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Abstract

Long-term monitoring of an environment is a fundamental requirement for most wireless sensor networks. Owing to
the fact that the sensor nodes have limited energy budget, prolonging their lifetime is essential in order to permit
long-term monitoring. Furthermore, many applications require sensor nodes to obtain an accurate estimation of a
point-source signal (for example, an animal call or seismic activity). Commonly, multiple sensor nodes simultaneously
sample and then cooperate to estimate the event signal. The selection of cooperation nodes is important to reduce
the estimation error while conserving the network’s energy. In this paper, we present a novel method for sensor data
acquisition and signal estimation, which considers estimation accuracy, energy conservation, and energy balance. The
method, using a concept of ‘virtual clusters,’ forms groups of sensor nodes with the same spatial and temporal
properties. Two algorithms are used to provide functionality. The ‘distributed formation’ algorithm automatically
forms and classifies the virtual clusters. The ‘round robin sample scheme’ schedules the virtual clusters to sample the
event signals in turn. The estimation error and the energy consumption of the method, when used with a generalized
sensing model, are evaluated through analysis and simulation. The results show that this method can achieve an
improved signal estimation while reducing and balancing energy consumption.
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1 Introduction
Wireless sensor networks (WSNs) are continuing to
attract significant interest from the research community,
with the promise of revolutionizing a wide range of appli-
cation domains including environmental, building, and
industrial process monitoring [1]. A WSN consists of
multiple sensor nodes is deployed carefully or arbitrarily
over a given field. A sensor node typically comprises four
parts: one or more sensors, a microcontroller, a wireless
transceiver, and a power source. Batteries are commonly
used to power nodes in a WSN deployment but have
a finite energy budget. When the battery is depleted, a
node cannot perform its function or participate in packet
routing, which can isolate large areas of the network [2].
Charging or replacing batteries may be expensive and is
difficult or even impossible under many circumstances.
While harvesting, environmental energy is becoming
increasingly realizable, from which the power obtained is
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often unstable and typically provides an average power in
the order of microwatts [3]. Hence, energy-efficient oper-
ation continues to be of considerable importance to the
WSN design and operation, both conserving energy in
an individual sensor node and also balancing energy con-
sumption evenly across the networks. Most research on
WSN energy conservation has focused on communication
[4]. However, in some applications, the sensors themselves
can consumemore energy than that of the communication
[5], and some techniques have been proposed to manage
the energy in these situations [6].
Sensing applications in WSNs can be crudely classified

into two categories: mapping the distribution of a param-
eter over an area (a common requirement of building
control or environmental monitoring networks [7]) and
monitoring a particular ‘point-source’ signal (for exam-
ple, a seismic signal [8]). In this paper, we focus on the
latter, where nodes are deployed at fixed positions and
cooperate to sample and estimate the event signal. Before
arriving at each sensor node, the signal is usually atten-
uated, delayed, and distorted by noise. In order to make
accurate measurements, signal estimation error must be
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taken into consideration in WSN design. Consistent with
similar research [9,10], mean square error (MSE) is used
as the index to illustrate the accuracy of estimation in this
situation.
Arguably, the most effective method for conserving

energy is to make nodes ‘sleep’ (where they enter a
low-power sleep state) whenever possible. Signal esti-
mation error can be reduced by only fusing data from
a subset of the sensor nodes, but the estimation will
be affected by spatial and temporal correlation between
nodes. Through these two factors, at any one time,
the selection of cooperation nodes will affect both the
energy conservation and the estimation accuracy. In
this paper, we propose a novel method to select and
schedule suitable sensor nodes for an energy-efficient
accurate signal estimation. The method uses a new con-
cept, referred to as the virtual cluster (VC), which is
a logical grouping of sensor nodes (irrespective of any
communication clusters imposed by the network topol-
ogy) with the same spatial and temporal properties. Two
new algorithms, DF-VC (distributed formation of virtual
clusters) and RRSS (round robin sample scheme), are
proposed.
This paper is organized as follows. Section 2 dis-

cusses the related work in this area and highlights the
improvements and benefits of the proposed method.
Section 3 presents a model for data acquisition, which
is subsequently analyzed in Section 4. Sections 5
and 6 provide details of the DF-VC and RRSS algo-
rithms, respectively. Finally, Section 7 evaluates the
proposed method through simulations, and Section 8
draws conclusions and identifies the prospects for future
work.

2 Related work
Energy-efficient and accurate event signal estimation is
an area of research that has drawn significant atten-
tion. Ribeiro and Giannakis [11] discussed distributed
estimation in WSNs and introduced a class of maximum-
likelihood estimators under a bandwidth constraint. In
their method, each sensor transmits 1 bit per observa-
tion; hence, the energy consumed on communication is
conserved while the estimation accuracy can be guaran-
teed through the Cramer-Rao lower bound. Zhi-Quan and
Jin-Jun [12] presented a decentralized estimation scheme,
where each sensor compressed its observation into a small
number of bits with a length proportional to the loga-
rithm of its local signal-to-noise ratio. Their scheme can
guarantee a maximum estimation error. Due to the redun-
dancy in sensor data, compression is another technique
used to conserve energy. Based on the information the-
ory, Pradhan et al. [13] reported a distributed compression
framework to remove redundancy. The main task of the
above works is to reduce the communication data while

maintaining estimation accuracy. However, the selection
and organization of suitable sensor nodes are ignored in
the task. The behavior of sensor nodes has critical effects
on the estimation and energy conservation.
One characteristic ofWSNs is that nodes can be densely

deployed. Adjacent sensor nodes are often highly spatially
and temporally correlated. This correlation can explicitly
affect the signal estimation error during signal fusion.
By modeling the event and the noise as Gaussian ran-
dom signals, Vuran et al. [9] analyzed spatial and temporal
correlations in WSNs. Two separate distortion func-
tions, representing the spatial and temporal errors, were
derived. The spatial distortion function shows that the
number of cooperation nodes and the spatial correlation
among sensor data are the main factors to affect the esti-
mation error. In the temporal distortion function, the
sample frequency is the key factor to affect the estimation
error. In fact, the estimation error cannot be indepen-
dently separated into the spatial and temporal error, as
some factors are coupled with each other. Vuran and Akan
[14] extended the above work by presenting a uniform dis-
tortion function. Using an attenuated and delayed sensing
model and incorporating signal propagation delays, their
work closer resembled the properties of real environments
and applications. Both of these papers conclude that a
finite number of sensor nodes can cooperate to reduce
the estimation error. However, techniques or algorithms
to identify and manage these sets of suitable nodes are not
addressed.
Karjee and Jamadagni [15] analyzed the estimation

accuracy of clustered WSNs using the same correlation
model and method presented by Vuran et al. [9]. They
showed through simulations that a subset of sensor nodes
could satisfy a given requirement of estimation accuracy.
However, they found that the selected sensor nodes must
be concentrated around the location of the event. In their
later work [10], Karjee and Jamadagni further studied
the selection of the sensor nodes for accurate estima-
tion. Based on the distributed clusters, they developed a
probabilistic model for each distributed cluster to pursue
the estimation accuracy and reduce the energy consump-
tion in the network. Vuran and Akyildiz [16] proposed a
method to obtain a minimum number of sensor nodes,
which satisfy a given estimation accuracy requirement.
Each selected sensor node ‘represented’ a group of sensor
nodes, while the remainder of nodes in the group were put
into a sleep state. The representative nodes were selected
by solving the distortion function at the sink node, which
also performed the signal estimation. Sensor nodes in
a group were adjacent to each other, and hence, repre-
sentative nodes were spatially spread out (and hence not
concentrated around the location of the event). Through
this method, the authors reduced the amount of collected
data and hence reduced the energy consumption of the
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network. In the methods presented above, the selected
nodes will consume more energy than that of the uns-
elected nodes. Hence, these methods do not provide a
balanced approach.
Gedik et al. [17] adpoted an adaptive approach to data

acquisition called ASAP, in which a cluster of sensor
nodes is partitioned into smaller ‘sub-clusters’. One or
more nodes in each sub-cluster were selected to sense and
report the event, while the other nodes were put into a
sleep state. Data from the ‘sleeping’ nodes were predicted
using probabilistic models. Willett et al. [18] presented an
adaptive data acquisition scheme which was called ‘back-
casting’. The authors studied a scenario with n sensor
nodes arranged regularly on a square lattice. A small sub-
set of the nodes sample the environment and disseminate
data to the sink node. This initial estimation is processed
by the sink node and ‘backcast’ into the network. Addi-
tional nodes in the network then sample in order to refine
the initial estimation and meet desired error targets. Both
ASAP and ‘backcasting’ reduce the energy consumption
of the network while maintaining a desired data accuracy.
However, the methods are not balanced on energy con-
sumption, and the dynamic adjustment of suitable sensor
nodes will consume extra energy.
Except the spatial correlation, the selection of suitable

sensor nodes should also consider the temporal correla-
tion. The temporal correlation between nodes is affected
significantly by sampling frequency which can be adjusted
by the adaptive sampling schemes as the main approaches
to address this case according to the applications [4].
Alippi et al. [19] presented an adaptive algorithm which
could automatically adjust sampling frequency to a suit-
able value in real-time, based upon the Nyquist-Shannon
theorem. By reducing over-sampling, the method can
conserve the energy consumed by eliminating redundant
data. However, the cooperation of sensor nodes is not
considered.
For a group of sensor nodes, a comprehensive sam-

pling scheme can reduce energy consumption of a WSN.
Minglei and Hen [20] proposed a sampling scheme called
collaborative sampling. In this scheme, the sensor nodes
which broadcast their samples to the fusion center are
selected according to the localized estimation error. Jing
et al. presented a scheme referred to as asynchronous
sampling [21], which shifted sampling times of sensor
nodes in order to reduce the sampling rate for each sensor
node. The above two methods showed that energy can be
conserved by the cooperation of sensor nodes; however,
these two papers need further consideration on both the
accurate estimation and energy consumption and balance.
In our previous paper [22], we discussed the forma-

tion of sensor nodes for signal estimation; however, it
also needs further research on the analysis and valida-
tion of the scheme, and the comparison with different

schemes was not addressed. The novel aspects of the work
presented in this paper, over the existing works, are the
following:

• Firstly, unlike the existing works, we analyze the
effect of time synchronization error and transmission
delay on estimation error. The analysis shows that
the section of suitable sensor nodes should consider
these effects in order to get an accurate estimation.

• Secondly, an improved trade-off between the
estimation accuracy and the energy conservation is
obtained. By adjusting the algorithm’s parameters,
the estimation accuracy and the level of energy
conservation can be adjusted to satisfy the user
requirements.

• Thirdly, in addition to being conserved, energy is also
balanced among nodes in the network. The balance
of energy consumption is especially crucial in the
dense sensor networks.

• Fourthly, the algorithms are low computation, and
the majority of the process is completed at the start
of application deployment. Hence, the dynamic
adjustment of sensor nodes is avoided.

3 Amodel for data acquisition
3.1 Network architecture
A WSN may be deployed as a flat or hierarchical archi-
tecture [23]. In a hierarchical architecture adopted here,
all sensor nodes are separated into communication clus-
ters. All sensor nodes in a cluster communicate only with
the cluster head (CH), which is usually performed as a
resource-unconstrained node and able to aggregate data.
A model for data acquisition, which forms the basis of
the motivation and analysis of the work presented in this
paper, forms the remainder of this section.
All of the network’s sensor nodes, represented by a node

set G, are in one of L communication clusters. Let Ci (i =
1, 2, . . . L) denote the ith cluster. The CH of Ci is chi and
the number of the sensor nodes (including chi) in Ci is Li.
Hence, Ci is depicted as

Ci = {chi, nj|nj ∈ G, j ∈[1,Z] , j �= i}, (1)

and
L∑

i=1
Li = Z,

where Z is the number of sensor nodes in G.

3.2 Spatial and temporal correlation among sensor data
A typical monitoring application, where a WSN is
deployed over a field to sense a physical phenomenon, is
considered. The event signal is denoted by S(t) (t ≥ 0).
Signal S(t) is modeled as a continuous signal with a limited
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frequency bandwidth and a normally distributed ampli-
tude (with a zero mean and variance of σ 2

s ). The position
of S(t) is s : (x, y). The ith sensor node, referred to as
ni (i = 1, 2, . . . ,Z), is at the position si : (xi, yi). At any
observing location, the event signal is usually attenuated
in relation to the distance between the observing location
and the event.
A sensing model is defined to depict the observed signal

at the position of each sensor node. Node ni samples S(t)
as Si(t) after being attenuated and delayed,

Si(t) = S(t − δis)/ρi. (2)

Signal S(t) propagates with velocity v; it will arrive at
the position of node ni after time lag δis = di/v. The
attenuation ratio, ρi, is calculated by

1
ρi

= θ21
θ22 + d2i

, θ1, θ2 > 0, (3)

where di is the Euclidean distance between the event and
ni. This quadratic model is commonly used to depict spa-
tially correlated sensor data [24]. And as an attenuation
model, it is widely used for attenuation of RF and acoustic
signals [25,26].

di = ||si − s|| =
√

(xi − x)2 + (yi − y)2. (4)

Signal Si(t) is a Gaussian random signal,

E[Si(t)]= 0 and E[S2i (t)]= σ 2
s /ρ2

i . (5)

The correlation coefficient between Si(t) and Sj(t) is

Corr[Si(t), Sj(t)] = E[Si(t)Sj(t)]√
Var[Si(t)]

√
Var[Sj(t)]

= E[S(t − δis)S(t − δjs)]
σ 2
s

. (6)

Equation 6 shows that the correlation coefficient
between two sensor data is related to the time difference
between them. The power exponential model [24] is used
to depict the temporal correlation of two sensor data.

Corr{S(t), S(t + �)} = E[S(t)S(t + �)]
σ 2
s

= ϑ(�).

ϑ(�) = e−�/θ , θ > 0.
(7)

By combining (6) and (7), the coefficient is calculated as

Corr[Si(t), Sj(t)]= ϑ(δis − δjs). (8)

Equation 8 shows that the correlation between two dif-
ferent sensor data is only related with temporal factors.
Therefore, if the time difference is ignored, the correlation
coefficient will be one. Hence, for a given sensing model,
a spatial correlation model is not necessitated for sensor
data.
The parameters, δis and ρi, are both determined by the

distance di. In this study, it is assumed that an accurate
measurement of distance is available at each node, and the

effect of any error on the estimation accuracy is ignored.
Many techniques and algorithms in previous study have
been applied to make measurements for such distances
[27,28].

3.3 Sampling of a sensor node
A sensor node samples the attenuated and delayed sig-
nal with noise. The noise at node i, depicted by ei(t),
is modeled as an independent and identically distributed
Gaussian variable with a zero mean and variance of σ 2

e .
The signal sampled by ni is depicted as shown in (9), where
ei(t) is independent from the event signal.

Xi(t) = Si(t) + ei(t) (9)

Each sensor node samples signal with same frequency.
The sampling can be depicted by a sampling function p(t).

p(t) =
+∞∑
k=0

δ(t − kT), (10)

δ(t − kT) =
{
0 t �= kT ,
1 t = kT , (11)

where T is the sample period. By using p(t) to sample
Xi(t), the sample sequence of Xi(t) is derived as⎧⎪⎪⎨

⎪⎪⎩
Xp
i (t) � Xi(t)p(t),

Xi(k) � Xp
i (kT) = Si(k) + ei(k),

Si(k) � Si(kT),
ei(k) � ei(kT).

(12)

The sensing and sampling process is illustrated by
Figure 1.
At the observation location, the original signal S(t)

becomes Si(t) after delayed and attenuated through the
coefficients di and ρi. In fact, the sensor node only senses
the signal Xi(t), i.e., Si(t) with noise ei(t). Signal Si(k)
cannot be derived in the real environment. The sample
of signal Xi(t) is Xi(k) at time instant kT. The sampling
period T can be derived through adaptive sampling meth-
ods (for example, the algorithm proposed by Alippi et al.
[19]). Signal Xi(t), which is an approximation of Si(t), can
be recovered from the discrete sampleXi(k). A copy of sig-
nal S(t) with time lag δis can be approximately derived by
Xi(t)ρi.

Figure 1 Sensing and sampling process of a sensor node.
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4 Signal estimation and error analysis
During a signal estimation process, some factors affect-
ing the estimation error are highlighted through the error
analysis. In this section, we analyze the estimation error
and present two lemmas to select suitable nodes. The
impacts of communication delay and the time synchro-
nization error are also discussed.

4.1 Estimating the event signal
Each sensor node may obtain an estimation of the event
signal. For convenience, signal Si(k) is denoted by Si. The
estimation of S made by node ni is given by

Yi = Xiρi. (13)

The estimation Yi is sent to the fusion node in which S
is estimated in each period. The quantized sample mean
estimator is used in fusion node.

S̄ = 1
N

N∑
i=1

Yi = 1
N

N∑
i=1

(Si + ei)ρi (14)

The estimation accuracy is evaluated through the MSE.

E[(S − S̄)2] = f (N , σs) + g(N , σe), (15)

f (N , σs) = σ 2
s + σ 2

s
N2

N∑
i=1

N∑
j=1

ϑij − 2σ 2
s

N

N∑
i=1

ϑis,

(16)

g(N , σe) = σ 2
e

N2

N∑
i=1

ρ2
i , (17)

where ϑij = e−δij/θ is the correlation coefficient of nodes
ni and nj, and ϑis = e−δis/θ is the correlation coefficient of
node ni and the event signal.
Function f (N , σs) can be treated as a distortion function

of the systematic error which is affected by N, δij, and δis.
Parameters δij and δis are determined by the position of
the sensor nodes and represent the impact of the temporal
factors.

δij = δis − δjs = di/v − dj/v = (di − dj)/v (18)

Function g(N , σe) can be thought as a distortion func-
tion of the random error. The value of g(N , σe) is deter-
mined by N and the attenuation ratio.

4.2 Analysis of estimation error
The estimation error includes two parts: systematic error
and random error. Optimizing the distortion functions
to derive the minimum error is a non-trivial task. How-
ever, through some approximations, either the systematic
or random error can be controlled to a small value. The
approximations are illustrated as Lemmas 1 and 2.

Lemma 1. If the sensor nodes which join the estimation
process are close to the event, the systematic error will not
relate to the number of sensor nodes and can be ignored.

Proof. According to the requirement of the Lemma 1,
the following approximation can be derived.

δis = di/v ≈ 0,
δij = (di − dj)/v ≈ 0

Hence,

δij = e−δij/θ ≈ 1,
δis = e−δis/θ ≈ 1.

With (16),

f (N , σs)=σ 2
s + σ 2

s
N2

N∑
i=1

N∑
j=1

ϑij− 2σ 2
s

N

N∑
i=1

ϑis≈σ 2
s +σ 2

s −2σ 2
s =0.

Lemma 1 presents an important limit on the selection
of sensor nodes. All selected sensor nodes should be close
to the event. Let dpth denote a desired distance thresh-
old, node ni can join the estimation process under the
condition of di ≤ dpth.
The random error cannot be ignored; however, if the

suitable sensor nodes are selected to participate in the
estimation process, g(N , σe) can be reduced.

Lemma 2. Assume that N adjacent sensor nodes have
joined the estimation process. If the (N + 1)th sensor node
satisfies

ρN+1 <

√
2N + 1
N

×
√√√√ N∑

i=1
ρ2
i ,

the random error will be reduced by adding the (N + 1)th
sensor node to join the estimation process.

Proof. According to (17),

�gNN+1 = g(N + 1, σe) − g(N , σe)

= σ 2
e

[N+1∑
i=1

(
ρi

N + 1

)2
−

N∑
i=1

(ρi
N

)2]

= σ 2
e

[ N∑
i=1

(
ρi

N + 1

)2
−

N∑
i=1

(ρi
N

)2 +
(

ρN+1
N + 1

)2
]

= σ 2
e

(N + 1)2

[
ρ2
N+1 − (2N + 1)

N∑
i=1

(ρi
N

)2]
.

Under the restriction of Lemma 2,

ρ2
N+1 − (2N + 1)

N∑
i=1

(ρi
N

)2
< 0.
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Hence,

g(N + 1, σe) < g(N , σe).

From Lemma 2, two conclusions can be drawn. First,
adjacent sensor nodes will always improve the accuracy.
We can think that the attenuated coefficients of the adja-
cent sensor nodes are approximated as the same ρ.

√
2N + 1

√√√√ N∑
i=1

(ρi
N

)
≈ ρ

√
2N + 1

N
>

√
2ρ. (19)

Second, a finite number of sensor nodes are sufficient
for signal estimation. Due to the additional energy con-
sumption, utilizing further sensor nodes to improve the
accuracy is not worthwhile. The reduction of the error
when an adjacent node is added is given by

|�gNN+1|≈
σ 2
e

(N+1)2
∣∣∣ρ2−(2N+1)

N∑
i=1

( ρ

N

)2∣∣∣= σ 2
e ρ2

(N+1)N
.

(20)

A parameter, ddth, is used to depict the adjacency of the
sensor nodes. For any two nodes which join the estima-
tion process, ni and nj, the distance between them should
satisfy dij ≤ 2ddth.

4.3 Effect of communication delay
Sensor data are transmitted to a fusion node, and the end-
to-end communication delay will affect the estimation
process. Witrant et al. [29] stated that the delay is random
and increases with an increase number of hops between
the sensor node and the fusion node. Their experiment
was based on the Breath protocol using Tmote nodes.
They found that the average end-to-end delay of Breath
protocol is 200 ms over four hops and 60 ms over two
hops. If the kth sample of one sensor node cannot arrive
the fusion node in the current sampling period, the sam-
ple of the sensor node will not join the kth fusion process.
Hence, the sample will be dropped, even if it can arrive at
the fusion node after the current sampling period. There-
fore, the impact of the end-to-end delay on the estimation
process relates to the sampling period. If the delay is more
than the period T, the sensor data cannot be gathered by
the fusion node. The number of sensor data which are
fused together according to (14) will not be enough and
affects the estimation error.
Let Pi(�i ≤ t) denote the probability that the data trans-

mission time �i of node ni is less than t. The expected
number of samples arriving at the fusion node from N
sensor nodes in interval T isM.

M =
N∑
i=1

Pi(�i ≤ T) (21)

The systematic error is calculated as

f (M, σs) = σ 2
s + σ 2

s
M2

N∑
i=1

N∑
j=1

Pi(�i ≤ T)Pj(�j ≤ T)ϑij

− 2σ 2
s

M

N∑
i=1

Pi(�i ≤ T)ϑis. (22)

If the requirement of Lemma 1 is satisfied, then,

f (M, σs) ≈ σ 2
s + σ 2

s
M2 × M2 − 2σ 2

s
M

× M = 0. (23)

Therefore, the systematic error is not affected by the
communication delay under the restriction of Lemma 1.
The random error is calculated as the following

equation when the delay time is considered,

g(M, σe) = σ 2
e

M2

N∑
i=1

P2i (�i ≤ T)ρ2
i �= g(N , σe). (24)

The error will increase when M decreases. The sam-
pling period is determined by an application, and the
increase of it is not suitable in many scenarios (particu-
larly for energy efficiency). Reducing the delay is therefore
the only method available to control error. As the num-
ber of hops is the predominant factor affecting the delay,
the fusion node should be selected from adjacent sensor
nodes. Again, this requirement shows the necessity of a
distance threshold ddth.
The transmission time of adjacent sensor nodes can be

taken equally, that is, �i = �, Pi(�i ≤ T) = P(� ≤ T).
Then,

g(M, σe) = σ 2
e

M2

N∑
i=1

P2i (�i ≤ T)ρ2
i

= σ 2
e

N2
P2(� ≤ T)N2

M2

N∑
i=1

ρ2
i .

Due to

P2(� ≤ T)N2

M2 =
(∑N

i=1 P(� ≤ T)
)2

(∑N
i=1 P(� ≤ T)

)2 = 1,

hence, we obtain

g(M, σe) = σ 2
e

N2

N∑
i=1

ρ2
i = g(N , σe).

If the selection of sensor nodes satisfies the restrictions
of Lemmas 1 and 2, then the impact of communication
delay can be ignored.

4.4 Effect of time synchronization error
Sensor nodes sample a signal and add a timestamp of their
local time, for which the fusion node uses the timestamp
to process sensor data. The timestamp is
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tki = t0 + αi + (k − 1) × T , k = 1, 2, . . . ., (25)

where αi is the synchronization offset. In the previ-
ous analysis, we ignored the time synchronization error;
hence, the time difference is calculated as depicted in (18).
When the impact of time synchronization error is consid-
ered, (18) is revised as

δis = di/v + αi,
δij = (di − dj)/v + (αi − αj).

(26)

The propagation delay is ignored if the sensor node is
adjacent to the event location. Therefore, only the syn-
chronization error is considered in the following dis-
cussion. The systematic error relates to the temporal
correlation,

f (N , σs) = σ 2
s + σ 2

s
N2

N∑
i=1

N∑
j=1

e−(αi−αj)/θ − 2σ 2
s

N

N∑
i=1

e−αi/θ .

(27)

Equation 27 shows that the relative and absolute time syn-
chronization error all affect the estimation error. As the
magnitude of the relative synchronization error doubles
the magnitude of the absolute error, mitigating the relative
error is more important.
Time synchronization error varies with different proto-

cols, which usually correlate with the hops between the
sensor node and the time base station. For the lightweight
time synchronization protocol, the variance of synchro-
nization error is 4hσ 2, where h is the number of hops
from the sensor node to the time base station and σ is
the standard variance of point to point time difference.
By using a testbed of ‘COTS MOTES,’ which is a narrow

band radio and sensor platform developed by Warneke
et al. [30], σ is estimated about 11.1 us [31]. The error will
gracefully increase with an increase in the number of hops
when the timing-synchronization protocol for sensor net-
works (TPSN) is used [32]. Ganeriwal et al. presented a
prototype system that they builta round Berkeley Motes
to implement TPSN. They reported that the average syn-
chronization error was 16.9 μs over a single hop, while the
error was 23 μs over five hops. If the selection of sensor
nodes complies with Lemma 2 and a suitable synchroniza-
tion protocol is implemented, the relative synchronization
error is likely to be minimal.

5 Distributed algorithm to form virtual clusters
Based on the previous section, an algorithm is required
to select suitable nodes in the network while maintaining
energy efficiency and fulfilling the restrictions presented
in the analysis. This section presents the concept of ‘vir-
tual cluster’ and describes the proposed DF-VC algorithm
which is used to set them up.

5.1 Definition of virtual cluster
The discussion in Section 4 presents two distance thresh-
olds to limit the selection range of sensor nodes. By using
the thresholds as radius, we can form two circles. Figure 2
illustrates the relationship of the two circles in a part of
the monitoring field.
In Figure 2, there is one large circle and multiple smaller

circles. The large circle depicts the selection range of suit-
able sensor nodes, and the radius of this circle complies
with the requirement of Lemma 1. The smaller circles rep-
resent the range of the nodes grouped into a VC, and
their radii are limited by Lemma 2. The sensor nodes in

Figure 2 The topology of a network.
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a small circle cooperate to sample the event signal. The
fusion node in the same circle estimates the signal accord-
ing to (14). A VC is a set of sensor nodes which satisfy the
requirement of Lemmas 1 and 2. The jth VC of communi-
cation cluster Ci, named VCij, satisfies on two conditions:
if nk ∈ VCij, then nk ∈ Ci, k ∈ [1,Z]; and if nk ,nl ∈
VCij, k, l ∈ [1,Z], then ||sk − sl|| ≤ 2ddth.
The center node in each VC implements specific func-

tions. Two special kinds of VCs are used in the paper: A
usable VC is close enough to the event (i.e., the distance
between the event location and the center node is less than
dpth). A suitable VC is usable which contains the right num-
ber of nodes. Let parameters Min_Num and Max_Num
denote the lower and upper limit of the number of sen-
sor nodes, and N denote the number of sensor nodes,
then, Min_Num ≤ N ≤ Max_Num. The suitable VCs
participate in sampling and estimating the event signal.
Because a suitable VC satisfies the requirement of

Lemmas 1 and 2, the required accuracy can be obtained.
The local fusion node in each suitable VC transmits the
estimation to its CHwhich achieves the final estimation of
the event signal. Owing to most of the transmission being
located within the VCs, communication energy consump-
tion is reduced.

5.2 Virtual clustering mechanism
The process of forming a VC is distributed. Once commu-
nication clusters have been formed, the formation of VCs
begins within each communication cluster. This process
should be completed before an WSN application begins.
The radius ddth and the parameter Max_Num are nec-

essary when a VC is forming. These two parameters are
derived at the sink node under the restriction of estima-
tion error. It is assumed that the expected maximum error
is D∗; accordingly, these two parameters should satisfy
E[(S − S̄)2]≤ D∗. The sink node sends these parameters
to each CH, which is the first node to form a VC.
Threshold ddth should be less than r, which is the com-

munication radius of sensor nodes. It is assumed that all
sensor nodes are uniform and have the same communi-
cation radius. If ddth > r, a new value is set to be ddth,
ddth ← r − �, � > 0.
Each center node knows which sensor node is in its

VC according to the identification number (ID) of sensor
node. The IDs may be unique to the whole network or can
be local to the communication cluster.
Node nk (at the beginning, this is CH, the commu-

nication cluster head) broadcasts a message with these
parameters to other sensor nodes. After broadcasting, nk
will become a center node. Any sensor nodes from which
the distance to nk is less than r will receive the message.
Node nl, which does still not belong to any VC, will calcu-
late the distance ||snk − snl || and compare the value with
ddth after receiving the message. Node nl will be in one of

three possible states after the comparison. Three states are
defined as follows:

• S1: ||snk − snl || ≤ ddth,
• S2: ||snk − snl || ≤ r, ||snk − snl || > ddth,• S3: ||snk − snl || > r.

If nl is in state S1, it will join the VC, which nk creates,
and reply to nk with its ID. If nl is in state S2 after compar-
ison, it will set a timer T1 within a random time. Before
T1 expires, nl keeps listening to new message. It stops the
timer if it can change state to S1 after having received a
message. When T1 expires, nl will broadcast a message to
claim a new VC and becomes a center node itself. Because
ddth < r, nl can identify these parameters from themessage
that it received.
Initially, all sensor nodes are in state S3 and set a timer

T2 within a random time (longer than the time interval of
T1). Before T2 expires, sensor nodes should keep listen-
ing to any message which may change its state to S1 or
S2, T2 will stop if such a state change occurs. When T2
expires, the sensor node is unable to receive any broad-
cast message from other nodes and does not know the
necessary parameters. It therefore sends a message to
inquire of these parameters. An adjacent node will receive
the inquiry and reply with these parameters. Figure 3
illustrates the changes of these states.
Besides the states S1, S2, and S3, other additional states

are required. State S4 is a transition state which is entered
when timer T2 expires; in this state, the node will broad-
cast a message as a center node after it receives a reply
from its inquiry. State S5 is the final ‘operational’ state of
each sensor node, where it does not reply to any broadcast
message from other nodes claiming a new VC. The excep-
tion is that the node will respond to the inquiry messages
from other nodes.
Once a VC is formed, the center node maintains an

ID table of its members. Every sensor node in a VC will
receive parameters and commands via center node. Each
center node reports its ID table to CH and receives param-
eters and commands from its CH. Most communications
are made within VCs.
The number of nodes in each VC is adjusted through

parameter Max_Num. Ideally, each VC should contain
almost the same number of nodes, with which should
match the requirement of Lemma 2. After broadcasting a
message to claim a VC, each center node receives and then
counts the replies. Once the count of the reply is equal
to Max_Num, the center node rejects the replies of other
nodes using a NACK message, these nodes then join or
create other VCs.
Algorithm DF-VC is illustrated in Algorithm 1. Note

that, although VCs are limited to a single hop, communi-
cation clusters still utilize multi-hop networking.
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Algorithm 1 DF-VC algorithm
Initialization:

BMC: Broadcast message to claim a VC;
BME: Broadcast message to inquire a distance;
RMJ: Reply message to join a VC;
RMA: Reply message to answer an inquiry;
Mij: The Max_Num of the VCij.

1: Set timer T2.
2: Keep listening until receive a BMC
3: if receive a BMC then
4: if timer T2 is running then
5: Stop timer T2.
6: end if
7: Extract the parameters from the message.
8: Calculate real distance to the event.
9: if real distance<distance threshold then

10: Stop timer T1;
11: Send a RMJ, Join the VC.
12: else
13: Set timer T1.
14: end if
15: end if

Timer T1 expires:
16: InitializeMij = 0;
17: Send a BMC, become a new center node.
18: Keep listening untilMij = Max_Num.
19: if receive a RMJ then
20: ifMij < Max_Num then
21: Extract node ID from the message and store it;
22: Mij = Mij + 1.
23: else
24: Send NACK message to the sensor node,
25: end if
26: end if

Timer T2 expires:
27: InitializeMij = 0;
28: Send a BME.
29: Keep listening untilMij = Max_Num.
30: if receive a RMA then
31: Extract the parameters from the message and store

it;
32: Send a BMC, become a new center node.
33: end if
34: if receive a RMJ then
35: ifMij < Max_Num then
36: Extract node ID from the message and store it;
37: Mij = Mij + 1.
38: else
39: Send NACK to the sensor node.
40: end if
41: end if

6 Round robin sampling scheme
After VCs are formed, the selection of suitable VCs is crit-
ical for accurate estimation when an event occurs. In this
section, the criteria to select suitable VCs is discussed,
and the algorithms to schedule these VCs and rotate local
fusion nodes are presented in this section. Combining the
suitable selection, the schedule, and the rotation, energy
consumption is balanced with accurate estimation and
energy conservation.

6.1 Selection of suitable VCs
Although the number of sensor nodes is adjusted through
parameter Max_Num, some usable VCs still may contain
too few nodes. A usable VC with too few nodes impacts
the estimation accuracy; hence, it should not be included
in the estimation process.
Figure 4 shows the simulation results of VC formation.

Figure 4a shows the number of nodes in each VC, while
Figure 4b shows the respective MSE of the estimated sig-
nal. Note that, although VCs 2, 4, 7, and 10 contain the
maximum number of nodes (Max_Num = 9), they are not
deemed to be usable. This is because these VCs are too far
from the event location (i.e., > dpth), and hence, their esti-
mation accuracies are too low (as can be seen by the large
MSE in Figure 4b).
Furthermore, the impact of the number of nodes in a

VC on the estimation accuracy can also be shown. VC 9
has less nodes than VC 10 does; hence, it obtains a greater
MSE than that of VC 10. To improve the accuracy, VCs
with too few nodes are eliminated from the estimation
process using parameter Min_Num. If Min_Num is set to
be 8, from Figure 4a, we can see that VCs 1, 3, 5, 6, and 8
will be selected as the suitable VCs.

6.2 Round robin sampling scheme
From Figure 4, multiple suitable VCs can be identified.
A suitable VC can derive an estimation of the event sig-
nal with the required level of accuracy. If a suitable VC is
selected to work in active mode, the sensor nodes in this
VC will continuously acquire sensor data. The energy of
these sensor nodes will be consumed more quickly than
that of those sensor nodes in the sleep state. Therefore, a
method is required to balance energy consumption among
the suitable VCs.
The method proposed to balance energy consumption

is to alternate the active VC. Each suitable VC takes part
in estimating the event signal during its time slot and falls
in a sleep state at other slots. When an event occurs, the
CH identifies which VCs should participate in sampling
the event signal. The suitable VCs may be in different
clusters; hence, a CH cannot determine the time slots
independently. Every CH sends the number of VCs which
should be selected to sample the signal to the sink node,
which calculates the sample time for each cluster. This



Li et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:230 Page 10 of 15
http://jwcn.eurasipjournals.com/content/2013/1/230

S3
S2

S1

Receiving a broadcast

Receiving a broadcast

Receiving a reply

Sending a broadcast

Sending a broadcast

T1 expires

T2 expires

Broadcasting an enquiry

R
ec

ei
vi

ng
 a

br
oa

dc
as

t <
d

>d and <r

W
aiting for a delay tim

e

Sending a reply

<d

S5

S4

Figure 3 Changes of the states in each node, dmeans dd
th.

information is returned to each CH, which informs the
center nodes of their time slot.
Let R denote the number of suitable VCs. These VCs

are ordered by their cluster and VC IDs and recorded
in the sink node as {VC1,1, VC1,2, . . . , VC2,1, . . . , VCij, . . .}.
Every element in the queue is indexed by a number,
index(VCij) = l, l ∈ [1,R]. The time for VCij to begin
sampling is calculated by each sensor node as

tij = t0 + l × T + T ′ × ω, w = 0, 1, 2, . . . . (28)

T ′ is the period within which all suitable VCs sample
and are calculated by the sink node as

T ′ = R × T . (29)

The sampling scheme is illustrated, as shown in Figure 5.
The algorithm used to implement this functionality is

referred to as RRSS. RRSS requires only four parameters:
t0 (start time), l (index of each VC), T (sampling period),
and R (number of suitable VCs). Parameters T and t0

are derived by the sink node according to the application
requirements, and R is derived by counting the number
of suitable VCs. The sink node creates an initial index for
each cluster, while each CH calculates the index for each
of its VCs. The algorithm has three stages to implement
its operation:

• Stage 1: Collection. Once a signal is to be sampled, a
center node joining the estimation process sends a
message to CH which counts the number of suitable
VCs.

• Stage 2: Allocation. The sink node calculates the
period T ′ and the index of each cluster and sends
these parameters to each CH. Each CH calculates the
index of each VC and sends this value along with T ′
to each center node, which broadcasts these values to
each node in its VC.

• Stage 3: Start. The sink node sends a start command
with the start time t0 to each CH, and each CH sends
this command to each center node which broadcasts

Figure 4 Results of the VC formation process. (a) Number of sensor nodes in each VC, the usable VCs are black. (b)MSE of each VC.
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the command to each sensor node. Nodes sample the
signal according to these parameters.

When combined with VCs, RRSS guarantees the accu-
racy of the signal estimation. By adjusting the sample time
of each VC, RRSS can conserve the energy of each sen-
sor node. In each period T ′, a sensor node samples the
signal only once. For the majority of the time in period
T ′, i.e., (R − 1) × T , each node operates in its sleep
state.
RRSS does not require accurate time synchronization.

As long as the synchronization error is less than the
sampling period, the scheme operates successfully.

6.3 Rotation of local fusion node
In each sampling and fusion process, a sensor node will
receive the samples from other sensor nodes and estimate
the event signal as a local fusion node in each suitable VC.
Other sensor nodes only send their samples to the fusion
node and hence consume less energy compared with the
fusion node. After a VC is formed, the center node knows
the whole IDs of the members in its VC. It will broadcast
the IDs as a queue to each member. The center node is the
first node to fuse the samples as a local fusion node. Sub-
sequently, the local fusion node is selected dynamically
in turn. A simple algorithm is used to select the dynam-
ical fusion node based on the ID queue. The node with
the next ID in the queue is selected to be the next fusion
node. Because each node stores the ID queue, the selec-
tion process is performed by each node independently.
Therefore, no addition energy is consumed on the rotation
process.

6.4 Analysis of energy balance
To evaluate the ability of the proposed method to bal-
ance energy consumption among nodes in the network,
the energy consumption of a selected sensor node ni is
modeled as:

Ei = ES × kSi + ER × kRi + ET × kTi , (30)

where ES, ER, and ET are the energy consumption of sam-
pling once, receiving, and transmitting a packet, respec-
tively, and kSi , kRi , and kTi are the number of the samples,
the received, and transmitted packets, respectively. The
energy consumed for computation is ignored. Further-
more, while the algorithms incur additional communica-
tion overhead for setup, this is minimal and infrequent,
and only required at the beginning of the monitoring
applications. Therefore, we assume that the energy con-
sumption of this overhead can also be ignored.
The ratio (depicting the balance of energy consumption)

between the energy consumption of two nodes, ni and nj,
is defined as:

rij = Ei
Ej

(31)

If ni and nj are in the same suitable VC, due to the same
behavior of these sensor nodes, ni and nj will almost con-
sume the same energy from the average perspective, that
means, kSi = kSj , kRi = kRj , and kTi = kTj , therefore, rij = 1.
If ni and nj are not in the same suitable VC, due to RRSS,

the samples and the transmission number are the same,
i.e., kSi = kSj and kTi = kTj . However, kRi and kRj are related
to the number of members in each VC when the nodes are
fusion nodes. It is assumed that the VC, to which node ni
belongs, has m members. And the VC, to which node nj
belongs, has n members. In the time period m × n × T ′,
each sensor node, within the same VC with ni, samples
n times; the local fusion node receives n − 1 packet each
sample period, therefore, kRi = m(n − 1) ≈ mn. And
hence, kRj = n(m − 1) ≈ mn. Therefore, the ratio is also
1 in this period. This means that the energy consumption
of the nodes in different suitable VCs is also balanced.

6.5 Analysis of energy conservation
Each sensor node samples the signal once during period
T ′. Hence, for each period T ′, kSi = 1, kTi = 1, and
kRi = 0 if the selected sensor node is not a local fusion
node (else kRi equals to the number of sensor nodes in
its VC). Compared to a baseline scheme where all sensor
nodes continuously sample the signal during each sam-
ple period, it is obvious that the energy consumed in our
scheme is reduced by a factor R.
The total energy consumed by theWSN during a period

T ′ is given by:

EWSN = Es×N+(ET +ER)×N+(ET +ER)×H , (32)

where N is the number of suitable sensor nodes and H is
the number of hops from the local fusion nodes to the sink
node. This highlights how energy is conserved through the
two methods. First, during each sampling period, only a
small subset of theWSN participates in sampling. Second,
only the local fusion node transmits the data to the sink
node while other sensor nodes transmit data in VCs.
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7 Simulation results
In the above sections, a scheme of data acquisition is
designed, and its performance is theoretically analyzed.
In this section, the scheme is evaluated through simula-
tions. The benefits of the proposed scheme are illustrated
by comparing it with other state-of-the-art schemes.

7.1 Simulation environment
The simulated network contains 100 sensor nodes cover-
ing an area of 50 × 50 m2. Sensor nodes are deployed at
x = i× 5 m, y = j× 5 m, (i, j = 1, 2, . . . , 10), and the
communication radius is 30 m. Timers 1 and 2 are set to
be random numbers between [1, 100] and [101, 200] sec-
onds, respectively. The expectation and variance of the
event signal are (0, 1), and the noise (0, 0.1). The event to
be monitored is at location (24 m, 26 m).
The Telos sensor node (containing the CC2420 radio

transceiver) is considered. The transmit rate of the
CC2420 is 250 kbps, which consumes 62.04 and 57.42
mW in receiving and transmitting modes, respectively.
Assuming that communicated packets are 100 bits long,
the energy consumption to receive or transmit a packet is
ER = 24.82 μJ and ET = 22.97 μJ. The ADI accelerometer
is used to measure the vibration of the seism, which has
a power consumption of 1.12 mW and hence an energy
consumption Es, when sampling at a frequency of 20 times
per second, of 5.6 μJ for a seismic signal with a maximum
frequency 10 Hz.
For simplicity, the 100 sensor nodes belong to the same

communication cluster. The sink node is located at (5 m,
5 m). Owing to the randomization in the formation pro-
cess of VCs, each simulation is repeated ten times, and the
average results are presented in this section.

7.2 Effects of parameter variation
Four parameters affect the selection of suitable VCs. Two
parameters, ddth and Max_Num, determine the formation

of VCs. The parameter dpth determines which VCs are
usable, while Min_Num selects which VCs are suitable.
These four parameters affect both the signal estimation
accuracy and the energy consumption.
Figure 6 shows the effect of variation in ddth and

Max_Num on estimation accuracy and energy consump-
tion, while dpth is set to be 20 m and Min_Num is set to be
1 (i.e., all usable VCs are suitable).
Because the duration of sampling periods will be dif-

ferent in the simulation with the different parameters for
a VC, in Figure 6, the average energy consumption, i.e.,
EWSN/R, is found out through comparison.
Owing to a constant dpth, MSE is determined by the num-

ber of nodes in a suitable VC. When ddth is small (such as
5 to 10 min the results shown here), the number of nodes
in each suitable VC is determined by ddth as Max_Num
is not exceeded. However, when ddth is large, the num-
ber of nodes is determined by Max_Num. Hence, these
parameters are coupled in determining the number of
nodes in a VC. An increase of the number of nodes in a
suitable VC (hence an increase in ddth and/or Max_Num)
results in a decrease of MSE, as more nodes are con-
tributing toward the estimation process. This is shown in
Figure 6a. However, as the number of nodes in a suitable
VC increases, the number of suitable VCs decreases. This
means that T ′ decreases, and hence, the energy saving
factor R decreases. This is shown in Figure 6b.
Figure 7 shows the impacts of varying Min_Num and

dpth on MSE and energy consumption, while ddth and
Max_Num are set to be 15 m and 15, respectively.
As dpth and Min_Num do not affect the VC formation

process, VCs are the same regardless of the two parame-
ters varied in these results. VCs are deemed to be suitable;
however, they are affected by these parameters.
The results in Figure 7 show that MSE decreases when

the number of nodes in a suitable VC increases; hence, an
increase of Min_Num leads to a decrease of MSE. Also, as

a b

Figure 6 Impact of the radius ofVC(dd
th) andMax_Num. (a) Impacts on MSE; (b) impacts on energy consumption.
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a b

Figure 7 Impacts of distance threshold (dp
th) andMin_Num. (a) Impacts on MSE; (b) impacts on energy consumption.

expected, a smaller value dpth leads to a lower MSE (nodes
closer to the event can reconstruct the signal with greater
accuracy, as presented by Vuran et al. [9]). This is shown
in Figure 7a.
The results of Figure 7 also show that an increase of

the number of nodes in a VC leads to an increase of the
energy consumption. Therefore, an increase of Min_Num
leads to an increase of the energy consumption as each
suitable VC contains more nodes. The impact of dpth on
energy consumption, however, is not so clear. An increase
of dpth causes an increment of the number of the suitable
VCs, which reduces energy consumption as R and hence
T ′ increases. However, the number of suitable nodes also
increases, which can cause an increase of the average
energy consumption.
The simulation results shown in Figures 6 and 7 comply

with Lemmas 1 and 2. When the proposed algorithm is
used in real deployments, ddth can be set to be a larger value
which will improve energy efficiency. And Max_Num is
set to be the expected value which can assure the esti-
mation signal. The selection of dpth and Min_Num should
satisfy the requirement of estimation accuracy. The VC

formation process can apply to both dense and sparse
networks.

7.3 Comparison of different schemes
Different sampling schemes (such as those presented in
Section 2) use different criteria to select the active nodes,
which ultimately have an effect on the estimation error
and energy efficiency. Two state-of-the-art schemes were
presented in [15,16,18], which have similar objectives with
the scheme presented in this paper. To illustrate the ben-
efits of the scheme presented in this paper, these three
schemes aremade comparison. In [16], the network is split
into a number of circular areas (not dissimilar from that
shown in Figure 2). A single node in each of these areas is
selected as a ‘representative node’ (referred to as a sampler
node in [18]) which samples the event signal and trans-
mits data to a sink node. In [15], the authors presented
a different scheme, whereby selected sensor nodes are
those close to the event location. The authors concluded
that only 15 to 20 sensor nodes can accurately estimate
a signal in a 900 m2 field with 5 m × 5 m grid sensor
topology.

a b

Figure 8 Comparison of the different schemes with a changing topology. (a) Comparison of MSE; (b) comparison of energy consumption.
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For convenience, we name the scheme in [16] as RN
(representative nodes) and the scheme in [15] as CN (con-
centrated nodes). The estimation method in CN is the
same as that of in RN when the channel noise is ignored.
To implement RN, we apply the concept of VCs. From

the perspective of VC, a center node is a representative
node. All center nodes which are adjacent to the event join
in the estimation process as representative nodes.
The average energy consumption of each sample pro-

cess is used to make comparison. For RN and CN, energy
consumption is

EWSN = Es × N × R + (ET + ER) × H × R, (33)

where N is the number of sensor nodes which join in
the sampling process and H is the hops sum from these
sensor nodes to the sink node. Figure 8 compares MSE
and energy consumption of RRSS, RN, and CN in differ-
ent WSNs. In the simulation, dpth = 15 m, ddth = 15 m,
Max_Num = 15, andMin_Num = 1. The number of nodes
in CN is set to be 19. Each WSN is deployed with from 2
m × 2 m to 6 m × 6 m grid sensor topology.
Figure 8a shows that RRSS and CN provide a similar

estimation error. The estimation error of RN is greater.
Figure 8b shows that CN will consumemore energy. RRSS
and RN consume similar energy, and both schemes con-
sume less energy than that of CN. Therefore, a conclusion
can be drawn that RRSS consumes less energy while pro-
viding an accurate estimation. RN and CN are only able to
provide promising results for either in the field of energy
consumption or in field estimation error.While RRSS pro-
vides a mechanism for balancing energy consumption (as
analyzed theoretically in the previous sections), RN and
CN do not consider this. Hence, energy balancing is not
considered in this section.

8 Conclusions
The estimation error and energy conservation are ofmajor
importance to data acquisition in a WSN. In this paper,
based on the concept of VC, we present a novel framework
to accurately estimate the event signal while maintain-
ing the energy-efficient operation being balanced across
the network. The novelty of the scheme presented in this
paper is the utility of VC. A VC clusters sensor nodes
with the same spatial and temporal properties for sig-
nal estimation. Based on the analysis, one suitable VC
can guarantee the estimation accuracy of the event signal.
Through the scheduling of suitable VCs, energy consump-
tion of sensor nodes in each suitable VC is balanced.
Finally, as most communication is limited in each VC,
the energy consumed through communication is also con-
served. The upper and lower limits of the number on
members in each VC are used in the forming process.
The upper limit is used to average the scale of VCs, a
better balance of energy consumption to be provided.

The lower limit guarantees that there are enough sensor
nodes in each VC; hence, the estimation accuracy can be
guaranteed. Through adjusting these two parameters, the
algorithm acquires better flexibility for adapting to dif-
ferent WSNs. At present, the proposed scheme assumes
fixed-point events without any movement. This will be
addressed in our future work, where we will consider the
dynamic selection and scheduling of suitable nodes.
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