1 − β)	P, r21) − h1(P2 + β	P, r22)

+ β
{
h1x(P1 − (1 − β)	P, r21)(	P)

} − h1(P1, r21)
+ (1 − β)

{
h1x(P2 + β	P, r22)(	P)

} + h1(P2, r22)

∂2q
∂β2 =2(h1x(P1−(1−β)	P, r21)(	P)−h1x(P2+β	P, r22)(	P)︸ ︷︷ ︸

≤0

)

+ β

⎧⎪⎨
⎪⎩h1xx(P1 − (1 − β)	P, r21)(	P)2︸ ︷︷ ︸

≤0

⎫⎪⎬
⎪⎭

+ (1 − β)

⎧⎪⎨
⎪⎩h1xx(P2 + β	P, r22)(	P)2︸ ︷︷ ︸

≤0

⎫⎪⎬
⎪⎭

≤ 0
(15)

According to the properties listed in section 2,
Equation 15 always holds if r21 ≥ r22. Hence q is concave
in β , if r21 = 0. We conclude that a policy that contains a
drop in power level is sub-optimal. �

Proof of Lemma 3
To reach contradiction, suppose that power increases at
time ti (Pi+1 > Pi). We will show that if none of the condi-
tions (a), (b), or (c) hold, then it is possible to improve the
schedule by transferring some energy from the (i + 1)th
epoch to the ith. Assuming the ith epoch length is βt and
the (i+ 1)th is (1− β)t, after bringing power levels closer,

P
′
i = Pi + β	P , P

′
i+1 = Pi+1 − (1 − β)	P. (16)

Observe that if we treat Pi as P2 and Pi+1 as P1, then
Equation 16 becomes identical with Equation 7. This
implies that at least the same number of bits could be
transmitted to the weak user, if we can bring power lev-
els closer while keeping the strong user’s rates constant. In
addition to this, the allocation could also be improved by
bringing power levels while keeping the weak user’s rates
constant in case r2(i) ≥ r2(i+1). Consequently, Equations 8
and 13 hold.
It is straightforward that we cannot bring power levels

any closer when condition (a) holds, due to the energy
causality constraint. Secondly, it also doesn’t yield a bet-
ter schedule, if we can not transfer data from the latter
epoch to the former (condition (b)). When it is possi-
ble to transfer some positive amount of energy from the
(i + 1)th epoch to the ith, as shown in Equation 8, we
can always improve allocation while keeping the rates of
the strong user the same. Although bringing power levels
closer while keeping the rates of the strong user the same
is not feasible in case weak user’s data constraint is active,
we may still improve allocation as proved in Equation 13.
Nevertheless, this timewe require r2(i) ≥ r2(i+1). As rate of
the weak user can only rise upon a data arrival for the weak
user in case the weak user’s data constraint is active, con-
dition (c) describes the last case that we may not improve
allocation by bringing power levels closer.
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We have thus shown that this set of three conditions
contains all the cases in which power can rise, if none of
these hold, then power cannot rise. It is straightforward
to show that this set cannot be further reduced by finding
counterexamples for the claim that if any one of (a), (b), or
(c) is satisfied, then power may rise at time ti. �

Proof of Theorem 1
Suppose that there are two distinct optimal schedules,
SA and SB, which have equal power and rate assign-
ments until ts−1 and differ for the first time at epoch s.
Consider that the corresponding power allocation vec-
tors, PA and PB, also differ at epoch s such that PAi =
PBi ,∀i ∈ {1, 2, .., s − 1} and PAs < PBs . First, assume that
PA remains constant after epoch s, i.e., PAi = PAs ,∀i >

s. By definition, both schedules end at Topt. The total
energy consumption of SA would be less than that of
SB by Topt, i.e.,

(∑k∗
i=1 PAi ξi + (Topt − tk∗+1)PAk∗+1

)
<(∑k∗

i=1 PBi ξi + (Topt − tk∗+1)PBk∗+1

)
, which contradicts

Lemma 5. Hence, the total transmit power of SA cannot
remain constant after ts. Since total transmit power is non-
decreasing (See Lemma 2), it should increase after epoch s
and before the end of transmission, i.e., PAu < PAu+1 , ∃u ∈
{s, s+1, ..., k∗}. Since there are no data arrivals for the weak
user, the increase in total transmit power is either due
to energy constraint being met or due to all the packets
arrived by the time tu having been transmitted (cf. condi-
tions (a) or (c) in Lemma 3). As

∑u
i=s PAi ξi <

∑u
i=s PBi ξi,

SA has not consumed all the available energy at the end
of epoch u. Hence, SA must have transmitted all the bits
arrived until tu, which means that SA has transmitted at
least the same number of bits to both users while con-
suming less energy than SB between t0 and tu, which
contradicts the optimality of SB. Therefore, if there are
two distinct optimal schedules, SA and SB, their power
allocation vectors cannot be different, i.e., PA = PB.
Now, consider two rate pair vectors, RA and RB, where

(rA1i, r
A
2i) = (rB1i, r

B
2i) , ∀i ∈ {1, 2, .., s − 1} and rA1s < rB1s. Let

the strong user’s rate in SA, {rA1j} stay constant after ts−1. By

Lemma 4, rate of the strong user cannot decrease; hence,
the rate of the strong user in SB would be larger than that
of SA after epoch s, i.e., rA1(j+1) = rA1s < rB1s ≤ rB1j , ∀j ∈
{s, s + 1, ..., k − 1}. Since both schedules end transmission
at the same time, SA transmits fewer bits to the strong
user than SB does, which contradicts the fact that opti-
mal schedule transmits all the packet arrivals by the end of
transmission. Therefore, the rate of the strong user in SA
cannot stay constant after epoch s. Now, suppose that rate
of the strong user in SA increases at the end of epoch u, i.e.,
rA1u < rA1(u+1) , ∃u ∈ {s, s + 1, ..., k∗}. This increase cannot
be due to (1) in Lemma 4 because SB has transmittedmore
bits to the strong user by tu, i.e.,

∑u
i=1 rA1iξi <

∑u
i=1 rB1iξi.

Moreover, this increase cannot be due to (2) in Lemma 4
since rate of the weak user in SA is greater than zero in
epoch u, i.e., rA2u = h2(Pu, rA1u) > h2(Pu, rB1u) ≥ 0. Hence
rate of strong user in SA cannot increase after epoch s.
Finally, rate of the strong user in SA cannot decrease (See
Lemma 4) as this would also contradict optimality. Hence,
there cannot be two optimal schedules with different rate
pair vectors.
As both the power allocation vector and the rate pair

vector of an optimal schedule are unique, we conclude that
the optimal schedule is unique under WUFBC. �

Details of the local optimization
Consider the local optimization problem given in Figure 7,
where Bij is the data arrival for the ith user and Ej is the
energy harvest at the beginning of jth epoch for i, j ∈
{1, 2}. T1 is the length of the first epoch and T2 is the
transmit duration in the second epoch. Let Pij and rij be
the power and rate assigned to the ith user during jth
epoch after optimization. The energy and data causal-
ity constraints for the local optimization problem are as
follows:

E1 ≥ P11 · T1

B11 ≥ r11 · T1

B21 ≥ r21 · T1.

T1 T2

E2

B12 , B22

E1

B11 , B21

Figure 7 Two-epoch problem. Illustration of the local optimization problem with two epochs. Bij represents the data arrival for the jth user at the
beginning of the ith epoch. Similarly, Ei represents the energy harvest at the beginning of the ith epoch.
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The structure of the solution changes if either one of
the constraints satisfied with equality. Since there are
three different constraints, after optimization, one will
encounter one of the 23 = 8 results. We have studied all
eight cases and derived solutions to each one of them for
both energy minimization and time minimization func-
tions. In each case, the solution can be calculated analyti-
cally for energy minimization or it can be found iteratively
for time minimization functions. Before starting the opti-
mization, if one already knows which constraints should
be satisfied with equality, then the result could be obtained
solving just that case. Otherwise, one should compute
the results for each case and then select the best oneg
that respects energy and bit causalities. Next, we will ana-
lyze one of the cases and present the algorithms for both
energy and time minimization functions. The analyses of
the remaining cases can be done in a similar fashion [24].

Local optimization when only strong user data constraint is
active
One of the possible structures of the local optimal solu-
tion is when only the strong user data constraint is active.
In this case, total transmit power level in local optimal
solution should be constant (See Lemma 3). Under this
condition, a possible illustration of optimal power alloca-
tion is depicted in Figure 8. Since the total power should
stay constant during transmission, we should have P11 +
P21 = P12 + P22. Moreover, we should have P11 ≤ P12
since only the strong user bit causality is met.
For a given transmission completion time T1 + T2, the

optimum schedule that minimize energy consumption
can be found as follows:

P11 =σ 2

s1
(2

2B11
T1 − 1) , P12 = σ 2

s1
(2

2B12
T2 − 1) (17)

P22 =P11 + P21 − P12 (18)

Figure 8 A solution for the two-epoch problem. Optimal power
allocation for the strong and the weak users if only the strong user
data causality constraint is active. Dark-shaded levels represent the
strong user’s power levels, whereas the light-shaded ones represent
the weak user’s power levels. The total transmit power stays constant.

B2 =B21 + B22

=T1
2

log2
(
1 + P21s2

P11s2 + σ 2

)

+ T2
2

log2
(
1 + P22s2

P12s2 + σ 2

)
. (19)

From Equations 18 and 19, we derive

P21 = 1
s2

[
22B2(P11s2 + σ 2)T1(P12s2 + σ 2)T2

] 1
T1+T2

−
(
P11 + σ 2

s2

)
. (20)

Then, total energy consumed in two epochs is calculated
by

Emin = (P11 + P21)(T1 + T2). (21)

Minimum energy to transmit B1 = B11 + B12 and B2 =
B21 + B22 bits to the users in two epochs, Emin, can be
calculated by setting T2 as the length of the second epoch
in Equation 21.
Substituting Equations 17 and 18 into Equation 19 and

arranging terms, we obtain

B2 =T1
2

log2

⎛
⎜⎝ E1+E2

T1+T2
+ σ 2

s2
σ 2
s1 (2

2B11
T1 − 1) + σ 2

s2

⎞
⎟⎠

+ T2
2

log2

⎛
⎜⎝ E1+E2

T1+T2
+ σ 2

s2
σ 2
s1 (2

2B12
T2 − 1) + σ 2

s2

⎞
⎟⎠

=T1 + T2
2

log2
(
E1 + E2
T1 + T2

+ σ 2

s2

)

− T1
2

log2
(

σ 2

s1
(2

2B11
T1 − 1) + σ 2

s2

)

− T2
2

log2
(

σ 2

s1
(2

2B12
T2 − 1) + σ 2

s2

)

The first and second order derivatives of B2 with respect
to T2 are as follows:

∂B2
∂T2

=1
2
log2

(
E1 + E2
T1 + T2

+ σ 2

s2

)
− 1

2 ln(2)
(
1 + σ 2

s2
T1+T2
E1+E2

)

− 1
2
log2

(
σ 2

s1
2

2B12
T2 + σ 2 s1 − s2

s1s2

)

+ B12
T2

1

1 + s1−s2
s2 2− 2B12

T2
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∂2B2

∂T2
2

= − 1

2 ln(2)(T1 + T2)
(
1 + σ 2

s2
T1+T2
E1+E2

)2

− 2 ln(2)B2
12

s1−s2
s2 2− 2B12

T2

T3
2

(
1 + s1−s2

s2 2− 2B12
T2

)2

<0

(22)

As shown in Equation 22, second derivative of B2 is
always negative for s1 > s2, which implies that B2 is a
strictly concave function of T2. As T2 goes to infinity, B2
is as follows:

lim
T2→∞

B2 = − T1
2

log2
(
s2
s1

(2
2B11
T1 − 1) + 1

)
− s2

s1
B12

+ (E1 + E2)s2
2 ln(2)σ 2 > −∞

Since B2 is a strictly concave function of T2 and goes to
a finite number as T2 goes to infinity, B2 is an increasing
strictly concave function of T2 and there is a unique B2 for
each value of T2.
In time minimization, we have E1, E2, T1,

B2 = B21 + B22, B21, B22; s1 and s2 are constant terms and
T2 is transmission time within the second epoch which
is to be minimized. Since B2 is an increasing concave
function of T2, we iteratively find T2 that sends exactly B2
bits to weak user by using bisection method. Minimum
time to transmit B1 = B11 + B12 and B2 bits to the users
in these two epochs can be calculated by T (2)

min = T1 + T2.
Algorithm 4 presents a pseudo-code of time minimiza-
tion algorithm for the case that only the strong user bit
causality event occurs.

Algorithm 4 Local time minimization algorithm when
only the strong user data constraint is active
1: Tmax ← T2, Tmin ← 0
2: repeat
3: T̂ ← (Tmax + Tmin)/2

4: B̂2 ← T1
2 log2

⎛
⎝ E1+E2

T1+T̂
+ σ2

s2

σ2
s1

(2
2B11
T1 −1)+ σ2

s2

⎞
⎠

+ T̂
2 log2

⎛
⎝ E1+E2

T1+T̂
+ σ2

s2

σ2
s1

(2
2B12
T̂ −1)+ σ2

s2

⎞
⎠

5: if B̂2 < B2 then
6: Tmin ← T̂
7: else
8: Tmax ← T̂
9: end if

10: until B̂2 == B2
11: T (2)

min ← T̂ + T1

Proof of Theorem 3
Suppose that DuOpt stopped and returned a schedule
{r∞1i , r∞2i } � SDu, with completion time T({r∞1i , r∞2i }) �
TDu. Let Sopt be the unique optimal schedule with trans-
mission completion time Topt. We will now prove that
SDu = Sopt. Let us suppose SDu �= Sopt, then these
schedules have to differ in either the power allocation
or rate allocation (or both). First, suppose PDui = Popti ,
i ∈ {1, 2, ..., s − 1} and PDus �= Popts for some s. We will
show that this case is impossible. There are two possible
cases for epoch s: (i) PDus > Popts and (ii) PDus < Popts . Let
us begin with the first case.

(i) We assumed PDus > Popts . If Popt stays constant after
epoch s till the end of transmission, this would mean
that SDu consumes more energy than Sopt until Topt,
which would contradict the fact that optimal schedule
consumes all the harvested energy till the end of
transmission. Therefore, the power of the optimal
schedule must increase at the end of epoch (s + m)

for somem ≥ 0 before the end of transmission. As
SDu has been able to use more energy than the
optimal schedule until ts+m, the optimal schedule
cannot have run into an energy constraint at ts+m,
hence the rise in the power can only be due to a data
constraint at ts+m, i.e., all the bits arrived have been
transmitted by the optimal schedule until ts+m. In
order to contradict the assumption that PDus > Popts ,
we will now analyze the rate assignments for both
schedules. First, let us focus on the case that both
schedules use exactly the same rates for the strong
user up to ts+m, i.e., rDu1i = ropt1i , ∀i ∈ {s, ..., s + m}. As
we have shown above, Sopt should have transmitted
all the bits available until ts+m. However, if we
compare the weak user bits transmitted by both
schedules until ts+m, we observe that SDu transmits
more bits to the weak user than Sopt does, because∑s+m

i=1 (rDu2i − ropt2i )ξi = ∑s+m
i=s (rDu2i − ropt2i )ξi =∑s+m

i=s (h2(PDui , rDu1i ) − h2(P
opt
i , ropt1i ))ξi > 0. On the

other hand, DuOpt respects bit causality, i.e., DuOpt
does not transmit bits that have not arrived yet, so we
reach contradiction. That is, rates cannot stay
constant up to ts+m, i.e., there is some
k ∈ {1, 2, ..., s + m − 1} such that rDu1i = ropt1i for i < k
and rDu1k �= ropt1k . But we shall now show that this is
not possible. First consider the case that rDu1k < ropt1k .
From Lemma 4, the strong user’s rate cannot
decrease under WUFBC. If
rDu1i = rDu1k , i ∈ {k, ..., s + m}, then SDu transmits more
bits to the weak user than Sopt does by ts+m, i.e.,∑s+m

i=1 (rDu2i − ropt2i )ξi = ∑s+m
i=k+1(r

Du
2i − ropt2i )ξi =∑s+m

i=k+1(h2(P
Du
i , rDu1i ) − h2(P

opt
i , ropt1i ))ξi > 0.

However, at the end of the (s + m)th epoch, SDu
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cannot send more bits to weak user because Sopt
should have transmitted all the weak user bits.
Therefore, rDu1 should increase before ts+m, i.e., at
the end of epoch k + n, where 0 < n < (s + m − k).
We have rDu1(k+n)

< rDu1(k+n+1); hence, either one of the
two conditions in Lemma 4 must hold. Since∑k+n

i=1 (ropt1i − rDu1i )ξi > 0, until tk+n, Sopt has
transmitted more bits to the strong user than SDu
does; therefore, all the strong user’s bits arrived have
not been transmitted by SDu at the end of epoch
(k + n). Also, rDu2(k+n)

= h2(PDuk+n, r
Du
1(k+n)

) >

h2(P
opt
k+n, r

opt
1(k+n)

) ≥ 0. Hence neither of the two
conditions in Lemma 4 holds and strong user’s rate
cannot increase at tk+n, which implies rDu1k �< ropt1k .
Thus, we are left with the case rDu1k > ropt1k . If
ropt1i = ropt1k , i ∈ {k, ..., s + m}, then∑s+m

i=1 (rDu1i − ropt1i )ξi > 0 , which contradicts the fact
that DuOpt respects bit feasibility. Hence, strong
user’s rate in Sopt cannot remain constant after epoch
k. Then we should have ropt1i = ropt1k , i ∈ {k, ..., k + n}
and ropt1(k+n)

< ropt1(k+n+1). Since there is an increase in
the strong user rate, at least one of the conditions in
Lemma 4 should hold at tk+n. However, we have∑k+n

i=1 (PDui −Popti )ξi > 0 and
∑k+n

i=1 (rDu1i −ropt1i )ξi > 0,
which tells us that neither one of the conditions in
Lemma 4 holds, which implies that this final case is
also not possible. Hence, we conclude that the case
PDus > Popts is not possible.

(ii) Now consider the case PDus < Popts . We will prove
that this case is also not possible by following a
similar method to the one in case (i). First, suppose
that the power of SDu increases after sth epoch. This
increase cannot be due to an energy constraint since
Sopt consumes more energy than SDu does until the
increase in power. Hence, it should be due to data
constraint and under WUFBC both user data
constraints should be active. That is, SDu transmits

all the feasible data until the increase in power. This
implies that while consuming less energy, SDu
transmits at least the same number of bits than Sopt
does, which contradicts the optimality of Sopt. Thus,
power of SDu cannot increase after epoch s. Also, it
cannot decrease in time; otherwise, a local
optimization results in either a gap or excess energy
that propagates till the end of the schedule and
transmission duration decreases. Therefore, the
power of SDu should stay constant after epoch s until
Topt. Now, we will analyze the rate assignments for
both schedules. Let the transmission of Sopt end in
epoch (s + m) form ≥ 0 and suppose that
rDu1i = ropt1i ∀i < k, 0 < k < (s + m). At the kth
epoch, there are three possible cases: rDu1k > ropt1k ,
rDu1k < ropt1k , and rDu1k = ropt1k . We will first consider the
case rDu1k > ropt1k and prove that this is not possible.
Let rDu1k > ropt1k and consider the rate of the strong
user in Sopt after kth epoch. It cannot stay constant
until Topt, because it contradicts the fact that Sopt
transmits all the feasible bits before Topt, i.e.,∑s+m

i=1 (rDu1i − ropt1i )ξi > 0. Since the strong user’s rate
in Sopt cannot decrease by Lemma 4, it should
increase at the end of epoch (k + n) for 0 ≤ n <

(s + m − k), i.e., ropt1(k+n)
< ropt1(k+n+1). However, we

have
∑k+n

i=1 (rDu1i − ropt1i )ξi > 0 and ropt2(k+n)
=

h2(P
opt
k+n, r

opt
1(k+n)

) > h2(PDuk+n, r
Du
1(k+n)

) ≥ 0 which
implies that none of the conditions in Lemma 4 holds
and the strong user’s rate in SDu cannot increase
after epoch k. Hence, we conclude that rDu1k �> ropt1k .
Now we consider the case rDu1k < ropt1k . Suppose that
the strong user’s rate in Sopt increase at epoch
(k + n) for 0 ≤ n < (s + m − k). This increase in
strong user’s rate requires that at least one of the
conditions in Lemma 4 should hold. However, we
have

∑k+n
i=1 (rDu1i − ropt1i )ξi > 0 and

Figure 9 Comparison of the optimal schedule and the final schedule of DuOpt Algorithm. Illustration of the final case in the proof of
Theorem 3.
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ropt2(k+n)
= h2(P

opt
k+n, r

opt
1(k+n)

) > h2(PDuk+n, r
Du
1(k+n)

) ≥ 0,
so the strong user’s rate in SDu cannot increase, i.e.,
rDu1k �> ropt1k . Since the strong user’s rate in Sopt cannot
decrease by Lemma 4, it should stay constant until
Topt.
Thus far, we have shown that if SDu is different than
Sopt, then SDu cannot have higher power level than
Sopt until Topt. Moreover, if power level of SDu
becomes lower than that of Sopt, then it should stay
constant until Topt, and if the strong user’s rate of
SDu becomes lower than that of Sopt, then it should
stay constant until Topt. These results are shown in
the general case in Figure 9.
Now, let b̃Du2 and b̃opt2 be the number of bits
transmitted to the weak user till ts+m+l−1 by SDu and
till Topt by Sopt, respectively. Then, we have

b̃Du2 − b̃opt2 =
s+m+l∑
i=1

ξih2(PDui , rDu1 ) −
s+m+l∑
i=1

ξih2(P
opt
i , ropt1 )

=
s−1∑
i=k

ξi (h2(PDui , rDu1 ) − h2(P
opt
i , ropt1 ))︸ ︷︷ ︸

>0

+
⎛
⎝s+m+l∑

i=s
ξi

⎞
⎠ h2(PDus , rDu1s ) −

s+m∑
i=s

ξih2(P
opt
i , ropt1i )

>

⎛
⎝s+m+l∑

i=s
ξi

⎞
⎠ h2(PDus , rDu1s ) −

s+m∑
i=s

ξih2(P
opt
i , ropt1i )

≥
⎛
⎝s+m+l∑

i=s
ξi

⎞
⎠ h2(

s+m∑
i=s

ξi∑s+m+l
i=s ξi

Popti , rDu1s )

−
s+m∑
i=s

ξih2(P
opt
i , ropt1i )

>

⎛
⎝s+m+l∑

i=s
ξi

⎞
⎠ (s+m∑

i=s

ξi∑s+m+l
i=s ξi

h2(P
opt
i , rDu1s )

)

−
s+m∑
i=s

ξih2(P
opt
i , ropt1i )

=
s+m∑
i=s

ξih2(P
opt
i , rDu1s ) −

s+m∑
i=s

ξih2(P
opt
i , ropt1i )

=
s+m∑
i=s

ξi(h2(P
opt
i , rDu1s ) − h2(P

opt
i , ropt1i ))︸ ︷︷ ︸

>0

> 0
(23)

From Equation 23, SDu transmits more bits to the
weak user than Sopt does, then this final case also
cannot happen. Therefore, we conclude that the
schedule returned by DuOpt cannot be different than
the unique optimal schedule, i.e., SDu = Sopt. �
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