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Abstract

Tone reservation (TR) is one of the attractive techniques to reduce peak-to-average power ratio (PAPR) in
orthogonal frequency division multiplexing system. As conventional TR technique requires exhaustive searching
over all the combinations of the given peak reduction tone (PRT) sets, it results in computational complexity that
increases exponentially with the number of the subcarriers. In this paper, we aim to obtain a desirable PAPR
reduction with low computational complexity. Since the process of searching the optimal PRT set can be
categorized as combinatorial optimization with some variables and constraints, we propose a novel scheme, which
is based on a nonlinear optimization approach named as invasive weed optimization method, to search the
optimal combination of PRT set with low complexity. To validate the analytical results, extensive simulations have
been conducted, showing that the proposed schemes can achieve significant reduction in computational
complexity while keeping good PAPR reduction. As results of simulations, the proposed scheme shows almost the
same PAPR reduction performance as compared with the genetic algorithm-based TR method which has been
known to have the best performance and obtains near-optimal PRT sets.

Keywords: Orthogonal frequency division multiplexing; Peak-to-average power ratio reduction; Tone reservation;
Invasive weed optimization
1 Introduction
Orthogonal frequency division multiplexing (OFDM) has
been attracting substantial attention due to its excellent
performance under severe channel condition [1-4]. OFDM
has been standardized in many wireless applications with
high-speed data transmission such as terrestrial digital
audio broadcasting and digital video broadcasting [2] and
also has been implemented in wireless local area networks
and wireless metropolitan area networks due to its robust-
ness to multipath fading and bandwidth efficiency and
other advantages. However, some challenging issues still
remain unresolved in design of OFDM systems. One of the
major problems is its sensitivity to peak-to-average power
ratio (PAPR) of transmitted signals, and some schemes
have been proposed to reduce the PAPR in OFDM systems
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[3,4]. High PAPR results in a way that an OFDM receiver's
detection efficiency becomes very sensitive to nonlinear
devices used in a signal processing loop, such as digital-
to-analog converter (DAC) and high-power amplifier,
which may severely impair performance due to induced
spectral regrowth and detection efficiency degradation
[5,6]. Therefore, it is very important to accurately identify
PAPR distribution in OFDM systems to work out some
effective measures to curb PAPR.
To reduce the PAPR of OFDM signals, numerous

techniques have been proposed in the literature [3-17].
A comprehensive tutorial review of PAPR reduction
techniques in OFDM systems is summarized in [3,4]. It
is known that clipping [4] is the simplest method, but
it degrades the bit error rate (BER) of the system and
results in out-of-band noise and in-band distortion.
Among all existing techniques of PAPR reduction,
selective mapping (SLM) [7] and partial transmit se-
quence (PTS) [8-10] are very attractive due to their
good PAPR reduction without the restriction on the
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number of subcarriers. However, in SLM technique, the
requirement of multiple IFFT operations increases the
implementation complexity. The PTS technique uses an
iterative routine similar to the trial-and-error method
in finding optimum phase factors that leads to lower
PAPR. However, the PTS technique requires an ex-
haustive search over all combinations of allowed phase
factors, whose complexity increases exponentially with
the number of subblocks. Hence, it achieves consider-
able PAPR reduction without distortion, but the high
computational complexity of multiple Fourier trans-
forms is a problem in practical systems [3,4,8-10]. As a
result, for all these search methods, either computa-
tional complexity is still high or PAPR reduction per-
formance is not good enough.
To alleviate this problem, many PAPR reduction

techniques have been proposed in the literature [3] for
an overview. One of the classical and most popular
techniques is known as tone reservation (TR) since no
data is transmitted over the dedicated subcarriers
[11-17]. In [18], a tone reservation algorithm has been
developed where several subcarriers are set aside for
PAPR reduction. Since the subcarriers are orthogonal,
the additive signal on unused subcarriers causes no dis-
tortion to the data-bearing subcarriers. The TR technique
attracted much attention for reducing PAPR for current
and future OFDM standard systems because TR provides
good PAPR reduction performance without BER perform-
ance degradation and signal distortion. In addition, the TR
technique is simple and effective, and it causes no interfer-
ence to the data signal. TR does not require the exchange
of side information between transmitter and receiver.
However, one of the disadvantages of TR is the in-
crease in mean power of the transmitted signal because
of corrective signal addition. Also, the computational
complexity of the optimization algorithm is to calcu-
late the optimized corrective tones which reduce the
original signal's PAPR [11-15]. Therefore, practically, it
is not realizable for a large number of peak reduction
tone (PRT) set. Moreover, for these schemes, either the
performance in PAPR reduction is suboptimal or the
computational complexity is still high.
To tackle the complexity issue of TR, we formulate

the sequence search of TR as a particular combinatorial
optimization problem. To reduce the complexity for op-
timal peak reduction tone (OPRT) set, some stochastic
search techniques [12-17] have recently been proposed
because they could obtain the desirable PAPR reduction
with a low computational complexity. Hence, the com-
putational complexity is not significantly reduced. As a
consequence, the key question is how to decrease the
complexity while maintaining a PAPR reduction close to
that of OPRT. In this paper, we take a fresh look at TR
for PAPR reduction and propose solutions for both
above-mentioned problems. In order to reduce compu-
tational complexity, some approaches have been pro-
posed recently. Different evolutionary algorithms such
as genetic algorithm (GA) [12] and cross entropy (CE)
method [13] have been used for PAPR applications.
Contrast to GA and CE, invasive weed optimization
(IWO) algorithm [19-24] and particle swarm optimization
[25-28] are inspired from the phenomena of colonization
of invasive weeds in nature which is based on the biology
and ecology of weeds. In this paper, we propose a newly
suboptimal PRT set selection scheme based on a modi-
fied IWO algorithm, which can efficiently reduce the
PAPR of the OFDM signals. In the TR scheme, a small
number of unused subcarriers called peak reduction
carriers (PRCs) are reserved to reduce the PAPR, and
the goal of the TR scheme is to find the optimal values
of the PRCs that minimize the PAPR of the transmitted
OFDM system. The proposed scheme can search the
better combination of the initial PRT set to reduced
PAPR. Simulation results show that the IWO-PRT
optimization scheme can achieve superior PAPR re-
duction performance and at the same time requires far
less computational complexity than the previous
OPRT techniques. The rest of this paper is organized
as follows. In Section 2, a typical OFDM system is
given, the PAPR problem is formulated, and then PRT
is explained. Then, IWO is proposed to search the op-
timal combination of PRT set for reduced PAPR in
Section 3. Sections 4 and 5 discuss the simulation re-
sults and conclusions, respectively.

2 OFDM system model and PAPR definition
2.1 OFDM system model
In an OFDM system, a high-rate data stream is split into
N low-rate streams that are transmitted simultaneously
by subcarriers, where N is the number of subcarriers.
Each of the subcarriers is independently modulated
using phase-shift keying (PSK) or quadrature amplitude
modulation (QAM). Inverse discrete Fourier transform
(IDFT) generates the ready-to-transmit OFDM signal.
For an input OFDM block X = [X0, X1,…, XN − 1]

T, each
symbol in X modulates one subcarrier of { f0, f1,…, fN − 1}.
The N subcarriers are orthogonal, i.e., fn = nΔf, where Δ

f ¼ 1
NT and T is the symbol period. The complex enve-

lope of the discrete-time transmitted OFDM signal in
one symbol period is given by [4]

xn ¼ 1ffiffiffiffi
N

p
XN−1

i¼0

Xie
j2πni=LN ; n ¼ 0; 1; 2;…; LN−1; ð1Þ

L is the oversampling factor, where L = 4, which is
enough to provide an accurate approximation of the
PAPR [4] and xn is the nth signal component in OFDM
output symbol. However, OFDM output symbols typically
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have a large dynamic envelope range due to the superpos-
ition process performed at the IFFT stage in the transmit-
ter. PAPR is widely used to evaluate this variation of the
output envelope. PAPR is an important factor in the
design of both high-power amplifier (PA) and DAC
and for generating error-free (or with minimum errors)
transmitted OFDM symbols and also preventing the
PA to work in nonlinearity region. It is shown in [3,4] that
choosing L = 4 is sufficient to approximate the peak value
of the continuous time OFDM signals.

2.2 Peak-to-average power ratio
The PAPR of the discrete-time baseband OFDM signal is
defined as the ratio of the maximum peak power divided
by the average power of the OFDM signal [3,4,11], which
is referred to as the PAPR, and is defined as

PAPR xð Þ ¼ 10 log10

max
0≤n≤LN−1 xnj j2
E xnj j2� � ; ð2Þ

where max |xn|
2 is the maximum value of the OFDM sig-

nal power, and E[·] denotes the expected value operation.
In principle, PAPR reduction techniques are concerned in
the reduction of max |xn|

2. By applying the central limit
theorem, assuming that the number of subchannels is suf-
ficiently large, the time domain symbol is approximately a
zero-mean complex that is Gaussian distributed and the
power distribution becomes a central chi-square distribu-
tion with two degrees of freedom.

2.3 Tone reservation scheme to reduce the PAPR
In this paper, we consider the selection of the OPRT set
for tone reservation [11-18,29-31] scheme to reduce
the PAPR of an OFDM signal. TR scheme requires a
sacrifice in data transmission efficiency because some
subcarriers in an OFDM symbol should be reserved as
peak reduction tones which are used only to reduce
PAPR without carrying data. The size of PRT plays a
critical role in TR scheme. To achieve lower PAPR,
more subcarriers should be reserved as PRTs which
reduces data transmission efficiency. TR technique is
part in the reduction of the PAPR of an OFDM signal
by reserving a few tones within the transmitted bandwidth
and by assigning them the appropriate values [18,29,30].
In this paper, we formulate the optimal PRT set selection
problem as a constrained combinatorial optimization
and propose the application of the IWO method [19] to
solve the problem.
In order to reduce the PAPR of OFDM signal using

tone reservation scheme, some subcarriers are reserved
as peak reduction tones set which are used to generate
peak-canceling signal. In the TR-based OFDM scheme,
peak reduction tones are reserved to generate PAPR
reduction signals. These reserved tones do not carry
any data information, and they are only used for re-
ducing PAPR. Specifically, the peak-canceling signal
C = [C0,C1,…,CN − 1]

T generated by reserved PRT is added
to the original time domain signal X = [X0, X1,…, XN − 1]

T

to reduce its PAPR. The PAPR-reduced signal can be
expressed as [11-13]

Y ¼ xþ c ¼ Ω Xþ Cð Þ ð3Þ

where c =ΩC is the peak-canceling signal in the time
domain and C = [C0,C1,…,CN − 1]

T is the avoid signal
distortion; the data vector X and the peak reduction vector
C lie in disjoint frequency domains, and X and C are not
allowed to be non-zero on the same subcarriers, that is

Xn þ Cn ¼ Xn; n ∈RC ;
Cn; n ∈R;

�
ð4Þ

where R = {i0, i1,…, iM − 1} denotes the index set of the
data-bearing tones (subcarriers), RC denotes the index set
of the complementary set of R in N = {0, 1,…,N − 1}, and
M < N is the size of peak reduction tone set. With the
TR scheme, the PAPR of the peak-reduced OFDM signal
Y = [ y0, y1,…, yN − 1]

T is then redefined as [11-13]

PAPR Yð Þ ¼
max xn þ cnj j2

0≤n≤N−1

Ε xnj j2� � : ð5Þ

The PAPR reduction performance of the TR scheme
mainly depends on the size of the PRT set, the max-
imum number of iteration, and the selection of PRTs.
Thus c must be chosen to minimize the maximum of
the peak-reduced OFDM signal Y, i.e.,

c optð Þ ¼ argminmax xn þ cnj j2
C 0≤n<N

: ð6Þ

To compensate for this effect, we may simply follow an
approach similar to [12], to obtain the PRT sets. In this
paper, to obtain the optimum c(opt), Equation 7 can be
reformulated as the following optimization problem:

min
C

E;

subject to E ≥ 0;
xn þ cnj j2≤E;

ð7Þ

which is a quadratically constrained quadratic program
(QCQP) problem [11] and E is an optimization param-
eter. In order to find the optimal values of the PRCs,
the TR optimization problem can be formulated as a
QCQP problem. However, computing the exact solu-
tion to this QCQP problem is generally challenging.
Therefore, the focus of the work is on the second ap-
proach. To reduce the complexity of QCQP, Tellado in
[11] proposed a simple gradient algorithm to provide
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an approximate solution with reduced complexity. This
iterative algorithm is used in this paper because of its
low complexity. Although the optimum of a QCQP ex-
ists, the solution requires a high computational cost of
O(NsN

2L), where Ns is a complex number space. However,
several low-complexity methods have been proposed
[11-13,18] and have achieved sufficient accurate subopti-
mal solutions. Although the optimum of a QCQP exists,
the solution requires a high computational cost. To reduce
the complexity of the QCQP, Tellado in [11,18,30] pro-
posed a simple gradient algorithm to iteratively approach
c and to update the vector as follows:

c iþ1ð Þ ¼ c ið Þ−αip k−kið Þð Þn
� � ð8Þ

where αi is a scaling factor relying on the maximum peak
found at the ith iteration, p = [p0, p1,…, pN − 1]

T is called
the time domain kernel, and p = [((k − ki))N] denotes a
circular shift of p to the right by a value ki, where ki is
calculated by

ki ¼ arg max xk þ c ið Þ
k

��� ���
k

ð9Þ

For ease of presentation, the time domain kernel is
expressed as

P ¼ p0; p1;…; pN−1½ �T ¼ ΩP ð10Þ
where P = [P0, P1,…, PN − 1]

T, Pn ∈ {0, 1} is called the fre-
quency domain kernel whose elements are defined by

Pn ¼ 0; n ∈ RC

1; n ∈ R

�
ð11Þ

Then, the optimal frequency domain kernel P corre-
sponds to the characteristic sequence of the PRT set R,
and the maximum peak is always p because it is a {0, 1}
sequence. The PAPR reduction performance depends on
the time domain kernel P, and the best performance can
be achieved when the time domain kernel p is a discrete
impulse because the maximum peak can be canceled
without affecting other signal samples at each iteration.
However, in order for the time domain kernel to be a
discrete impulse, all the tones should be allocated to the
PRT set. As the number of reserved tones becomes larger,
the PAPR reduction performance is improved, but the
data transmission rate decreases.
After I iterations of this algorithm, the peak-reduced

OFDM signal is obtained:

Y ¼ xþ c Jð Þ ¼ x−
XI

i¼1

aip k−kið Þð ÞN
� � ð12Þ

From Equations 8 to 12, it can be found that the PAPR
reduction performance of the TR-based OFDM system
depends on the selection of the time domain kernel,
which is only a function of the PRT set. When there is
a single discrete pulse, the best PAPR reduction per-
formance can be obtained because the maximal peak
at location can be canceled without distorting other
signal samplings. However, it is impractical because a
single discrete pulse will result in all tones being
assigned to the PRT set. So we should select the time
domain kernel such that it not only reduces the peak
at location but also suppresses the other big values at
location. To find the optimal PRT set, in mathematical
form, we require solving the following combinatorial
optimization problem:

R� ¼ arg min
R

p1; p2;…; pN−1½ �T�� ��
∞ ð13Þ

where ‖·‖j denotes the j-norm and ∞ − norm refers to
the maximum values. It is known that this problem is
NP-hard because the time domain kernel p must be
optimized over all possible discrete sets R [30]. which
requires an exhaustive search of all combination of
possible PRT set, i.e. possible combination numbers of
PRT set are searched, where denotes the binomial
coefficient. It is a non-deterministic polynomial time
(NP)-hard problem and cannot be solved for the num-
ber of tones envisaged in practical systems. In [18,30],
the consecutive PRT set, the equally spaced PRT set,
and the random PRT set optimization were proposed
as the candidates of PRT set. Although the consecutive
PRT set and the equally spaced PRT set are the sim-
plest selections of PRT set, their PAPR reduction per-
formance are inferior to that of the random PRT set
optimization. However, the random PRT set optimization
requires a larger PRT set sampling, and the associated
complexity limits the application of such a technique.
A variance minimization method in [31] is developed
to solve the NP-hard problem, and it is just a modified
version of the random PRT set optimization, which also
has the drawback of high computational cost. In [15], a
cross entropy method was proposed to solve the problem.
It obtains better results than the existing selection
methods, but it requires a larger population or sampling
size. These limitations of the existing methods motivate us
to find an efficient method to obtain a nearly optimal PRT
set. As mentioned before, we propose an IWO-based PRT
set selection method for the purpose of having a very low
computational complexity.

2.4 PRT position search based on IWO algorithm
A detailed description of the IWO used for searching
the nearly optimal PRT set positions is described as fol-
lows. An initial population of plants (weed) is randomly
generated. Each plant sequence is a vector of length
N, and each element of the vector is a binary zero or
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one depending on the existence of a PRT at that position
(one denotes existence and zero denotes non-existence).
The number of the PRT in each binary vector is M < N.
The S plants are denoted as {A1,A2,⋯,As}. Each Au is a
binary vector of length. For each plant Au, the PRT set Ru
is the collection of the locations whose elements are one.
Then, the frequency domain kernel corresponding to the
PRT set is obtained using Equation 11, and the time
domain kernel Pu ¼ pu0 ; p

u
1 ;⋯; puN−1

� �
is obtained using

Equation 10. The merit (secondary peak) of the sequence
is defined as [12]

m Auð Þ ¼ pu1 ; p
u
2 ;…; pN−1

� �T��� ���
∞
: ð14Þ

The T sequences (called elite sequences) with the lowest
merits are maintained for the next population generation.
The best merit of the sequences is defined as

m̂ ¼ min
1≤u≤N

m Auð Þ: ð15Þ

3 Minimizing PAPR using modified invasive weed
optimization-based PRT set
3.1 IWO algorithm
In recent years, Mehrabian and Lucas proposed a novel
population-based stochastic search method called IWO
mechanism to achieve global optimization [19]. IWO is
a numerical stochastic optimization technique inspired
by the colonization of weeds. As a result of investiga-
tion, weeds have shown to be very robust and adaptive
to changes in the environment, where capturing their
properties leads to a very powerful optimization tech-
nique [19-25]. Most importantly, the IWO method has
shown its robustness in practice. Hence, by applying the
IWO algorithm into the PRT scheme, it could provide a
way to reduce the PAPR of OFDM transmitted signal.
The performance evaluation of the proposed scheme for
PAPR reduction and computation complexity is given in
this paper. We show that not only the PAPR is reduced
but also the complexity and processing time is de-
creased. However, to our knowledge, IWO [19-24] has
not yet been used for the same purpose till now. In this
work, we extend the classical IWO algorithm for hand-
ling PAPR problems. We propose a hybrid schedule to
decrease the variance of the seed populations in IWO
and also use the concept of particle swarm optimization
(PSO) [25-28] for choosing the best maximum number
of population members that will survive to the next
generation.
IWO, first designed and developed by Mehrabian and

Lucas [19], is a relatively novel numerical stochastic
optimization algorithm inspired from colonization of
invasive weeds. A weed is any plant growing where it is
not wanted; any tree, vine, shrub, or herb may qualify
as a weed in any specified geographical area, depending
on the situation. Weeds have shown a very robust and
adaptive nature that renders them undesirable plants
in agriculture. In a D-dimensional search space, a weed
which represents a potential solution of the objective
function is represented as p = (p1, p2,…, pN − 1). Firstly,
p weeds, called a population of plants, are initialized
with random growth position, and then each weed pro-
duces seeds depending on its fitness and the colony's
lowest fitness and highest fitness to simulate the natural
survival of the fittest process. The number of seeds each
plant produces increases linearly from minimum pos-
sible seed production to its maximum; the generated
seeds are being distribution randomly in the search area
by normal distribution with mean the equal to zero and
a variance parameter decreasing over the number of it-
eration. By setting the mean parameter equal to zero,
the seeds are distributed randomly such that they locate
near the parent plant, and by decreasing the variance over
time, the fitter plants are grouped together and in-
appropriate plants are eliminated over time. The general
scheme for the IWO algorithm is shown in Algorithm 1,
which consists of four main procedures: initialization,
reproduction, spatial dispersal, and competitive exclusion
operator, respectively. [20-24]:
Algorithm 1 Invasive weed optimization algorithm 1
The produced seeds in this step are being dispread
over the search space by normally distributed random
numbers with the mean equal to the location of the
producing plants and varying standard deviations. The
standard deviation (SD) at the present time step can be
expressed by

piter ¼
iterMAX‐iterð Þn
iterMAXð Þn

� 	
pinitial−pfinalð Þ þ pfinal; ð16Þ

to generate a new feasible population by randomly adding
or removing PRTs, where iterMAX is the maximum num-
ber of iterations, witer is the SD at the present time step,
and n is the nonlinear modulation index. This alter-
ation ensures that the probability of dropping a seed in
a distant area decreases non-linearly at each time step,
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which results in the grouping of fitter plants and the
elimination of inappropriate plants. Figure 1 shows the
standard deviation over the course of a run with 200 it-
erations and different modulation indexes.

3.2 Particle swarm optimization
Kennedy [26] invented PSO as one of the most powerful
members of the class of stochastic search techniques in
2001. They are originally defined to solve NP-complete
problems. However, two optimization techniques are
compared in this section. One advantage of PSO [27]
over the GA is its algorithmic simplicity. A GA comprises
parameters of its major operators which are crossover,
mutation, and elitism. The parameters are population size,
probability of mutation, probability of crossover, and selec-
tion. However, PSO has one simple operator, velocity calcu-
lation. The benefit of having a small number of operators is
the reduction of computation and the elimination of the
need to select the best operator for a given optimization.
Another difference between the PSO and GA is the ability
to control convergence. Mutation and crossover rates can
subtly affect the convergence of the GA, but not as effect-
ively as the inertial weight. Fogle [27] indicated that the
decrease of inertial weight significantly increases the
swarm's convergence. This type of control allows its use
to determine the rate of convergence, and the final level of
stagnation is ultimately achieved. Stagnation occurs in the
GA when eventually all the individuals possess primarily
the same genetic code. In that case, the gene pool is so
homogeneous that crossover has little or no effect, and
each successive generation is the same as the first.
In this context, the population is called a swarm and

the individuals are called particles. Resembling the social
behavior of a swarm of bees to search the location with
the most flowers in a field, the optimization procedure
of PSO is based on a population of particles which fly in
the solution space with velocity dynamically adjusted
Figure 1 Standard deviation over the course of the run.
according to its own flying experience and the flying
experience of the best among the swarm. During the
PSO process, each potential solution is represented as
a particle with a position vector and a moving velocity rep-
resented as x and v, respectively. Thus for a K-dimensional
optimization, the position and velocity of the jth par-
ticle can be represented as xj = (xj,1, xj,2,…, xj,K) and
vj = (vj,1, vj,2,…, vj,K). Like a GA, the PSO also begins
by generating a population of particles at random. At
each time step, an associated value for each particle is
evaluated in accordance with a function called the fitness
function which is critically defined and configured from a
consideration of the search objective. The value normally
called the fitness indicates the goodness of the solution.
The position of the individual best fitness which the
ith particle has been achieved so far; that of the highest
fitness which has been obtained among all the particles
in the population so far are known as the personal best
(denoted as xbestj ) and the global best (denoted as xbest),

respectively, and both are stored to generate the new
velocity of jth particle. During the process, each particle
adjusts its velocity according to its own experience, and
the position of the best of all particles moves toward the
best solution.
In the meantime, a condition is also set during the fol-

lowing step which controls the algorithm when it stops by
either setting it to obtain an acceptable target solution or
to run for a set maximum number of search iterations G.
If the algorithm does not stop, after a time step, Δt, the
new velocity vi(t +Δt) for particle i is updated by

vi t þ Δtð Þ ¼ w � vi tð Þi þ c1 � randðÞ � xbesti tð Þ−xi tð Þ

 �

þc2 � randðÞ � xbest tð Þ−xi tð Þ
 �
;

ð17Þ

where vi(t) is the old velocity of particle i at time t.
Significantly, in the real implementation of a PSO, time
t and t + Δt generally represent the current and next
iterations, respectively, so Δt in Equations 17 and 18 is
always omitted in most literature. This equation clearly
indicates that the new velocity is related to the old vel-
ocity weighted by w(t) and is also associated with the
position of the particle itself and of the global best one
by factors c1 and c2, respectively. The parameters c1 and c2
which are set to constant value are therefore known as
the cognitive and social rates, respectively, since they
represent the weighting of the acceleration terms that
pull the individual particle toward the personal best and
global best positions. The inertia weigh w in Equation 17
is employed to manipulate the impact of the previous
history of velocities on the current velocity. Conversely,
in the later stages, convergence toward the global optima
should be enhanced to find the optimum solution
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efficiently. Therefore, w resolves the trade-off between
the global and local exploration ability of the swarm.
Ratnaweera et al. [28] introduced time-varying acceler-
ation coefficient, which reduces the cognitive component
and increases the social component of acceleration co-
efficient. For the purpose of intending to simulate the
slight unpredictable component of the natural swarm
behavior, two random functions rand() are applied to
independently provide uniformly distributed numbers
in the range [0,1] to stochastically vary the relative pull
of the personal and global best particles. Based on the
updated velocities, new position for particle j is computed
according the following equation:

xj t þ 1ð Þ ¼ xj tð Þ þ vj t þ 1ð Þ: ð18Þ

The populations of particles are then moved according to
the new velocities and locations calculated by Equations 17
and 18 and tend to cluster together from different di-
rections. Thus, the evaluation of each associate fitness
values of the new population of particles begins again.
The algorithm runs through these processes iteratively
until it stops. In Equation 17, the inertial weight factor
provides the necessary diversity to the swarm by changing
the momentum of particles and hence avoids the stagna-
tion of particles at the local optima. Usually, it needs to
define a maximum velocity for each modulus of velocity
vector, which is often set as the upper limit of each modu-
lus of position vector. This helps to control the unnecessary
excessive roaming of particles outside the predefined search
space. The role of w is considered critical for the conver-
gence behavior of PSO. Given a user-specified maximum
weight wmax and a minimum weight wmin, the inertial
weight w is updated as the following monotonically
decreasing function of the iteration g:

wgþ1 ¼ wg þ wmin−wmaxð Þ
Gmax

; ð19Þ

where Gmax is the predefined maximum number of it-
erations and g is the iteration number. It has been
demonstrated that 0.9 for wmax and 0.4 for wmin can
greatly improve the performance of PSO.

3.3 The hybrid IWO/PSO algorithm
IWO and PSO algorithms are both derived from biologic
behavior. Although these algorithms go through similar
evolution processes, including selection, reproduction,
recombination, and mutation, they are two approaches
with different propagation methods. In the hybrid algo-
rithm, the IWO algorithm plays the role of guiding the
evolution and the PSO algorithm works as an assistant.
The interaction between the dispersion method of the
IWO algorithm and the velocity of the PSO algorithm
controls the balance between local exploitation and global
exploration in the problem space. The process of the
hybrid algorithm is formulated in detail as follows:

Step 1. Seeds are produced. First, the variables that need
to be optimized should be determined. Each variable is
initiated in its solution space. The solution of each
variable is a particle, and a set of particles for the
variables form a seed; i.e., each seed is an initial solution
of the problem. A number of seeds constitute a colony.

Step 2. Seeds grow into plants. Each seed is assessed
according to its fitness value, which is obtained from
the fitness function defined to represent the
goodness of the solution. After the fitness value is
assigned to the corresponding seed, the seed grows
into a flowering plant, i.e., a weed.

Step 3. Each plant finds its position in the colony.
A group of plants are ranked based on their fitness
values. The ith plant denotes the ith initial position,
which is pbest. The most satisfactory fitness value is
the best position of the colony gbest.

Step 4. The velocities and positions of all plants are
modified. The next velocities and positions of all
plants are renewed based on Equations 17 and 18:

vi t þ Δtð Þ ¼ w� vi tð Þi þ c1 � randðÞ � xbesti tð Þ−xi tð Þ

 �

þ c2 � randðÞ � xbest tð Þ−xi tð Þ

 �

;

and xi t þ 1ð Þ ¼ xi tð Þ þ vi t þ 1ð Þ:
where t is the iterative time, vi and xi are the velocity
and position of the ith plant, respectively, w is the
inertia weight, and c1 and c2 are the learning factors.

Step 5. The flowering plants produce new seeds. The
number of seeds produced by each plant depends on
its fitness value ranking and decreases from the
maximum possible seed production Θmax to the
minimum Θmin.

Step 6. The seeds are dispread over the solution space by
normally distributing random numbers with mean
equal to the locations of the producing seeds and
varying standard deviations. The SD at the present
time step can be expressed as Equations 16 and 20:

piter ¼
iterMAX‐iterð Þn
iterMAXð Þn

� 	
pinitial−pfinalð Þ þ pfinal

xi t þ 1ð Þ ¼ xi t þ 1ð Þ þ rand� piter
ð20Þ

where itermax is the maximum number of iterations,
pinitial and pfinal are the initial and final standard
deviations, respectively, and n is the non-linear
modulation index.

Step 7. The new seeds are ranked with their parents
based on their fitness values and find their positions
in the colony. The seeds with a higher ranking grow
into flowering plants, and those with a lower
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ranking in the colony are eliminated to reach the
maximum number of plants in the colony.

Step 8. The surviving seeds can produce new seeds
based on their ranking in the colony. The
process is repeated until either the maximum
Algorithm 2 Invasive weed opt
number of iterations is reached or the fitness
criterion is met.

Therefore the proposed IWO-PSO-based PRT position
search algorithm can be summarized in Algorithm 2:
imization algorithm 2
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4 Results and discussions
Let us now proceed to the application of the IWO-based
tone reservation method in OFDM PAPR reduction.
In the simulations, we consider an OFDM system with
N = 64,128 and 256 subcarriers; data symbols are
modulated using the QPSK and16-QAM constellation,
and the number of reserved PRT set is at W = 8 and 16,
respectively. In order to generate the complementary cu-
mulative distribution function (CCDF) = (PAPR > PAPR0)
of the PAPR, 10−4 OFDM blocks are generated ran-
domly, where the transmitted signal is oversampled by
a factor of L = 4.
Figure 2 compares the average PAPR reduction per-

formance of the IWO-TR, CE-TR, and GA-TR with the
PRT set for the same iteration numbers. Figure 2 shows
that the average PAPR reduction performance of the
IWO-TR algorithm is better than those of CE-TR and
GA-TR with different modulations. When the iteration
number equals 120, the IWO-TR algorithm converges
to 5.8 dB PAPR with 16-QAM. Although the GA-TR
algorithm is almost simple, its convergence speed is
the slowest among the three methods. When the iter-
ation number is 100, its average PAPR is approximately
6.3 dB, which is 0.52 dB larger than the IWO-TR algo-
rithm in 120 iterations. The CE-TR algorithm con-
verges to 6 dB PAPR in 120 iterations, however, which
is approximately 0.2 dB larger than IWO-TR algorithm
in the same iterations. Note that the PAPR perform-
ance of the IWO algorithms and the CE method is
close to optimal. This shows that adding flexibility to
the choice of the number of iterations and modulations
can improve the convergence speed of the algorithm.
Finally, this paper shows the trade-off between the num-
ber of iterations and modulation for the PAPR reduction.
The distribution of the PAPR bears stochastic charac-

teristics in a practical OFDM system, which often can be
Figure 2 Relationship of PAPR reduction with the number of
iterations and modulation for different techniques.
expressed in terms of CCDF. The CCDF itself can be
used to estimate the bounds for the minimum number
of redundancy bits required to identify the PAPR
sequences and evaluate the performance of any PAPR
reduction schemes. Therefore, we mainly discuss the
shapes of CCDF obtained by different searching methods
for the combination of phase factors. In this section, the
system performance with applied proposed IWO-based
PRT scheme is evaluated based on the PAPR CCDF [4]
by computer simulation. The cumulative distribution
function (CDF) of the amplitude of a sampling signal is
computed as CDF = 1 − exp(PAPR0), and the CCDF [2,3]
could be defined as

CCDF ¼ Pr PAPR > PAPR0ð Þ
¼ 1−Pr PAPR≤PAPR0ð Þ ¼ 1− 1− exp −PAPR0ð Þð ÞN :

ð21Þ

In Figure 3, some results of the CCDF of the PAPR are
simulated for the OFDM system with 64 subcarriers and
16-QAM modulation, the number of the reserved tones
W = 8 employing random partition and the numbers of
iterations are used for PAPR reduction. In Figure 3, we
select the GA mentioned, in which the trial of PRT set
combination is randomly generated to compare the
performance of PAPR reduction with that of the IWO
method. It is evident that IWO can provide consistent
improvements of PAPR reduction than GA with some
significant gains in the low PAPR range. In Figure 3,
the CCDFs for OFDM without PAPR reduction and for
optimal PRT with high enumeration are included.
When CCDF = (PAPR > PAPR0) = 10− 4, the PAPR0 of
the original OFDM, GA-, CE- and IWO-TR are 12, 7.2,
6.5, and 6.30 dB with iterations 50, respectively. However,
when Pr(PAPR > PAPR0) = 10− 4, the PAPR performance of
our proposed IWO-based PRT scheme with 30 iteration
not only is almost the same as that of the GA-based PTS
scheme with 50 iteration but is also having a much lower
computational complexity. In general, in order to obtain
an optimal PAPR, a search for the number of iterations
must be accomplished.
As shown in Figure 4, as the maximum number of it-

erations is increased, the CCDF of the PAPR has a bet-
ter performance. The comparison is carried out under
the same conditions of initial population of candidate
solutions and number of iterations. Figure 4 compares
the PAPR reduction performance of the proposed
IWO algorithm based PRT sets, GA, and CE algorithm
for the same iterations. The same maximum iteration
number is set to 50 for GA-TR, CE-TR, and IWO-TR
schemes. When Pr(PAPR > PAPR0) = 10− 4, the PAPR of
the original OFDM is 12.2 dB. Using the GA-TR algo-
rithm, IWO-TR algorithm, and CE-TR algorithm with
128 subcarriers, the PAPRs are approximately reduced
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Figure 3 PAPR CCDF comparison of different maximum numbers of iterations of the IWO method for N = 64, W = 8.
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to 7.23, 7.1, and 6.56 dB, respectively. From Figure 3, it
can be seen that apart from the PAPR by OPTS in [11],
the PAPR reduction performance of the IWO-PTS is the
best among all of the methods for the same or almost the
same search complexity.
Figure 5 shows a comparison of the CCDF of PAPR

for the conventional OFDM, the GA-PRT, the CE-PRT,
and the proposed IWO-PRT set in an OFDM system
with N = 256 subcarriers. Figure 5 illustrates that the
proposed IWO scheme with iteration = 30 outperforms
PA
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Figure 4 PAPR CCDF comparison of different maximum numbers of i
the GA method with iteration = 50 and can achieve al-
most the same PAPR reduction performance as both
the conventional PTS and SD-PTS schemes. Since the
computation complexity reduction ratio increases as
the number of subcarriers, the proposed scheme becomes
more suitable for the high data rate OFDM system.
Next, a fair comparison of the performance-complexity
trade-offs for the different stochastic PTS searching
strategies with N and W, respectively, is provided in
Figures 3, 4, and 5, where the average PAPR reduction
PRO(dB)
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terations of the IWO method for N = 128 and W = 16.
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is the function of the number of sample. It can be seen
that (1) it is beneficial to select more samples so that
the average PAPR reduction performance can be improved,
and (2) the application of the IWO method to solve the
optimum PRT set problem yields an enhanced trade-off
in the low average PAPR range of approximately 6.72
and 8.76 dB for W= and W = 16, respectively. Therefore,
in this case, we proposed an improved TR scheme, which
is based on the TR algorithm, to reduce the PAPR of
OFDM system. In summary, based on the proposed
IWO searching for the optimal combination of PRT
set, we conclude that (1) the proposed IWO method
can reduce the computational complexity as shown in
Figures 3, 4, and 5, and (2) the proposed IWO method
Figure 6 Average PAPR reduction comparison of the proposed schem
can obtain almost the same PAPR reduction as that of
optimal PRT sequences illustrated in Figure 2.
In Figure 6, we compare the PAPR reduction perform-

ance of the IWO-PRT with different modulations, with
the same size of population P = 30, and with the same
maximum iteration number I = 30 for W = 16. When
sampling = 3,000, the average PAPR of the GA-PRT
with QPSK and 16-QAM are 8.12 and 7 dB, respect-
ively. The average PAPR by the IWO-PRT with QPSK
and 16-QAM are 7.2 and 4.85 dB, respectively. From
Figure 6, it can be discovered that the difference of the
PAPR between QPSK and 16-QAM is important. Little
performance improvement can be obtained by different
modulation schemes.
e with different modulation QPSK and QAM.
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5 Conclusions
This paper presents an IWO-based method used to search
a nearly optimal PRT set in the TR method for the im-
provement of peak-to-average power ratio performance
of the OFDM system. The aim of this paper is to review
the conventional PAPR reduction schemes and the various
different evolutionary algorithms based on conventional
PAPR reduction schemes to achieve a low computational
complexity. The simulations have been conducted and
proven that IWO is an effective method to yield an en-
hanced trade-off between PAPR reduction and com-
plexity. Since the computational complexity reduction
ratio increases as the number of subcarriers increases,
the proposed scheme becomes more suitable for the
high data rate OFDM systems.
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