Shams and Luise EURASIP Journal on Wireless Communications and
Networking 2013,2013:201
http://jwcn.eurasipjournals.com/content/2013/1/201

® EURASIP Journal on
Wireless Communications and Networking

a SpringerOpen Journal

RESEARCH Open Access

Basics of coalitional games with applications to
communications and networking

Farshad Shams'" and Marco Luise?

Abstract

compare to non-cooperative game theoretical solutions.

Game theory is the study of decision making in an interactive environment. Coalitional games fulfill the promise of
group efficient solutions to problems involving strategic actions. Formulation of optimal player behavior is a
fundamental element in this theory. This paper comprises a self-instructive didactic means to study basics of
coalitional games indicating how coalitional game theory tools can provide a framework to tackle different problems
in communications and networking. We show that coalitional game approaches achieve an improved performance

1 Introduction

The increase of the number of wireless services, combined
with demand for high-definition multimedia communi-
cations, have made the radio resources, and particularly
the spectrum and power, a very precious and scarce
resource, not because of their unavailability but because
they are used inefficiently. For licensed spectrum, the
measurements by Shared Spectrum Company [1] shows
that the maximal usage of the spectrum is a low per-
centage of the whole licensed. While the number of
users and the spectrum usage steadily increases, the
amount of spectrum is still considered a limited resource.
Besides, to differentiate between the true signal and back-
ground noise is complex for a radio equipment. Gener-
ally, this complex process enforces terminals to transmit
strong version of signals, which wastes the energy of a
transmitter.

The modern wireless entities, i.e., wireless terminals
and base stations, have considerable capacities to exe-
cute dynamic processes. This capability encourages wire-
less service providers to consider wireless entities as
autonomous agents which could cooperate and negotiate
with each other to achieve an efficient resource allo-
cation in different situations. Cooperation among wire-
less terminals is usually intended to achieve a fair radio
resource allocation. Cooperation between base stations

*Correspondence: farshad.shams@cnit.it

T Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT) Viale
G.P. Usberti, 181/A, Parma, Italy

Full list of author information is available at the end of the article

@ Springer

can be devised to mitigate interference and promote soft
handover where channel gain is varying rapidly which is a
challenge in LTE [2].

Game theory is the most prominent tool to analyze
interaction issue in social sciences, wherein often, cooper-
ation among autonomous agents is essential for successful
task completion. In many settings, groups of competing
agents are simultaneously concerned with both individ-
ual and overall benefits. In the game theory literature,
this branch is known as cooperative game [3,4]. The play-
ers, as the main decision making entities in the game,
are considered to negotiate with each other to deter-
mine a binding agreement among them. If we assume that
all users act rationally and we know what the behavior
of the users are, it is possible to determine the overall
performance of a system since the actions of one user
becomes part of the circumstances for another user. Thus,
we are interested in individual performance and over-
all system performance under a specific set of rules. To
fully develop the different possibilities within a game for
cooperation among players, we have to address which
groups the players can achieve collectively. Indeed, if
a player assesses that within a certain group it does
not receive what it is able to get by itself, then it
might decide to abandon the cooperation and pursue
an alternative allocation by itself. Cooperative game the-
ory offers the opportunity to extend and expand the
treatment of the players in traditional non-cooperative
games, especially where selfish players compete over a
set of resources. The cooperative game theory is divided
into two parts: coalitional game theory and bargaining
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games [3,4]. In this contribution, we focus on the coali-
tional game theory. We show that in comparison to non-
cooperative game theory, coalitional games approaches
can achieve better results in terms of performance and
stability.

Saad et al. in a tutorial paper [5] classify coalitional
games into three categories: canonical (coalitional) games,
coalition formation games, and coalitional graph games.
In canonical games, no group of players can do worse
by joining a coalition than by acting non-cooperatively.
In coalition formation games, forming a coalition brings
advantage to its members, but the gains are limited by
a cost for forming the coalition. In coalitional graph
games, the coalitional game is in graph form, and the
interconnection between the players strongly affects the
characteristics as well as the outcome of the game.

In the last few years, cooperative game theory has
been successfully applied to communications and net-
working. Hossain et al. [6] provides a guide to state-of-
art which unifies the essential information, addressing
both theoretical and practical aspects of cooperative
communications and networking in the context of cel-
lular design. The current literature is mainly focused
on applying cooperative games in various applications
such as distributed/centralized radio resource allocation
[7-9], power control [10,11], spectrum sharing in cognitive
radio [12,13], cooperative automatic repeat request (ARQ)
mechanism [14], cooperative routing [15], and coopera-
tive communications [16,17]. These problems in wireless
networks can be modeled as a cooperative game since it
is highly likely that each wireless user can obtain a better
utility value by forming groups and controlling resources
cooperatively rather than individually. It has been shown
that cooperation can result in an enhanced QoS in terms
of throughput expansion, bit error rate reduction, or
energy saving [6].

Cooperation can be realized at various layers of the
network. At the physical layer, different separate anten-
nas can constitute a cluster and then cooperate with each
other to exploit multiple-input multiple-output gains. At
the MAC sublayer, some wireless terminals can cooperate
with each other to share a common wireless medium in
an efficient manner and consequently mitigate the inter-
ference hazard. There is also the possibility of cooperation
of physical and application layers among individual termi-
nals to adapt channel and source codings in multimedia
communications. The altruistic decision of cooperation
with other network entities may result in an improvement
of the overall network performance and concurrently
achieve an egoistic interest of self improvement.

The rest of this paper is divided into eight sections. The
following section provides an introductory discussion of
coalitional game theory. We systematically study funda-
mental definitions and conditions of coalitional games:
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superadditivity and convexity. Then, Section 3 and the
sub-section inside discuss the core set solution as the
most known solution for payoff distribution. Section 4 is
devoted to a study of a strong payoff distribution, the so-
called Shapley value. In Section 5, we present a systematic
study of two other reward divisions called the kernel and
nucleolus. Then, in Section 6, we extend the concept of
Nash equilibria in coalitional games. Section 7 is an inves-
tigation of the concept of coordinated equilibria, where
players of the game are admitted to pre-communicate
among themselves at once. Section 8 helps the reader to
understand the basic concepts and importance of dynamic
learning in coalitional games. Every section contains some
motivation examples that are expedient to understand
how different communication network problems can be
modeled as coalitional game. We discuss the features of
mentioned approaches in Section 9, and finally we con-
clude this paper in Section 10.

2 Preliminaries

Game theory deals with the study, through mathemati-
cal models, of conflict situations in which two or more
rational players make decisions that will influence each
other’s welfare. The theory of coalitional games [3,4]
also assumes that binding agreements may be established
among the players in the course of the conflict situation.
In transferable utility (TU) games, the agreement may be
reached by any subset of the players, and the gain obtained
from this agreement is a real number and is transferable
among these players. In non-transferable utility (NTU)
games, the agreement may be reached by any subset of
the players, but the gain may be non-transferable. The
main focus of this dissertation will be on the study of
TU games.

A TU game is a pair G = (IC,v), where £ =[1,...,K]
denotes the set of players, and v the coalition (charac-
teristic) function which is interpreted as the maximum
outcome (a real number) to each coalition (subset of K)
whose players can jointly produce. An NTU game is a pair
G = (K, V) where V is a mapping which for each coalition
A, defines a characteristic set, V (A), satisfying

(1) V (A) is non-empty and closed subset of RIAL

(2) Foreach k € A, thereisa Vi € R, such that
V ({k}) = (=00, V4],

(3) V (A) is comprehensive, i.e, forallx € V (A) and for
ally e R if y[k] < x[k]V k € A, theny € V (A),

(4) ThesetV (AN {y eRM | ylk]> Vi Vk e .A} is
bounded.

The characteristic set, V' (A), is interpreted as the set of
achievable outcomes the players in A can guarantee them-
selves without cooperating with the players in K\ A. In
particular, an NTU-game G = (K, V) is called a TU game
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when the characteristic set for each coalition A takes the
form

V(A):{XGRA|:Zxk§v(A)}, (1)

ke A
where x = [xl, - ,x|A/g € R and xy is the payoff of
player k in Aand v : 2% — R.If A is a coalition (sub-
set) of IC formed in G, then its members get an overall
payoff v(A), zero for the empty set. Each coalition can be
represented as a pure strategy in non-cooperative game
theory. There exist only few works on NTU game applica-
tions to problems in communications [18]. This is because
defining a utility function which meets all conditions of a
character set in NTU game is not always feasible.

An important property of interest in characteristic form
TU games is superadditivity, which, if present, implies
that the value of the unite of any two disjoint coalitions is
at least as big as the sum of their values.

Definition 1. A TU game G is superadditive if

v(A; U .Aj) >v(A) + U(.Aj) v Ai,.Aj CcKst. AN .Aj =g
(2)

In a superadditive TU game, there are positive syner-
gies and the players prefer to join each other rather than
act alone. Under superadditivity condition, the players are
willing to form the grand coalition (the set K).

Convex or alternatively supermodular coalitional games
were introduced by Shapley [19]. He models coalitional
situations, where the marginal contribution of a player to
a coalition increases as the coalition becomes larger.

Definition 2. A TU game G is convex or supermodular if
forallk e K
v(A; U{k}) —v(A) < v(A U (k) — v(A)
VA; € A C K\ {k}.
(3)

Equivalently,

Definition 3. A'TU game G is convex or supermodular if

V(A) +V(A) < v(ANA)+v(AUA) YV A, A C K.
(4)

Convexity means that there are increasing returns to
scale. Note that a convex game is superadditive. To bet-
ter understand the importance of convexity approach in
network problems, we verify the convexity condition in
a K-user channel access game. The payoff of each coali-
tion of players (transmitters) is defined as the outer MAC
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capacity region. ParandehGheibi et al. ([20], Lemma 1)
shows that in a multiple access channel scenario, the
inequality (4) is not met. This means that the game is not
convex, and thus adding a new player does not give benefit
to other transmitters.

3 The core solution

A central question in a coalitional game is how to divide
the extra earnings (or cost savings) among the members of
the formed coalition. In a TU game, an allocation is a func-
tion x from K to R that specifies for each player k € K the
payoff x; € R that this player can expect when it cooper-
ates with the other players. The payoff of each player can
show the cost borne by the player, the power of influence,
and so on, depending on the problem setting.

Definition 4. Let K be the set of K players of the super-
additive TU game G, and let v be the payoff of the game.
The set of all ‘imputations’ of G is the set

@D X x=v(K)
kel (5)

I(IC,v):{xeRK: ,
(i) 2 > v({k}) VkeK

where x = [x1,...,%,...,4x] € RK is the imputation
vector of the players. The former condition is called the
feasibility, and the latter individually rational condition.

The core concept was introduced in [21] and is the most
attractive and natural way to define a payoff distribution:
if a payoff distribution is in the core, no agent has any
incentive to be in a different coalition. The core of a TU
game is the subset of all imputations x € Z(/C, v) that no
other imputation directly dominates, that is, Ay € Z(KC, v)
st. yx > xx Vk € K. As can be seen, for coalitional
games as well as non-cooperative games, the notion of
dominance is essentially equivalent; the payoffs under the
various situations are compared, and one situation domi-
nates the others if these payoffs are higher. The core actu-
ally presents a condition stronger than Nash equilibrium
in non-cooperative game: no group of agents should be
able to profitably deviate from a configuration in the core.
Equivalently, no set of players can benefit from forming a
new coalition, which corresponds to the group rationality
assumption.

Inan NTU game G = (K, V), the core apportionment is
defined as ([4], Ch. 12)

Definition 5. Let K be the set of K players of the super-
additive NTU-game G, and let V be the payoff of the game.
The core of G is the set

S, V) = {x eV(IK):Vye V(A)Tk € As.t.xy > yk} ,
(6)
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where x is the payoff distribution across players, and x; €
x if and only if no coalition can improve upon x.

In a TU game G = (K, v), the core apportionment is
defined as follows:

Definition 6. Let I be the set of K players of the super-
additive TU game G, and let v be the payoff of the game.
The core of G is the set

i > e =v(K)

— K . ke
SRwy = xeRV:1 i NV s vl vACK [
ke A
@)
where x = [x1,...,%...,4x] € RX is the payoff dis-

tribution across players, and x;¢ € x if and only if no
coalition can improve upon x,. The second condition is
called non-blocking condition.

The core consists of the set of allocations that can be
blocked by any coalition of agents. If for some set of agents
A the non-blocking condition does not hold, then the
agents in 4 have an incentive to collectively deviate from
the coalition structure and divide v (A) among themselves.
In general, the core of a given TU game (/C, v) is found by
linear programming as

st. Y m=vA) VACK. (8)
kekC ke A

min Xk
xeRK

Madiman [22] introduces some intuitive applications
of core solution to information theory contexts, e.g.,
source coding and multiple-access channel, and summa-
rizes some of its limitations in multi-user scenarios. Li et
al. [23] show that the cooperation among wireless nodes
and core apportionment can increase spectrum efficiency
in a TDMA cooperative communication. In [24], Niyato
and Hossain apply the core solution in a coalition among
different wireless access networks to offer a stable and
efficient bandwidth allocation.

Indeed, there is a number of realistic application sce-
narios, in which the emergence of the grand coalition is
either not guaranteed or might be perceivably harmful, or
is plainly impossible [25]. For a non-superadditive coali-
tional game, the coalition formation process does not lead
the players to form the grand coalition. In this case, Def-
inition 6 does not apply. Let us redefine the core set in a
general (not necessarily superadditive) coalitional forma-
tion TU game [9]. Let ¥ = [Ay, Ay,...,Ay] denote a
partition of the set X', wherein A; N A; = @ for i # j,

"1 A = Kand A; # @ fori = 1,...,m, and let
W denote the set of all possible partitions . Let us also
define F = [A;, A, ..., Ay,], such that | J!_; A; = K and
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A;i # ofori=1,...
disjoint) coalitions.

,n, as a family of (not necessarily

Definition 7. A ‘core apportionment’ x € RX is a payoff
distribution with the following property:

(i) > xxr= max ) v(A)

_ K, kek VeY gy
SKow) =1 xeRY:| G NV s b)) vACK
ke A
)
Note that, if G is superadditive, then max Y v(A) =
veY Aey
v(K).

The core allocation set can be found through linear
programming; its existence in general, depends upon the
feasibility of (8). Unfortunately, the core is a strong notion,
and there exist many games where it is empty. We can
study the non-emptiness of the core without explicitly
solving the core equation. The following notation helps
simplify the dual of (8):

Definition 8. A superadditive TU game G for a family
F of coalitions is totally balanced if for any A € F, the
inequality

D A vA) < (0

AeF

(10)

holds, where p 4 is a collection of numbers in [0, 1]
(balanced collection of weights) such that

Z pa-la=1g,
AeF

(11)

with 14 € RX denoting the characteristic vector whose
elements are

1, ie A

. (12)
0, otherwise.

() [i]=

The following pathbreaking result in the theory of TU
games was independently gave by Bondareva [26] and
Shapley [27].

Lemma 1. [3]. A totally balanced TU game has a non-
empty core set.

Where forming the grand coalition is not guaranteed,
the following notation is applied:

Definition 9. A (not necessarily superadditive) TU game
G for a family F of coalitions is totally balanced if for every
balanced collection of weights 1 4, and for any A € F,
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D wasv(A) < max 3 v(A). (13)

AeF Aeyr

So, ifa TU game is totally balanced, then the core is non-
empty; therefore, it is a convenient solution concept on the
class of totally balanced TU games. There is an interesting
relation between convex and balanced games.

Lemma 2. [4]. A convex game is totally balanced, but the
converse is not necessarily true.

The other key feature of coalitional convex games is
Lemma 3. [19] The core set of a convex game is unique.

Now, we illustrate an intuitive example of power dis-
tribution based on core set solution. This example is an
extended form of the example established by ([28], Ch.
12). The network sketched in Figure 1 wishes to allocate
power among three players K = {k;, ko, k3}, according to
their will to cooperate with each other. A power of 1 mW is
provided to the network if three players decide to cooper-
ate, or equivalently if the grand coalition will form. If only
one player refuses to cooperate, a power of 0.8 mW will be
assigned to the pair of cooperating nodes. The coalition
game of Figure 1 is defined by

0 if | Al =1;
v(A) = {08 if A =2 14)
1 if|Al =3.

The players of each coalition will cooperate with each
other. The player of a singleton coalition will be isolated.
Each player receives a positive payoff if it decides to
cooperate, whereas all players receive zero if no agree-
ment is bound. To divide the total payoff (power) in some
appropriate way, we rest on the core set definition. It
is straightforward to show that the coalitional TU game
defined by (14) is superadditive. From Equations 3 and 4,

kg k2

Figure 1 Network allocates power among three players
according to their will to cooperate with each other. A selfish
player receives zero. A pair of cooperative players receives 0.8 mW,
and the network supplies T mW to the grand coalition.
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it is easy to show that TU game (14) is not convex (super-
modular). To check whether the core set of TU game (14)
is empty or not, we resort to the balanced solution. TU
game (14) is not balanced even though assigning the bal-
anced weights as 4 = 1 for singleton coalitions, and
na = 0 otherwise, inequality (10) holds. Using the fact
that other balanced collection of weights exists in which
UA = % for |[A| = 2 and p 4 = O otherwise, the game is
not balanced, and its core set may be empty. Note that this
result does not mean that the core set of the game is surely
empty.

Now, we heuristically find a core apportionment study-
ing various possible networks. When there is no coop-
eration among players, the players are not provided with
any power, that is, 7 = [{k1},{k2},{k3}] with payoff
distribution:

Xy = Xk, = Xiz = 0.

If only one player decides to stay alone, the payoff 0.8 is
equally divided between the two cooperative players, and
the isolated player gets zero, that is, for instance, 7 =

[{k1,k2}, { ks }] with payoff distribution:

Xk, =0
Xy = Xfy = 0.4,

Now, we suppose a player, for example ky, decides to
cooperate with both k; and ks, but the two players k;
and k3 do not bind an agreement to mutually cooperate.
It is reasonable to suppose that the player ky can act as
a relay between k; and k3, and it must be provided with
more power, that is, F = [{ k1, k2 }, { k2, k3 } ] with payoff
distribution:

Xjey = Xjy = 0.2
{ X, = 0.6.

Finally, in the complete network, each player receives the
same payoff, that is, F = [{ki1, kz, k3}] with payoff
distribution:

Xy = Xk, = Xpy = 1/3.

As can be easily seen, the above argument satisfies fea-
sibility and non-blocking conditions of the core set appor-
tionment in Definition 6. It is worthwhile to note that the
core set definition does not imply an even division of the
whole payoff across players. Thus, it is clear that this game
consists of multiple core sets. The power distribution
problem can also be solved by game-theoretic bargaining
solutions, e.g., Nash bargaining game and auction [3].

3.1 On core stability

The goal of the network Figure 1 is to allocate power
among players in order to stimulate all of them to cooper-
ate. Obviously, each player tries to get the highest possible
payoff. Let us predict the behavior of the players after hav-
ing known the definition of the game. Suppose that the
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players k1 and k; find an opportunity to meet each other.
Obviously, they quickly take advantage to cooperate and
achieve payoff distribution x = [0.4,0.4,0]. Then, it is
profitable for player k; to invite player k3 to join, there-
fore improving its own payoff from 0.4 to 0.6 and that of
player k3 from zero to 0.2. On the other hand, this new
agreement causes a decreasing payoff of player ky from
0.4 to 0.2, and now the players ky and k3 have an incen-
tive to cooperate and increase their proper payoff from
0.2 to 1/3. Note that this agreement makes the player k;’s
payoff decrease from 0.6 to 1/3. The unfavorable decision
of player k» would tempt player k; to retaliate. A nego-
tiation between k; and k3 to release cooperation with ky
results increasing their payoffs and boiling down k»’s pay-
off to zero. The result of the above argument concerns
the network is sustained by only one pair cooperation
under the threat of ‘If you cooperate with the third player,
then I will do the same! ? It is fairly clear that the play-
ers would seek to cooperate only as pairs for the purpose
of negotiation, and not cooperate in the grand coalition
framework, even though the game is superadditive. This
is due to the fact of being superadditive but not balanced.
The pairs can be changed as time goes on. In fact, the
core apportionment suffers the lack of ‘farsighted’ (i.e.,
long-term)stability.

A coalition structure based on the core set is not ade-
quately farsighted to avoid the elusiveness of the negoti-
ation structure. At first sight, the core appears to be an
extremely myopic notion, requiring the stability of a pro-
posed allocation to deviations or blocks by coalitions, but
not examining the stability of the deviations themselves.
In general, the stability requirement is that the outcome
be immune to deviations of a certain sort by coalitions.
To provide the formal definition of farsighted stability, we
need some additional notation.

Definition 10. [29] For x, y € Z (KC, v), x indirectly dom-
inates y, which is denoted by y < x, if there exist a finite
sequence of imputations y = x3,X2,..., X, = x and a
finite sequence of nonempty coalitions Aj, Ay, ..., Au,
such that for each j = 1, 2,...,m — 1: (i) by the devia-
tion of 4;, the imputation of x; is replaced to x;;1, and (ii)
xj[ k] < x[k] for all k € Aj.

Condition (i) says that each coalition in .A; has the power
to replace imputation x; by imputation x; 1, and condition
(ii) says that each player in A; strictly prefers imputation
x to imputation x;. It is clear that the indirect dominance
relation contains the direct dominance relation.

Definition 11. [29,30] Let G = (K,v) be a TU game.
A subset J of Z (IC,v) is a farsighted stable set if: (i) for
all x,y € J, neither x <« ynory <« x, and (ii) for all
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y € Z(K,v)\J there exists x € J such that y <« x.
Conditions (i) and (ii) are called internal stability and
external stability, respectively.

By internal stability, there is no imputation in 7 that is
dominated by another imputation in 7. By external sta-
bility, an imputation outside a stable set J is unlikely to
be attained. Let us introduce three other different pay-
off distribution concepts which capture foresight of the
players.

4 Shapley value

The Shapley value is an alternative solution for the pay-
off distribution in TU games. The Shapley value has long
been a central solution concept in coalitional game theory.
It was introduced by L. S. Shapley in the seminal paper
[31] and it was seen as a reasonable way of distributing the
gains of cooperation, in a fair and unique way, among the
players in the game. In the Shapley solution, those who
contribute more to the groups that include them are paid
more. Let us denote ¢ (v) as the Shapley value of player k
in the TU game defined by v. The surprising result due to
Shapley is the following theorem.

Theorem 1. There is a unique single-valued solution to
TU games satisfying efficiency, symmetry, additivity, and
dummy. It is the well-known Shapley value, the function
that assigns to each player & the payoff:

or(v) =
Z (Al =D (K —JAD!

T ((A) = v(A\{KD) .

VACK
s.t.ke A

(15)

The expression v(A) — v(A\{k}) is the marginal payoff
of player k to the coalition A. The Shapley value can be
interpreted as the expected marginal contribution made
by a player to the value of a coalition, where the distribu-
tion of coalitions is such that any ordering of the players is
equally likely. That makes the Shapley value exponentially
hard to compute. Shapley characterized such value as the
unique solution that satisfies the following four axioms:

(1) Efficiency: The payoffs must add up to v(K), which
means that all the grand coalition surplus is
allocated, that is,

Y hv) =v (K.

ke

In the absence of superadditivity, instead we use
max v(A).
Yew AXE:1/I
(2) Symmetry: This axiom requires that the names of the
players play no role in determining the value. If two
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players are substitutes because they contribute the
same to each coalition, the solution should treat
them equally, that is,

VAU KD =v(AU{iH) = ¢) = ¢i(v).

(3) Additivity: The solution to the sum of two TU games
must be the sum of what it awards to each of the two
games, that is,

Ok (v + ) = ¢ (v) + i (w)

(4) Dummy player: The player k is dummy (null) if
v(AU {k}) = v(A) for all A not containing k. If a
player k is dummy, the solution should pay it
nothing, i.e., ¢x(v) = 0.

Vkel.

The Shapley value is a feasible allocation, but need not
be individually rational. Whenever the TU game is super-
additive, the Shapley value is feasible and individually
rational, but need not be in the core, hence can be directly
dominated by another imputation. [19] shows that the
Shapley value of a supermodular TU game is a core impu-
tation, that is, the Shapley value is not dominated. For a
superadditive TU game, the Shapley value is an internal
and external stable imputation, and for NTU games, it is
formulated in [32,33]. To make an example, let us calculate
the Shapley value of the players in the power distribution
game of Figure 1:

0 f{kbikhikh
V= 0.8 {kI)kZ }:{kI)kB }’{kZ)kB };
1 {kl,kZ;k?) }'

=

1!.1!
1, (V) = Op, (V) = P, (V) =0 + 5 (0.8—0)

1! 21.0!
+ =5 (08—0)+ == (1-08) = 1/3.
Young [34] defines an equivalent definition for Shap-

ley value. He withdraws the additivity axiom, and instead
adds an axiom of marginality.

(1) Marginality: If the marginal contribution to
coalitions of a player in two games is the same, then
the award of the player must be the same, that is, if

v(A) — v(ANK)) = 0 (A) — o(Aj\ (k)
VAiev and YA € w,
then ¢ (v) = ¢ (w).

Marginality is an idea with a strong tradition in
economic theory. In Young’s definition, marginality is
assumed and additivity is dropped. Young [34] shows that
the Shapley value is unique.

Theorem 2. [34] There exists a unique single-valued
solution to TU games satisfying efficiency, symmetry, and
marginality; this solution is the Shapley value.
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In the network engineering literature, Kim [35] pro-
poses an energy efficient routing protocol based on the
Shapley value. The concept of the Shapley value is used by
Khouzani and Sarkar [36] to achieve a fair aggregate cost
of link sharing, among primary and secondray users in a
cognitive network. Using the Shapley value, a suitable net-
work resource sharing among multimedia users is fairly
achievable, as Park and van der Schaar propose in [37].

5 The kernel and nucleolus

Let G = (K, v) be a coalitional game with transferable pay-
off. The excess of the coalition .4 with respect to the payoff
vector x € RK is defined as

e(A,x) =v(A) — Zxk.
ke A

A positive excess can be interpreted as an incentive for a
coalition to generate more utility. Using the excess notion,
the core apportionment in a TU game can be redefined as

S(K,v) =
[xe]RK: e (K, x) = 0, and e (A, x) SOVAch].
(17)

(16)

The maximum excess of player k against i is defined as

e (x) =max{e(A,x) | ACK, ke A, ie K\A}.
(18)

If player k departs from x, the most it can hope to gain
(the least to lose) without the consent of player i is the
amount of maximum excess. The extensions of the excess
for NTU games are formalized in [38].

As defined by Osborne and Rubinstein ([3], Ch. 14),
a coalition A; is an objection of k against i to x, if A;
includes k but not i and x; > v({i}). Equivalently, A; is a
coalition that contains k, excludes i, and which gains too
little. A coalition A; is a counter-objection to the objec-
tion A; of k against i, if 4; includes i but not k and
e (Aj, x) >e (A;,x). Equivalently, 4, is a coalition that con-
tains i and excludes k and that gains even less. Objections
and counter-objections are exchanged between members
of the same coalition in A;.

The idea captured by the kernel is that if at a non-empty
imputation x, the maximum excess of player k against any
other player i is less than the maximum excess of player
i against the player &, then player k should get less. Of
course, the players cannot get less than their individual
worths if x is an imputation. The definition of the kernel
follows:

Definition 12. The kernel is the set of all imputations
x with the property that for every objection A; of any
player k against any other player i to x, there is a counter-
objection of i to A;, such that
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(@) e (x) = e (X); or
(b) e (%) < ei (x) and xx = v({k}); or
(c) e (x) > ey (x) and x; = v({i}).

The kernel is the set of imputations x such that for any
coalition A;, for each objection A; of a user k € A; over
any other member i € A;, there is a counter-objection
of i to Aj. The kernel is contained in the (non-empty)
core in any assignment game v ([39], Theorem 1). In
Figure 1, the unique kernel element is the equal split x =
[1/3,1/3,1/3]; otherwise, for the single player coalition
objection of the player with the minimum payoff, there is
no any counter-objection.

The last type of a stable imputation we will study is
the nucleolus. With the nucleolus, no confusion regard-
ing the player set can arise. The basic motivation behind
the nucleolus is that one can provide an allocation that
minimizes the excess of the coalitions in a given coali-
tional game G = (K,v). For a TU game G = (K,v)
and the payoff vector x € RXK, let us denote E(x) =
[ >e(A,Xx)>---: B#A#K] as a 2K — 2 dimen-
sional vector whose components are the values of the
excess function for all A C K, arranged in a non-
increasing order. The nucleolus of a game is the impu-
tation which minimizes the excess with respect to the
lexicographic order P over the set of imputations. The
nucleolus of G with respect to Z (I, v) is given by

{xeZT(K,v) |[EX) ez E(y) VyeZ(K,v)} (19

The definition of the nucleolus of a coalitional game in
characteristic function form entails comparisons between
vectors of exponential length. Thus, if one attempts to
compute the nucleolus by simply following its definition, it
would take an exponential time. In the network engineer-
ing literature, Han and Poor [40] apply the Shapley value,
excess, and nucleolus solutions to study a possible cooper-
ative transmission among intermediate nodes to help relay
the information of wireless users.

This defining property makes the nucleolus appealing as
a fair single-valued solution. It is easy to see that when-
ever the core of a game is non-empty, the nucleolus lies
in it [4]. Moreover, the nucleolus always belongs to the
kernel and satisfies the symmetry and dummy axioms of
Shapley: dummy players receive zero payoffs. If a null
player is removed from the game, the payoff allocation
of the remaining players is uninfluenced by its depar-
ture. Because of these desirable properties, the nucleolus
solution has found a lot of applications in cost sharing
and resource allocation as Maschler in [41] reports. How-
ever, the nucleolus possesses certain features that makes it
less agreeable. The original definition treats the excesses
of any two coalitions as equally important, regardless of
coalition sizes and coalition composition. Some unap-
pealing features of utility distribution, derived with the
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nucleolus, are listed in [34]. For instance, the nucleolus
lacks many monotonicity properties, that is, if a game
changes so that some player’s contribution to all coalitions
increases, then the player’s allocation should not decrease.
Monotonicity states that as the underlying data of game
change, the utility must change in a parallel fashion.

6 Cooperative Nash equilibria

Coalitional games aim at identifying the best coalitions
of the agents and a fair distribution of the payoff among
the agents. The classic core solution is an extension of the
Nash equilibrium, since the coalitions bind agreements of
agents with each other and earns a vector value rather
than a real number. In ([42], Section 7.6), it is shown
that the core set of an underlying coalitional game, if it
exists, asymptotically coincides with the set of Nash equi-
libria of the repeated game, in the long run. The result
of the Nash equilibrium is not always a satisfactory out-
come for an external observer (e.g., prisoner’s dilemma
game). Aumann in [43] and Bernheim et al. [44] introduce
a stronger notion of Nash equilibria based on coalitional
game theory. First, let us review the definition of the Nash
equilibrium, where each pure strategy in a static game is
presented as a coalition in a coalitional game. Thus, each
player belongs to only one coalition.

Definition 13. A pure strategy (coalition) combina-
tion ¥ = [A1, As,..., Apl, wherein A;(Aj; = 0,
U, Ai = K, and a payoff distribution x =[xy, ..., xx] is
a pure Nash equilibrium, if a player k € K whose unilat-
eral deviation to a different coalition (pure strategy) yields
a new distribution y ={[y1,...,yx], such that y; > x¢,
does not exist .

In other words, in a Nash equilibrium, no agent is moti-
vated to deviate from its coalition (strategy) given that the
others do not deviate. As an example, we study the for-
warder’s dilemma game [45] presented in Figure 2. This
game is intended to represent a basic wireless relay oper-
ation between two different wireless terminals. These two
agents, represented by players k; and ky, are supposed
to operate a direct link that enables them to communi-
cate without intermediaries. Each player wants to send
a packet to its destination, d; and dy respectively, in
each time step using the other player as a forwarder. We
assume that each forwarding has a energy cost 0 < ¢ < 1.

Figure 2 The network scenario of the forwarder’s dilemma game.
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If player k; forwards (F) the player’s ko packet, player
ko gets a reward 1 and vice versa. Each player’s utility is
its reward minus the cost. Each player is allured to drop
(D) the received packet for saving energy. The strategic
form of this game is depicted in Figure 3. In the coop-
erative representation of the forwarder’s dilemma game,
there are two coalitions ¥ = [Af, Ap], and each player
in K = {ky, kp} must choose one coalition. For instance,
v = [Ar = {k1, ka}, Ap = (] is equivalent to the strat-
egy profile (F, F), and v = [Afr = {ko}, Ap = {k1}]

corresponds to the strategy profile (D,F),and
so on.
Unilateral deviation of player &k from ¢ =

[Ar = {k1,k2}, Ap = 0] to ¥ = [Ar = {ka}, Ap = {k1}]
increases its own payoff; therefore, the pure strat-
egy profile (EF) is not a Nash equilibrium point.
The same applies to the departure of player ks
from v = [Ap ={ki, ko}, Ap =0] to the pure
strategy v = [Ar ={ki}, Ap = {ka}]. We can
easily check the different combinations of ¥ =
[(Ar = {ki}, Ap = {kao}l, ¥ = [Ar = {ko}, Ap = {ku}],
and finally ¢ = [AF =0, Ap = {k1, ko}]. The
unilateral move of user k; (respectively ki) from
the strategy profile v = [Ar=0, Ap = {ki, ka2}]
to v = [Ar={ki}, Ap = {ko}] (respectively to
Y = [Ar = {ko}, Ap = {k1}]) does not yield any benefit.
This game has a unique Nash equilibrium at the pure joint
strategy ¥ = [Ar = 0, Ap = {ki1, k2}] with unsatisfactory
payoff distribution x =[0,0]. At the Nash equilibrium
point, either players choose the ‘competitive’ and ‘egoistic’
strategy D.

In many games, there are opportunities for joint devia-
tions that are mutually beneficial for a subset of players.
This led Aumann [43] to propose the idea of strong Nash
equilibrium which ensures a more restrictive stability than
the conventional Nash equilibrium. Strong Nash equilib-
rium reflects the unprofitability of coalition deviations. It
is a strategy profile that is stable against deviations not
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only by single players but also by all coalitions of play-
ers. A strong equilibrium is defined as a strategic profile
for which no subset of players has a joint deviation that
strictly benefits all of them, while all other players (in
the subset) are expected to maintain their equilibrium
strategies.

Definition 14. A strategy (coalition) combination ¢ =
[A1, Az, ..., Ay, where A; (N Aje; = W and U2, A =
IC with payoff distribution x =[x1,...,xx] is a strong
Nash equilibrium if there do not exist a coalition A; € ¢
whose deviation yields a new distributiony = [y1, ..., ¥x]
such that yy > x; Vk € A; and 3k € A; such that

Yk = Xk.

This definition of strong equilibrium is actually slightly
different from those of [43] and [44]. Definition 14 allows
a coalition to deviate from a strategy profile that strictly
increases the payoffs of some of its members without
decreasing those of the other members, whereas the orig-
inal definition allows only deviations that strictly increase
the payoffs of all members of a deviating coalition. We
note that if a game implements a strategy for strong equi-
librium, it does not necessarily implement it for Nash
equilibrium. Both interpretations of strong Nash equi-
librium are prominent in the literature, and in most
games, the two definitions lead to the same sets of strong
Nash equilibria; however, the one that we use here is
slightly more appealing in the context of network for-
mation games (see, e.g., [46]). Network formation games
involve a number of independent players that interact with
each other in order to form a suited graph that connects
them.

Now, we restudy the forwarder’s dilemma game and
try to find strong Nash equilibria profile. We will show
that the game possesses strong Nash equilibria which
are not equivalent to the Nash equilibrium. We pick

ko

k1

k.

X = [mkl,x;@]

Figure 3 The strategic form in the forwarder’s dilemma game. In each cell, the first value is the payoff of player k;, whereas the second is that of
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different coalition combinations and test whether any
coalition whose deviation satisfies its own members or not
exists.

1. ¢ =[Ar = {ki}, Ap = {ka}] is not a strong Nash
equilibrium because the deviation of AF increases
its member’s payoff.

2. ¥ = [Ar = {ko}, Ap = {k1}] is not a strong Nash
equilibrium because the deviation of AF renders its
member’s payoff higher.

3. ¥ = [Ar = 0, Ap = {k1, k2}] is not a strong Nash
equilibrium because the deviation of both players
from Ap to Afr increases payoff distribution.v2

4. = [Ar = {k1, k2}, Ap = ¥] is a strong Nash
equilibrium because the departure of one or both
players from AF to Ap decreases at least one
player’s payoff.

The unique strong Nash equilibrium is the strategy pro-
file (EF) which corresponds to the coalition set of ¢ =
[Ar = {k1, ko}, Ap = 0], since no deviation can better off
the payoff distribution vector x =[ 1 —¢,1 — ¢]. In fact,
at the strong Nash equilibrium, both players choose the
‘cooperative’ and ‘altruistic’ strategy of F in spite of the
energy transmission cost.

In network problems, Zhong and Wu show that using
strong Nash equilibria context makes possible a collusion-
resistant routing in non-cooperative wireless ad hoc net-
works [47]. Altman et al. [48] examine a dynamic random
access game with orthogonal power constraints, in which
the probability of the transmission of a terminal in each
slot depends on the amount of energy left prior to that
slot. They show the existence of a strong Nash equilibrium
point.

Conventional Nash equilibrium is concerned with the
possibilities of only one step deviation by any player. The
notion of strong Nash equilibrium requires an agreement
not be subject to an improving (one step) deviation by any
coalition of players given that all other coalitions be inert.
This notion is stronger than the Nash equilibrium, but it
is not resistant to further deviation by sub-coalitions (the
subsets of a coalition). Recognizing this problem, Bern-
heim et al. [44] introduced the notion of coalition-proof
Nash equilibrium, which requires only that an agree-
ment be immune to improving deviations which are self-
enforcing. The definition of a self-enforcing deviation is
recursive.

Definition 15. For a singleton coalition, a deviation is
self-enforcing if it maximizes the player’s payoff. For a
coalition of more than one player, a deviation is self-
enforcing if (1) it is profitable for all its members and (2) if
there is no further self-enforcing and improving deviation
available to a proper sub-coalition of players.
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Generally, a deviation by a coalition is self-enforcing if
no sub-coalition has an incentive to initiate a new devia-
tion. In the forwarder’s dilemma game, the Nash equilibria
is upset by a deviation of the coalition of both players
k1 and k. At the pure strategy Nash equilibrium where
each player choose strategy D, they each obtain a payoff
of 0. By jointly deviating (both choosing F instead) k1 and
ka, each earn a payoff 1 — c. This deviation is not self-
enforcing even though the movement to the pure strategy
Y = [Ar = {k1, ka}, Ap = @] is profitable for both play-
ers. At strong Nash pure strategy (F, F), the player k;
tempts to move to strategy (D, F) to get more payoff, and
player k; to that (F, D). Thus, the strong Nash equilibrium
is not immune against self-enforceability.

This notion of self-enforceability provides a useful
means of distinguishing coalitional deviations that are
viable from those that are not resistant to further devia-
tions. With the concept of self-enforceability, our notion
of coalition-proofness is easily formulated.

Definition 16. In a one player game, a strategy is a
coalition-proof Nash equilibrium if it maximizes the
player utility. In a game with more than one player, a com-
bination strategy is coalition-proof Nash equilibrium if no
sub-coalition has a self-enforcing deviation that makes all
its members better off.

This solution concept requires that there is no sub-
coalition that can make a mutually beneficial deviation
(keeping the strategies of non-members fixed) in a way
that the deviation itself is stable according to the same cri-
terion. In the forwarder’s dilemma game, the strong Nash
equilibrium profile (F, F) is not equivalent to coalition-
proof Nash equilibrium. This is due to the fact that
the deviation of {k;} C Ar = {ki,kp} to the strategy
(D, F) increases payoff of k1. In this game, any coalition-
proof Nash equilibrium does not exist due to the fact
that all pure strategies have at least one self-enforcing
deviation.

Bernheim et al. [44] note that for two-person games,
the set of coalition-proof equilibria coincides with the
set of Nash equilibria that are not Pareto-dominated
by any other Nash equilibrium. However in #-person
games (K > 3), the equilibrium concepts are inde-
pendent. At coalition-proof Nash equilibrium, the
deviations are restricted to be stable themselves
against further deviations by sub-coalitions. Moldovanu
[49] discusses the situations of a three-player game,
wherein coalition-proof Nash equilibrium is equiva-
lent to the core set. The conditions under which the
set of coalition-proof Nash equilibria coincides with
the set of strong Nash equilibria are formulated by
Konishi et al. [50].
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In the network engineering literature, Félegyhazi et al.
[51] apply the concept of coalition-proof Nash equilib-
ria to achieve a stable and fair channel allocation solution
in a competitive multi-radio multi-channel wireless cog-
nitive network. Gao et al. investigate multi-radio multi-
channel allocation in multi-hop ad hoc networks [52].
To better understand the concepts of self-enforceability
and coalition-proof Nash equilibrium, let us introduce an
intuitive subcarrier allocation game in an OFDMA net-
work. Let us focus on three wireless transmitters K =
{k1, ks, k3} and an OFDMA base station with two subcar-
riers N = {1, 2}. Every subcarrier n € A has a frequency
spacing A f. Each user k € K experiences a Gaussian
complex-valued channel gain |Hy,|? on the nth subcarrier
to the base station. We assume that each subcarrier can be
shared among more than one transmitter. The payoff of
each player (transmitter) is defined as the achieved Shan-
non channel capacity. Each user k € K is allowed to either
spend a certain power p; on only one chosen subcarrier,
or equally divide it among both subcarriers. In the pure
strategy ai, player k transmits with the maximum power
Py on subcarrier # = 1 and does not transmit any infor-
mation on subcarrier n = 2. The strategy ay is contrary
to ay, i.e., exclusively transmitting on subcarrier n = 2
with maximum power. Finally, strategy a3 equally divides
its power on two subcarriers and exploits transmitting on
both tones. The terminal k achieves a channel capacity:

Ce = Cim

neN

(20)

where Cy, is the Shannon capacity achieved by user k on
the nth subcarrier

H 2
+ [ Hien | l;kn - 1)
Zk;éielc |Hin|*pin + 0oy

wherein py, represents the power allocated by terminal k
over the nth subcarrier and where the interference term

Ckn = Af - log, (1
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Zk;éielc |Hm|2pin is approximated with a Gaussian ran-
dom variable of equal mean and variance. Choosing the
strategy a1 means selecting pyx; = p; and pyo = 0. For
the strategy as, pr1 = 0, and pro = py, and for strat-

egy as, Px1 = Pk2 = %. The parameter o2 is the power
of the additive white Gaussian noise (AWGN). Note thats
in an OFDMA system, there is no interference between
adjacent subcarriers. Hence, Ci, considers only intra-
subcarrier noise that occurs when the same subcarrier is
shared by more terminals.

Figure 4 reports the simulation results obtained after
100 random realizations of a network with terminals dis-
tributed at a distance between 3 m and 50 m from the
base station. In the pure strategy matrix form of Figure 4,
player k; chooses the row, player ky chooses the column,
and player k3 chooses the matrix. Each payoff reports the
(rounded) value of the achieved Shannon channel capac-
ity in kb/s. We consider the following parameters for our
simulations: the maximum power of each terminal k is
Pr = 10 mW; the power of the ambient AWGN noise
on each subcarrier is o‘% = 100 pW, and finally the car-
rier spacing is Af = 1})% MHz. ¢ The path coefficients
|Hin|?, corresponding to the frequency response of the
multipath wireless channel, are computed using the 24-
tap ITU modified vehicular-B channel model adopted by
the IEEE 802.16m standard [53].

It is easy to show that the (pure) Nash equilibrium
strategies of Figure 4 are (a3,as3,as3) equivalent to ¢ =
[Aﬂl =0, Agy =0, Agy = IC] and (a1,a2,a2) to ¥ =
[As, = {ki}, Aa, = {ka, k3 }, Agy = ¥]. The Nash equi-
librium strategy (as, as, a3) is neither coalition-proof nor
strong. With the deviation of the coalition A,, to the
strategy profile (ap,a1,a3), all players profit more with
payoff distribution [13, 9, 11]. This change is no longer
valid since there exists a self-enforceability for player k;
to transit to the strategy profile (a3, a;,a3). This transi-
tion is not favorable for players k; and k3. The player k3 is
tempted to transit to the Nash equilibrium point to earn a

ks (a1) ks (a2) ks (a3)
ko ko k2
ay az as ai az as ai az as

ai| 8 5, 6 11, 11, 7 9,11, 6 12, 7,10 | 15, 10, 10 11, 10, 9 9, 5, 10 12, 9, 10 9, 10, 9
ki az| 12, 8, 6 8, 7, 10 9, 11, 8 11, 11, 8 , 6, 6 8,11, 7 13, 9, 11 8, 6, 11 8, 10, 10

az| 15, 6, 6 14, 8, 8 13, 10, 7 14, 8, 9 15, 6, 7 13, 9, 7 14, 6, 10 14, 7, 10 12, 9, 10

X = [Tk s Thy » Thy)

Figure 4 Subcarrier allocation in OFDMA network game in strategic form. The three strategies for three players ki, k», and k3 are transmitting
with the maximum power only on subcarrier number 1 (ay), transmitting with the maximum power only on subcarrier number 2 (a,), and equal
division of the maximum power among both subcarriers (a3). The player’s payoff is the achieved channel capacity in kb/s.
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higher payoff, whereas the Nash equilibrium strategy pro-
file (a1, az, as) with payoff vector [ 15, 10, 10] is a strong
and coalition-proof Nash equilibrium. This is due to the
fact that in ¥ = [Am ={k1}, As, ={ka,k3}, Agy = @],
there is no deviation and self-enforceability that can
improve the payoff distribution. As can be seen, all play-
ers prefer to stay at the coalition-proof Nash equilib-
rium rather than at the pure Nash equilibrium strategy
(as3,as,as3). Note that a strong or coalition-proof Nash
equilibrium does not necessarily coincide with a Nash
equilibrium strategy profile, and the result of Figure 4 is
an exception.

In general, the existence of a pure cooperative or non-
cooperative Nash equilibrium for subcarrier allocation
game in OFDMA network is not guaranteed. Given dif-
ferent parameter approaches to quite different channel
capacities, and this may result a matrix form without any
type of Nash equilibrium. There even might exist a Nash
equilibrium which is Pareto-dominated by another strat-
egy profile. This shows that in OFDMA networks, an
appropriate resource allocation technique is needed [9].

7 Coordinated equilibrium

The most common solution concept in (non-cooperative)
game theory, Nash equilibrium, assumes that players take
mixed actions independently from each other. Coopera-
tive games allow players to coordinate each other to find
out possible equilibria and (joint) optimizations that the
players can perform on their own. Unlike evolutionary
games ([3], Ch. 3), in coordinated games, the interaction
between players is implemented once among all play-
ers by a central authority to increase their throughput.
The notion of correlated equilibrium was introduced by
Aumann [54]. Correlated equilibria are defined in a con-
text where there is an intermediator who sends random
(private or public) signals to the players. An intermedi-
ator needs not to have any intelligence or knowledge of
the game. These signals allow players to coordinate their
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actions and, in particular, to perform joint randomization
over strategies. ‘Correlated strategies are familiar from
cooperative game theory, but their applications in non-
cooperative games are less understood; says Auman [54].
This is because the players of a coordination game are
not totally isolated and without a communication between
them, achieving coordinated strategy profile not possible.

Let us start with an intuitive example. Consider the mul-
tiple access game ([45], Table three) described in Figure 5.
The players k; and ko wish to send some packets to their
receivers sharing a common resource, i.e., the wireless
medium. They are in the sight of each other, and accord-
ingly, they interferer if transmitting at the same time.
The users have two possible pure strategies: access (A)
and wait (W). In this game, two identical transmitters
must simultaneously decide whether to access to channel
or wait. The transmission of each packet has an energy
cost of 0 < ¢ « 1. Each player earns a payoff 1 if
it succeeds to transmit its packet without collision with
the other. Waiting does not bring either cost or reward
for the player. Each player’s utility is its reward minus
the cost. This game has three Nash equilibria: (4, W),
(W,A), and a mixed strategy Nash equilibrium, where
each player transmits with the probability 1 — ¢ ([45],
Sections 2.3 and 2.4). The utilities of Nash equilibria
strategies are (1 — ¢, 0), (0,1 — ¢), and (0, 0), respectively.
It is clear that the mixed strategy is not resistant to an
improving deviation. In the following, we give the possi-
bility of preplay communication to achieve a stable Nash
equilibria.

In the game with ‘cheap conversation; each player simul-
taneously and publicly announces whether it decides to
access or wait. Following the announcements, each player
makes its choice. Suppose the players agree to partici-
pate to the game binding the following agreement: each
player announces A with probability %. If the profile of
announcements is either (4, W) or (W, A), then each
player plays its own announcement. Otherwise, each

k2

k1

A 1—¢,0

X = [Ik17wk2]

Figure 5 The multiple access game in strategic form. The two moves for each player are access (A) and wait (W).
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player plays A with probability % Note that no further
communication is possible. The use of joint deviation
requires the unanimity of all members of the deviating
coalition. A player agrees to be a part of a joint devia-
tion if given its own information the deviation is prof-
itable. Thus, if a joint deviation is used, it is common
knowledge that each deviator believes that deviation is
profitable.

This tradeoff results in an expected payoff for each
player of 11g216c > 0, while in the mixed Nash equilib-
rium of the original game, each player has an expected
payoff of 0. In this coordinated Nash equilibrium of the
game, the players effectively play the correlated strategy
[54,55] (of the original game) given in Figure 6, in order
to face a higher utility in strategy profiles (4, W) and
(W, A). It is important to note that this joint probability
distribution is not the product of its marginal distribu-
tions and therefore cannot be achieved from a mixed
strategy profile of the game without correlation among
players.

As can be seen, the proposed correlated deviation from
the mixed strategy equilibrium makes both players better
off. Note that the players are allowed to bind an agreement
only on the space of feasible outcomes. In the correlated
multiple access game, the outcome is feasible since the
correlated results are in the range between the smallest
and highest possible payoff. In fact, the set of correlated
equilibria contains those equilibria from which no coali-
tion has a self-enforcing deviation, making all members
better off.

Let us describe a more complicated correlated equilib-
rium. We study the near-far effect game established by
Bacci et al. ([56], Figure six). The basic idea of near-far
effect game scheme is depicted in Figure 7. Two wire-
less terminals k; and ky are placed close to and far from
a certain access point (AP), respectively, in a code divi-
sion multiple access (CDMA) network with high SINR
regime. The strategy of each player is to transmit either
with the maximum power p or with a weakened level np,
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where 0 < 1 < 1. Due to the interference at the AP,
the throughput (the amount of delivered information) of
each player depends on the strategies chosen by both play-
ers. Transmitting with a higher power increases the BER,
and this results decreasing the throughput. Each player
is rewarded r if it successfully delivers its packet and a
reduced §r, if it delivers a corrupted version of the packet,
where 0 < < § < 1. If the near player k; decides to
transmit with the power p, the farther player k; will not be
able to deliver any information to the AP.

This results in no benefit for ky and causes a power con-
sumption cost equal to —nc if ky chooses strategy np and
—c otherwise, where ¢ <« r. Obviously, transmitting with
power p for k; results in a complete information deliv-
ery. This concerns a payoff equal to reward minus power
consumption cost, i.e., r — ¢, irrespective of the ky strat-
egy. The packets of player ky are successfully delivered if it
chooses the maximum power p and player k; that reduced
np. On the other hand, if both players decide to transmit
with reduced power np, the near player takes the payoff
dr—nc > 0, while the farther player ky will not successfully
deliver any packet and suffers only a power cost —c.

The payoff matrix of the near-far effect game is depicted
in Figure 8. As can be seen, the unique pure strategy of this
game is represented by the strategy (p, np) with benefits
r—cand —rnc for k; and ky, respectively. This means that at
the Nash equilibrium point, the farther player is not able
to send any information. On the other hand, the Pareto
optimal solutions of the game are the strategies (p, np) and
(np, p)- This is an unsatisfactory outcome for the far player
k>, while the near player k; takes the highest possible pay-
off. Now, let us find the mixed strategy of the game. We
denote «; the probability with which the near player k;
decides to transmit with the maximum power p and a3 the
same probability for the far player k». The payoffs of the
players k1 and k are represented by

X = a1 (L=38)r — (1 —n)c) + (br —nc)
Xy =02 (L —a1)dr — (1 —n)c) —nc.

(22a)
(22b)

k2
%% A
10+32¢ 11—16¢
w 64 32
k1
A 11—16¢ 10+32¢
32 64

X = I:xkl :Ikz]

Figure 6 The strategic form matrix of the multiple access game with preplay agreement.
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—

(near player)

AP

Figure 7 The network scenario in the near-far effect game.

™
<// ]
ko

(far player)

Both players want to maximize their own payoff. As can be
seen, xi, takes its maximum value r—c with oy = 1. On the
other hand, with a1 = 1, the far player k; earns a negative
payoff whatever ay € [0, 1]. Instead, with «; = 0, the near
player ki gains ér — nc, and player ky setting up oz = 1
achieves the payoff §r — c. Thus, the best values for
and ay are 0 and 1, respectively. The conclusion is that the
mixed strategy is equivalent to the pure strategy (np,p)
with payoff x = [8r — nc, 8r — c]. In this game, there is no
(totally) mixed strategy and that is equal to the one of the
pure Pareto optimal points.

The near player earns the highest possible payoff at the
Nash equilibrium; hence, it does not leave this strategy
profile. The highest possible payoff for the far player is on
the contrary ér — c¢. We show that an appropriate agree-
ment among players can satisfy both of them at correlated
equilibrium. Players k; and ky can guarantee an expected
payoff of x = [r—c¢,dr —c] by playing the correlated
strategy profile:

L.(* )+<1_5’").(p) (23)
a—nc " a—mec) 7"

This is a plausible end since both players earn their
own highest possible payoff. The correlated strategy (23)
is derived from the fact that picking any real number « in
the expression « - (p,np) + (1 — k) - (p,p) is indifferent
for the near player kj, since it gets its own highest possible

payoff, r—c as well. To satisfy the far player ky, it is enough
to solve the following equation for xy,:

K- @np)+ A —«)-p:p)=[r—cdér—cl. (24

Supposing k = (lfir)m < 1, the correlated strategy (23)
means that the near player always transmits at its highest
power level p, and the far player transmits at that reduced
np with probability ﬁ, and the maximum power p oth-
erwise. Actually, the near and far players effectively play
the matrix form game of Figure 9.

Bonneau et al. [57] show that the coordination among
mobile users can significantly increase the performance of
access to a common channel in ALOHA setting. A coor-
dination mechanism is also considered by Bonneau et al.
[58] to achieve the optimal power allocation in a wireless
network, wherein each terminal knows only its own chan-
nel state. The concept of correlated equilibrium is also
introduced in a multi-user interference channel context in
[59]. Different types of coordination are deeply discussed
and widely used in [55].

8 Dynamiclearning

Until now, we have realized that the Nash equilib-
rium suffers from the lack of farsighted stability, i.e.,
the relative results can be unsatisfactory; because of
this, any player can have incentive to improve its out-
come by moving to another strategy. The existence of
the strong and coalition-proof Nash equilibrium is not

)
p

np or —nec, —nc
k1

or —mnc, or — ¢

hS|

r—c, —nc

r—c, —c

X = ["Bk’l ’ "Bk’z]

Figure 8 Payoff matrix for the near-far effect game with power control and variable throughput.
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ko

np P

np 0,0 0,0

k1

_ or —c Sr— ¢

D K, ,17( ) 1714,(17&)7( )
(r—o (r—rc
X = [Zlfkl , :ckQ] normalized to 1

Figure 9 The strategic form matrix of the near-far effect game with preplay agreements and with ¥ = a f’ﬂ)c.

guaranteed and even if so, when the number of pure
strategies is large, finding such solutions is very com-
plicated. The challenge of finding a profitable accord
among players is persistent in coordinated equilibria solu-
tion. In this section, the main question we seek an
answer to is How can the players be led to a stable joint
pure strategy gaining an acceptable payoff? This ques-
tion is important, even if multiple equilibrium points
with the same payoff have been identified, since each
player may autonomously decide to stay in a different
strategy.

Dynamic learning [60] has been widely used in order to
get rid of the anarchy derived from the conflicts between
selfish decisions. Learning is a joint adaptive process for
agents to converge and to get the best final response.
The agents either have a common interest like a team
work or each agent has its own greedy goal. Generally,
there are three learning process types: individual learn-
ing, joint-action learning, and stochastic learning. In indi-
vidual learning process, the independent agents cannot
observe one another’s actions, i.e., for each player, the
opponents are passive agents. Instead, during joint-action
learning process, the notion of the ‘optimality’ is improved
by adding the observation of other concurrent learners
to accomplish a stable optimal solution. The stochastic
learning framework, having Markovian property and a
stochastic inter-state transition rule, enables each player
to observe the opponents’ actions history.

In the network engineering literature, van der Schaar
and Fu [61] introduce a stochastic learning process
among autonomous wireless agents for the optimization
of dynamic spectrum access, given the QoS of multimedia
applications. A reconfigurable multi-hop wireless network
is studied by Shiang and van der Schaar [62], wherein
a decentralized stochastic learning process optimizes the
transmission decisions of nodes aimed at supporting
mission-critical applications. In [63], Lin and van der
Schaar propose a reinforcement learning among agents of

a multi-hop wireless network based on Markov decision
process. Each terminal autonomously adjust transmis-
sion power in order to maximize the network utility, in a
dynamic delay-sensitive environment.

Here, we study a well-known individual reinforcement
learning task, namely the so-called Q-Learning [64]. We
assume a set of players I, and each player k has a finite set
of individual actions A. Each agent k individually chooses
a pure joint action (strategy) to be performed a; =
(a1,...,ax) € Aj x---x Ag from the available joint
strategy space. Q-learning enables the individual learners
to achieve optimal coordination from repeated trials. Q-
learning introduces a certain value Q as the immediate
reward obtained after having moved to the new strategy.
Each player individually updates a Q value for each of
its actions. In each time step and after having selected
the new joint action ay, the values of Qf is individually
updated. In particular, the value of Q]tfl (ar) estimates the
utility of performing the joint strategy ay for user k. In the
seminal paper of Watkins and Dayan [64], the Q value is
updated by the following recursion:

Q" (aw) «—
(1-44) - Q@0+ (a0 + 8- Qtap)
(25)

where §; € (0,1) is a discount factor, and ri(ag) is a
reward of the joint action ay for the respective player; f; is
a function of ¢ which is related to ‘learning rate’ Watkins
and Dayan showed that given bounded rewards, learning
rate 0 §fkt < 1,and

o0 o0
Y ft=c0,and Y (f) <0  VkeK (26)
t=1 t=1

all Qg values updating (25) converge a common joint pure
strategy with probability one. The reward ry is defined
by a learning policy, and it is not necessarily equal to the
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payoff defined by the game. The learning policy is greedy
with respect to the Q value, i.e., the particular action aj
will be selected in long-run if it makes Q value better off.
Q-learning is guaranteed to converge to an optimal and
stable joint strategy regardless of the action selection pol-
icy. Q-learning is not applicable where the strategy space
is continuous or the number of strategies is not finite.
Claus and Boutilier [65] establish a simplified version of
the Q recursion (25) which updates the Q value by the
following recursion:

QM ap) «— Qi) + 8- (re(aw) — Qi(ap). (27)

For the sake of simplicity, we apply the Q recursion
(27). In a multi-learners scenario, a major challenge of
Q-learning is strategy selection. When the number of
strategies and players are large, the number of time step to
achieve an optimal joint action exponentially increases. It
is fairly clear that the best manner is to start with ‘explo-
ration’ of different strategies and then focus on ‘exploita-
tion’ of the strategies with the best value of Q. Kaelbling
et al. [66] recall Boltzmann function as an efficient strat-
egy selection to strike a balance between exploration and
exploitation. Boltzmann functions define a probability
distribution among different joint actions. At each time
step t + 1, every player will individually select the joint
strategy a; with the probability p(ag):

bk /T

Ex(a;) /T
ZVaie X Ake k( l)/
VkelC

p@g) = (28)

The Ex(ag) = (8x)" - re(ag) is the discounted reward
for taking action ag by the user k in time step ¢. The T
is a function which provides a randomness component to
control exploration and exploitation of the actions. Prac-
tically, the temperature function T is a decreasing func-
tion over time to decrease the exploration and increase
exploitation. High values of T yield a small p(ay) value and
this encourages exploration, whereas a low 7" makes Q(ay)
more important and this encourages exploitation. At time
t = 0, each player randomly chooses a strategy and assign
a random number to its own Q value. At time step ¢, after
having been updated function 7, each concurrent agent’s
experience consists of a sequence of stages [65]:

1. Computing p(ay) for all ay € XveicAx-

2. Generating a random number &; uniformly
distributed in [0, 1], and then choosing the best
joint strategy ay, i.e., the highest p(ay) such that
£l > p(ap). If & < p(ay) for all a; € kalCAk, then

€

the learner randomly picks a strategy.

3. Updating the Q} value according to (27). If Q},
grows, then the learner moves to selected joint
strategy ay, otherwise it stays in the current joint
action and do not update Q.
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Despite the individual best strategy selection of the learn-
ers, this process reach a common stable joint strategy such
that all players stay there forever, i.e., no player deviates
from the (common) achieved joint strategy.

The theory of learning in games studies how and which
equilibria might arise as a consequence of a long-run non-
equilibrium process of learning. A natural question is Can
learning algorithms find a Nash equilibrium? The rea-
son for asking this question is in the hope of being able
to achieve Nash equilibria, as a plausible concept, via a
reasonable learning algorithm in particular when there
are a large number of players and strategies. At the first
look, the stability of the above addressed dynamic learn-
ing approach is described as to converge to a pure joint
strategy, and it is clear that the existence of a pure Nash
equilibrium is not guaranteed. The fact is, in general, a
dynamic learning algorithm is not able to guarantee to
achieve a non-cooperative or cooperative Nash equilib-
rium. In the literature, there are some efforts to present
a dynamic learning algorithm that achieves a Nash equi-
librium in dynamic and repeated games under particular
constraints [67-70].

We present now some results about Q-learning in a
CDMA network. In what follows, the experimental work
is presented highlighting how the agents learn to increase
their individual rewards by revealing their actions. As
above mentioned, the strategy selection can significantly
influence the number of time steps to converge. Choosing
an appropriate temperature function is a heuristic search.
In our experiment, we define T = q - e~ as our temper-
ature function, wherein m controls the rate of exponential
decay and ¢ > 1 encourages the exploration of different
strategies in the initial time steps.

We illustrate the behavior of mobile terminals as Q-
learners in a CDMA network. Our example is a power
control problem in a CDMA network applying Q-learning
and Boltzmann function. Assume a CDMA network with
K mobile terminals denoted by set K. The players wish
to transmit data to a certain AP. The strategies of every
player is a set of discrete power levels denoted by A =
A =[ Ap,2.Ap,...,M.Ap], where Ap is our power step
and M > 1 is an integer number. Each user has M actions
to choose from, and accordingly, the matrix game is made
by XexA which consists of MK joint strategies. The
Shannon capacity between player k and the AP is

N; - |Hy|?
s - |Hil“pr )} (29)

Cr=lo 1+
TR ( Ykesizk 1Hil?pi + 03,

with Nj, |Hk|?, and a‘f, denoting (the common) spreading
factor for all players, user’s k path gain, and the AWGN
power, respectively, and where the py € A denotes the
transmit power of user k.
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We introduce an individual work in which each player
must individually choose the joint strategy at which a
player achieves the best Shannon channel capacity. We
simulate a learning process with K = 8 players, such that
each player k must choose the best p; between M = 5
strategies. The power step is assumed to be Ap = 100mW,
the power of AWGN 02 = 1nW and the spreading fac-
tor Ny = 64. The players are uniformly located at a
distance between 3 and 50 m from the AP. The matrix
form of this game is composed of 390,625 joint strate-
gies, and there may exist different power combinations
(joint strategies) which achieve the same Shannon channel
capacities. Q-learning leads the players to that joint strat-
egy (p1,...,ps) € A®in which all players are satisfied of
the proper achieved Shannon channel capacities. In the Q
function of (27) for all players, the discount factor param-
eter is fixed to 8y = 0.09, and the payoff function ry is
defined as

rr(ag) = Cy Vkelk. (30)

Our experiments with different parameters show that
good values of the temperature function parameters are
m = 0.001 and g = 50, and we start with Q]tfo =0.1tis
obvious to say that an existing strategy in which all ri(ak)
are maximal value is not always guaranteed, since there is
a huge conflict of interest between the players to choose
different strategies.

Figure 10 reports the behavior of the (reward) achiev-
able rate C; of K = 8 terminals as a function of the time
step ¢ in our scenario. The figure exhibits the convergence
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of all learners to a stable joint strategy after six time steps.
Numerical results of 500 random realization of a network
show the convergence of all players to a stable joint strat-
egy after (in average) six steps of the iterative Q-learning
algorithm wherein each joint action is probabilistically
chosen according to the distribution of Boltzmann func-
tion. Furthermore, it is experimentally observed that the
sum of the achieved Shannon channel capacities is (in
average) 22.4 b/s/Hz, and that is 94% of the maximum
possible of } ;i Ck.

9 Discussion

Cooperation can be seen as the action of obtaining some
advantage by giving, sharing, or allowing something. In
this contribution, we aimed at mapping different coali-
tional game approaches into communications and net-
working systems. A very important boundary condition
for cooperation is that each participating entity is gaining
more by cooperation than it would by operating alone. It is
not important that all entities contribute the same effort,
gain the same amount, or even have the same gain-to-cost
ratio, but the effect of cooperation should bring advantage
or gain to each cooperating entity. One different form of
cooperation is altruism, a strategy wherein one of the play-
ers may sacrifice and does not gain from the cooperation
to support others. In networking, for instance, one ter-
minal sacrifices battery power and bandwidth to act as
a relay for other terminals and to increase the through-
put of the whole system. In some communication systems,
network protocols themselves can be seen as an implicit

achieved rate Cy, [b/s/Hz ]

0 I I
0 5 10

15 20 25

time step t

Figure 10 Achieved rates as functions of the iteration step. Each color represents the behavior of a player.
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cooperation to achieve better performance, e.g., ALOHA
system. In some communication systems, network entities
establish a cooperation with each other to achieve better
performance, e.g., relay communications.

Cooperative game theory is a branch of game theory
which aims at studying the cooperations among indi-
vidual and rational participants. Unlike non-cooperative
game approaches, cooperative game concepts are cen-
tralized, and they need a central authority for exchange
of information and policy-making process. The most
challenging part of a cooperative game theoretic
framework is the choice of characteristic function,
since it interprets the agents’ perceptions of gain and
satisfaction.

The main fundamental question in coalitional game the-
ory is the question how to allocate the total generated
gain by the collective of all players over the different play-
ers in the game. The distribution of payoff is described
as a binding contract between the players, and various
criteria have been developed. The problem of the gain
distribution is approached with the aid of solution con-
cepts in coalitional game theory like core, Shapley value,
kernel, and nucleolus. Core solution is the most classic
solution whose result is stable against deviation of coali-
tions. The core solution is useful, where the negotiation
process is centralized and no subset of players can self-
ishly and privately negotiate with each other. The core set
can be empty. Shapley value is the unique single-valued
solution which explores the fairness in every possible
prospective coalition forming. The kernel solution should
be understood as the set of all efficient allocations for
which no pair of players want to exchange payoff. The
nucleolus selects the unique imputation that successively
(lexicographically) minimizes the maximal excesses. This
defining property makes the nucleolus appealing as a fair
single-valued solution. The kernel of a game always con-
tains the nucleolus. The process of computing the kernel
and nucleolus of arbitrary transferable utility games is
hard.

The most fundamental solution concept for non-
cooperative game is that of Nash equilibrium. In a Nash
equilibrium, no agent is motivated to deviate from its
strategy given that others do not deviate. If every player
individually agrees on a certain profile of strategies with-
out binding an agreement, then these strategies constitute
a Nash equilibrium. Nash equilibrium does not account
for the possibility that groups of agents (coalitions) can
change their strategies in a coordinated manner. A strat-
egy profile is in strong Nash equilibrium if no subgroup
of agents is motivated to change their strategies given that
others do not change. Often, the strong Nash equilibrium
is a too strong solution concept, since in many games,
no such equilibrium exists. Coalition-proof has been sug-
gested as a partial remedy to this problem. This solution
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concept requires that there is no sub-group that can
make a mutually beneficial deviation (keeping the strate-
gies of nonmembers fixed) in a way that the deviation
itself is stable according to the same criterion. These solu-
tion concepts which allow coalitions to make agreements
simultaneously typically suffer from incompatibility of
agreements, which can give rise to empty solution sets
in games of networking interest. Mixed (vs. pure) strong
and coalition-proof Nash equilibrium have not been
introduced.

In a game wherein there are a huge number of
agents and strategies, finding a pure cooperative/non-
cooperative Nash equilibrium is hard and maybe even
impossible. A learning process leads participants to a
common joint action with an acceptable payoff. During a
learning process, agents act as independent learners, i.e.,
they only get information about their own action choice
and payoff. As such, they neglect the presence of the other
agents. The learning process happens at regular time steps
and is basically a signal for the agents to start an explo-
ration phase. During each exploration phase, some agents
exclude their current best action so as to give the team
the opportunity to look for a possibly better joint action.
This technique of reducing the action space by exclu-
sions was only recently introduced for finding periodical
policies in games of conflicting interests. There are two
problems in the process of learning optimal cooperative
pursuit strategy for multiple agents. One is the probabil-
ity of circulation among the actions chosen by the agents,
which make the learning process not converging; the other
is there are many conflicts among the actions chosen by
the agents, which make the learned pursuit strategy not
optimal. Q-learning with the Boltzmann action-selection
strategy guarantees the convergence of multi-agents to
a common and optimal joint strategy after a few time
step.

10 Conclusion

This paper has provided a unified reference for network
engineers investigating the applicability of coalitional
game theory to practical problems. Different approaches
such as core solution, Shapley value, kernel, and nucleo-
lus were shown to provide a strong foundation in find-
ing possible and stable resource/cost sharing arrange-
ments. The results confirm the apparent analogy between
the definition of Nash equilibrium in non-cooperative
and coalitional game theory: both strong and coalition-
proof Nash equilibria reflect on unprofitability of coali-
tion deviations rather than an individual player devia-
tion. In a network wherein informational exchange is
possible, either through a central controller or among
players themselves, the concept of coordinated equi-
librium arises. The results of intuitive examples show
a significant improvement in coordinated equilibrium
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when compared with non-cooperative schemes. When
the number of agents or strategies is large, the abil-
ity to jointly reach a consensus through environmen-
tal learning guarantees convergence to the best joint
action.

Endnotes

® Two is cooperation, three is a crowd.

b The lexicographic order between two vectors x and y
is defined by x <, vy if there exists an index k, such that
x[{]=y[l]forall/ < k, and x [k] < y [k].

¢ This is the carrier spacing of each subcarrier at a base
station with 10 MHz bandwidth and 1024 subcarriers.
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