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Abstract

Telecommunication consumers are fueling a demand for mobile devices that are rapidly increasing in their
capability to provide a wider range of services. These services in turn are consuming more bandwidth and require
richer quality of service (QoS) in order to ensure a good end user experience when performing activities such as
streaming video content or facilitating voice over IP. As a result, network providers are expanding and improving
their coverage area while technology to establish Wi-Fi hotspots is becoming more accessible to every day users.
This combination of increase in demand and accessibility, coupled with users' ever-increasing expectations for high
quality service presents a growing need to seamlessly optimize the use of the overlaid heterogeneous networks in
urban areas to maximize the end user experience via the use of a vertical handover mechanism (VHO). Grey systems
theory has been used in a wide range of systems including economic, financial, transportation, and military to
accurately forecast time series based on limited information. In this paper, we build on a novel reputation-based VHO
decision rating system by proposing the use of the grey model first-order one variable, GM(1,1), in the handover
decision making progress. The low complexity of the GM(1,1) model allows for a quick and efficient prediction of the
future reputation score for a given network, providing deeper insight into the current state of the target network.
Furthermore, simulations show that the proposed model, in comparison with the original reputation model, improves
the decision capability of a mobile node and helps balance the load across the heterogeneous networks
employing its strategy.

Keywords: Vertical handover (VHO); Heterogeneous networks; Decision; Reputation; Grey model; Grey forecasting;
Quality of service (QoS)
1 Introduction
Large metropolitan cities are increasingly forming eco-
systems for overlaid heterogeneous networks via the
co-existence of 3G/4G networks, Wi-Fi hotspots, and
WiMAX networks to name a few. Furthermore, mobile
devices accessing these networks are exponentially
growing in their ability to consume services which are
bandwidth and latency intensive, such as video stream-
ing and video chatting. In order to optimize the end
user's experience while navigating through this abun-
dance of distinct network access points, the IEEE
802.21 standard [1] was defined, providing a framework
for the identification and solicitation of new networks
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and the mechanism for the actual handover between
networks. A key aspect of the vertical handover (VHO)
solution which is not covered by this standard is the
decision making algorithm itself, which has been the
focus of much debate and in which a variety of pro-
posals have been put forth.
In the literature, three general categories of decision

making solutions can be observed: solutions based on
network conditions, multiple attribute algorithms, and
artificial intelligence. In network condition-based solu-
tions, the typical examples leverage the receiver signal
strength (RSS) or the signal-to-interference-and-noise
ratio (SINR) measured by the mobile node. In [2], the
latter was analyzed in relation to the RSS of the mobile
node, yielding an overall higher throughput experienced
by the mobile node user. The drawback with using the
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network condition approach, as indicated in [3], is that
this results in an inefficient power solution as the mo-
bile node must keep both interfaces active in order to
measure when the conditions are right to perform the
VHO. Furthermore, the quality of service (QoS) extrap-
olated from the target network by the mobile is not ne-
cessarily accurate as there is no understanding of the
current load or resource utilization.
In multiple attribute solutions, the authors improve

upon the QoS perceived by the mobile node in the net-
work selection process through the use of multiple attri-
bute decision maker (MADM) algorithms which leverage
multiple network conditions and performance metrics. In
[4], this was accomplished using the analytical hierarchical
process (AHP) to assign weights against the alternative
networks in relation to the current network, and tech-
nique for order preference by similarity to an ideal solu-
tion (TOPSIS) was employed to select the best option. In
this experiment, criteria such as cost per byte, total band-
width, allotted bandwidth, utilization, delay, jitter, and
packet loss were used to assess the QoS. In comparison
with the network condition approach, this method per-
forms much better, but the solution to implement it is
much more complex. As a result, this could yield higher
delays as the mobile node requires more time to process
the algorithms necessary to make the decision, as was ob-
served in [5].
The most popular implementations of VHO decision

algorithms using artificial intelligence (AI) are through
the use of fuzzy logic or neural networks. In [6], the au-
thors use fuzzy logic in association with a TOPSIS
MADM model. In order to make a decision which opti-
mizes the QoS experienced by the user, the TOPSIS
model uses resource availability, RSS, mobile node speed,
network type, network link business cost, and security as
criteria in the analysis. In comparing this technique to the
network-condition based solutions, a significant perform-
ance gain is seen with the tradeoff resulting in an in-
creased handover delay due to the high complexity of the
solution [5].
Through the review of the literature, a novel handover

mechanism using reputation scores was observed in the
work from Zekri et al. in [7]. In this paper, we build on
this scheme by leveraging the grey model first-order one
variable (GM(1,1)) prediction algorithm, first proposed
in [8] by treating these network scores, which represent
the overall QoS of the network, as input into the predic-
tion model. Through using this algorithm, we anticipate
that the mobile node will be able to better judge whether
the target network is more desirable than the current
based on the latest trend in offered QoS and that the
heterogeneous ecosystem of networks should be able to
better balance the traffic across the networks. In Section
2, the theory relevant to the reputation model and the
GM(1,1) process is discussed. In Section 3, the details
on how the GM(1,1) algorithm is used in conjunction
with the reputation model are presented. Subsequently,
Section 4 covers the simulation and network configur-
ation for the experiments, and Section 5 reviews the
simulation results. Finally, the conclusion is presented
in Section 6.

2 Related theory
2.1 VHO using network reputation
In order to minimize the computations calculated by the
mobile node in the actual decision process, a novel ap-
proach was proposed in [7] for a UMTS and WLAN
overlaid network. This work serves as the basis of our
proposed implementation and as such the theory is
reviewed here in detail. The key aspect of this system is
that the majority of complex calculations required to fa-
cilitate the decision are carried out prior to the actual
decision point. This is enabled by defining two types of
agents in the overlaid network:

� Mobile reputation agent: Each mobile node in the
ecosystem has a reputation agent. The purpose of
these agents is to collect real-time performance
metrics upon entering and leaving the respective
network in order to calculate sample reputation
scores. The reputation score is evaluated as either
good or bad and then sent to the network reputa-
tion agent for aggregation. Furthermore, this agent
coordinates in obtaining the current network
scores from the target and current network for
decision evaluation.

� Network reputation agent: Each distinct network in
the ecosystem has one network reputation agent.
The purpose of this agent is to aggregate scores
received by all the mobile nodes utilizing its
associated network and to provide the current
aggregate score upon request.

In light of the above, the initial question which comes
to mind is ‘How does one determine whether the score
is good or bad?’. In order to facilitate this choice, the cal-
culated score, Qn, must be compared against a threshold
score, Qth, which is used as a basis of comparison. The
actual and threshold scores themselves are built using
the key performance metrics used to quantitatively meas-
ure the QoS levels of a network, specifically, bit error rate
(ber), delay (del), jitter (jit), and bandwidth (bw). Depend-
ing on the class of service (CoS) in question, the Qth is cal-
culated accordingly, since the minimum requirements of
each CoS vary greatly and put importance on different
metrics within the list. As such, since the Qth is represen-
tative of a CoS and does not change, its value can be cal-
culated once beforehand.
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In building the score, a specific weight is assigned to
each QoS performance metric, depending on the applic-
able CoS in question through the use of the AHP. Spe-
cifically, each QoS metric is correlated to a goal of a
CoS; subsequently, through the use of the fundamental
1 to 9 AHP scale to denote relative importance [9], the
goals are prioritized in relation to each other within a
CoS. Assume pij is the prioritization of Goal i, Gi, in
comparison to Goal j, Gj, where {i, j} ϵ {ber, del, jit, bw},
then, as seen in [7]

� pij = 1 when the two goals are equal in priority
� pij = 3 when Gi is weakly more important than Gj

� pij = 5 when Gi is strongly more important
than Gj

� pij = 7 when Gi is very strongly more important
than Gj

� pij = 9 when Gi is absolutely more important
than Gj.

Based on the above comparisons, the AHP matrix is
established and normalized, as can be seen generically
across any CoS in Table 1. The normalized values, pij,
are then used in [8] to calculate the weight, Wi, associ-
ated to a QoS parameter in a given CoS as

Wi ¼ pi1 þ pi2 þ pi3 þ pi4
4

: ð1Þ

Once the weights have been defined, the additional
preparatory step required for calculation of the scores is
to define normalization factors, Xmin or Xmax, for each of
the performance metrics and within each CoS in order
to ensure that the inherent value of the QoS parameter
does not drive the score. This can be readily seen when
considering that the raw value of jitter is typically in the
order of one thousandth, whereas bandwidth can be on
the order of one million. The normalizing factor will
then be applied to the raw metric, Xraw, based on the
interpreted worth or cost of the parameter in order to
obtain Xnorm, the normalized value. As discussed in [7],
if the parameter is valued more, the lower it becomes, as
is the case for jitter, delay, and bit error rate, then the
normalizing equation can be seen by (2). Otherwise, if
Table 1 Normalized AHP matrix generalized for a class of
service [7]

CoSi BER Delay Jitter BW

BER 1 p12 p13 p14

Delay 1/p12 1 p23 p24

Jitter 1/p13 1/p23 1 p34

BW 1/p14 1/p24 1/p34 1
the higher value has more worth, as in the case of band-
width, the normalizing equation is described by (3)

Xnorm ¼ Xmin

Xraw
ð2Þ

Xnorm ¼ Xraw

Xmax
: ð3Þ

Now, with both the weights and the normalizing fac-
tors defined for each QoS performance metric, the Qth

for a given CoS, ci, can then be calculated (as demon-
strated in [7]) by normalizing the threshold value of the
metric and CoS in question, and applying the corre-
sponding weight, as seen in (4):

Qth cið Þ ¼ W ber cið Þ � bermin cið Þ
berth cið Þ þW del cið Þ

� delmin cið Þ
delth cið Þ þW jit cið Þ � jitmin cið Þ

jitth cið Þ
þW bw cið Þ � bwth cið Þ

bwmax cið Þ : ð4Þ

Similarly, in [7], the actual sample reputation score, Qn

(ci), is calculated by the mobile node upon entering or
leaving a given network in the same fashion as the Qth.
The only difference here being that the sample perform-
ance metric obtained by the mobile node is normalized
instead of the threshold value, as can be seen in (5):

Qn cið Þ ¼ W ber cið Þ � bermin cið Þ
bern

þW del cið Þ

� delmin cið Þ
deln

þW jit cið Þ � jitmin cið Þ
jitn

þW bw cið Þ � bwn

bwmax cið Þ : ð5Þ

Once the sample reputation score is calculated, it is
compared against the threshold value obtained in (4)
and ranked as either good or bad. The ranked score is
then sent to the corresponding network-residing agent
for aggregation. It is important to note that in [7], the
network agent is modeled as processing multiple re-
ceived scores within a given interval. Furthermore, the
network-residing agent can allocate a separate weight for
favorable vs. unfavorable scores, w+ or w−, as seen in (6),
in order to give more importance to poor network be-
havior since this is typically of the most concern [7].

rsample tð Þ ¼ wþ∑rþ m; nð Þ þ w−∑r− m; nð Þ: ð6Þ

In addition to putting emphasis on the negative scores,
the network-residing agent also places greater import-
ance on the recently received scores in [7] via the use of
a discounting factor, γ ϵ [0, 1]. This discount is applied
against the summed and weighted new score in (6) and
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then combined with the current network score to form
the running aggregate score as seen in (7)

raggr tð Þ¼
n

1−γð Þ�raggr tð Þþγ� rsample tð Þ;jt≥2
rsample tð Þ ;jt¼1

:
ð7Þ

The running aggregate score raggr(t) is then provided
by the network agent upon request from other mobile
agents to facilitate handover.

2.2 GM(1,1) model
Grey system theory-based models were first introduced
by Deng in [8], and since then, they have been used in
numerous industries, with their multiple deviations
emerging. These variations include the grey Verhulst
model, which is beneficial in S-curve response systems
[9], and grey residual error correction models, which le-
verage Fourier series and other feedback mechanisms for
systems requiring error correction [10]. The key benefit
of the grey system is that only a minimum data set is re-
quired to predict an accurate future value. The simplest
and most popular implementation of this theory, which
is utilized in this paper, is the grey model first-order one
variable model, GM(1,1). This implementation of the
grey system must have an input sequence that contains
only positive values. In order to model this, let X(0) rep-
resent a time series with n values, which is to be ana-
lyzed for prediction

X 0ð Þ ¼ x 0ð Þ 1ð Þ; x 0ð Þ 2ð Þ;…; x 0ð Þ nð Þ
� �

; n≥4 : ð8Þ

This time sequence is then applied to an accumulation
generation operation (AGO) function in order to build X(1)

and smoothen the randomness of the original values. This
new sequence can be observed in (10) to be constantly
growing

X 1ð Þ ¼ x 1ð Þ 1ð Þ; x 1ð Þ 2ð Þ;…; x 1ð Þ nð Þ
� �

; n≥4 ð9Þ

x 1ð Þ kð Þ ¼ AGO� X 0ð Þ ¼
Xk
i¼1

x 0ð Þ ið Þ;

k ¼ 1; 2; 3;…; n: ð10Þ
Subsequently, the AGO-generated sequence is then used

to define a mean sequence of adjacent data, Z(1), as follows:

Z 1ð Þ ¼ z 1ð Þ 1ð Þ; z 1ð Þ 2ð Þ;…; z 1ð Þ nð Þ
� �

; n≥4; ð11Þ

z 1ð Þ kð Þ ¼ 1
2
x 1ð Þ kð Þ þ 1

2
x 1ð Þ k−1ð Þ;

k ¼ 2; 3;…; n:

ð12Þ

From Deng's work in [8], it can be shown that the
AGO-generated sequence can be modeled by the first-
order differential equation (also known as the whitening
equation) in

dx 1ð Þ tð Þ
dt

þ ax 1ð Þ tð Þ ¼ b; ð13Þ

where a and b are referred to as the development coefficient
and grey input, respectively. Intuitively, from (10), one can
also deduce that

dx 1ð Þ tð Þ
dt

¼ x 1ð Þ kð Þ−x 1ð Þ k−1ð Þ ¼ x 0ð Þ kð Þ: ð14Þ

As a result, by substituting (10), (12), and (14) into
(13), one can obtain the grey differential equation:

x 0ð Þ kð Þ þ az 1ð Þ kð Þ ¼ b: ð15Þ
In order to solve Equation (15), one must obtain the

solution for the a and b parameters. This can be achieved
through the use of the least square error method as
follows:

a; b½ �T ¼ BTB
� �−1

BTY ; ð16Þ

where

Y ¼ x 0ð Þ 2ð Þ; x 0ð Þ 3ð Þ;…; x 0ð Þ nð Þ
h iT

; ð17Þ

B ¼

−z 1ð Þ 2ð Þ 1
−z 1ð Þ 3ð Þ 1

: :
: :
: :

−z 1ð Þ nð Þ 1

2
6666664

3
7777775
: ð18Þ

Once [a, b] is solved and knowing that the initial con-
dition is x(1)(0) = x(0)(1), the solution to the first-order
differential equation is

x 1ð Þ
p k þ 1ð Þ ¼ x 0ð Þ 1ð Þ− b

a

� �
e−ak þ b

a
; ð19Þ

where xp
(1) is the AGO-generated value at the predicted

time k + 1. As such, in order to determine the predicted
value at k + 1, the inverse AGO is applied against (19) in
order to obtain

x 0ð Þ
p k þ 1ð Þ ¼ x 0ð Þ 1ð Þ− b

a

� �
e−ak 1−eað Þ: ð20Þ

Additionally, the solution defined by (20) can be ex-
panded to obtain a predicted value at time (k +H):

x 0ð Þ
p k þHð Þ ¼ x 0ð Þ 1ð Þ− b

a

� �
e−a kþH−1ð Þ 1−eað Þ: ð21Þ
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3 Proposed model: VHO using network reputation
and GM(1,1) predictions
Numerous approaches have been reviewed in the pursuit
of facilitating a VHO decision module that results in not
only minimal delay during the handover process but also
making a choice that provides the most benefit to the
applications currently in use by the mobile device. As a
result, in order to improve upon the novel approach
presented in [7] without impacting the efficiency of the
decision making duration, the network calculated ag-
gregate scores are used as an input into the GM(1,1) al-
gorithm to predict the trend in which the network
performance is heading. The purpose of this enhancement
is to provide advance knowledge of the state of the net-
work to the mobile node so that they can make a more in-
formed decision.
In building the proposed model, several other modifi-

cations were made to the original model proposed in [7].
First, in reviewing (5) and (6), it can also be noted that
the Qn(ci) calculated value provides a much richer repre-
sentation of the overall network experience than a binary
transformed rate. As such, we propose to use the calcu-
lated Qn(ci) as the input into the aggregation function.
Assuming that the network-residing agent will then cal-
culate the aggregate score sequentially upon receipt of a
score from the mobile agent (in a first-in-first-out man-
ner), Equation (6) can be refactored as

rsample tð Þ ¼ w−Qn cið Þ;Qn cið Þ < Qth cið Þ
wþQn cið Þ;Qn cið Þ ≥ Qth cið Þ :

�
ð22Þ

Additionally, in order to ensure that the calculated ag-
gregate reputation score represents the most current
state of the network as closely as possible, we propose to
instruct the mobile agents to poll for the Qn(ci) the mo-
ment the mobile agent enters the network and then peri-
odically until it leaves.
Upon receiving the sample score, the network-residing

agent will then immediately calculate the running aggre-
gate network score instead of computing the difference
of mobile nodes experiencing good service vs. those ex-
periencing bad service. The reasoning behind this is that,
to be consistent, it is preferable that each reported sam-
ple score communicated by a mobile node affects the
overall computed network reputation score in the same
fashion. By first combining the scores in a given period,
one mobile user's sample score in one interval could po-
tentially have a different impact on the computed net-
work score if the same score was leveraged in another
interval. In this way, instead of combining the received
scores within an interval, the network-residing reputa-
tion agent in the proposed model queues sample scores
and processes them sequentially in a first-in-first-out
(FIFO) manner.
As a result, when a mobile node approaches a poten-

tial target network, instead of requesting the current
aggregated reputation score, we propose that the mo-
bile node requests the predicted future aggregate score.
If the predicted score of the target network is greater
than the predicted score of the current network and the
acceptable threshold, a handover is initiated. Otherwise,
the mobile node remains in the current network, as
presented in Figure 1. This handover process is consid-
ered the passive process in our simulation, as the hand-
over investigation is triggered by the 802.21 MIH link
detection events (i.e., not actively by the mobile node
itself ). If the mobile node's RSS within the current net-
work drops below a given threshold, which can be con-
figured within the MIH protocol, a link going down
event is received, forcing the mobile node to search for
an available network to handover to before the connec-
tion is lost. This is considered the forced handover
process.
4 Simulation and network configuration
The simulation design and execution was carried out
using the open-source discrete-event network simulation
tool NS2. Modeling of the WiMAX entities and 802.21
protocol was made possible via the Mobility module, de-
veloped in the ‘Seamless and Secure Mobility’ project by
the National Institute of Science and Technology (NIST,
Gaithersburg, USA) [11], and the modeling of the UMTS
entities was made possible via the EURANE module, de-
veloped by the European Commission (Brussels, Belgium)
5th Framework Project, ‘SEACORN’ [12]. An MPEG traf-
fic generation module was leveraged from [13] in order to
simulate streaming video or voice.
In order to measure the performance of the proposed

model vs. the original model defined in [7], several ex-
periments were carried out. The first category of simula-
tions pertained to observing one mobile node against
varying network conditions using the two models, while
the second category of simulations involved observing
the overall network ecosystem while a multitude of mobile
nodes interacted in the network under varying network
conditions using the two models. In both categories,
the layouts included UMTS ubiquitous coverage with a
WiMAX network (range 500 m) overlapped with a Wi-Fi
network (range 100 m). Additionally, the default network
scores assigned to these networks were set to prioritize
the networks in the following order: Wi-Fi, WiMAX, and
UMTS, with the latter being given the lowest priority due
to its typically higher cost.
Furthermore, in the second category of experiments, the

mobile nodes were configured to travel at three different



Figure 1 Proposed VHO process flow.
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types of speeds in order to simulate the different methods
of urban travel:

� Walking - 5 km/h, 1.38 m/s
� Riding the bus - 40 km/h, 11.11 m/s
� Riding in the car - 75 km/h, 19.4 m/s.

Finally, the threshold values were defined using the
minimum values required for conversational CoS trans-
mission, and the weights were built using the values cal-
culated in [14], which can be seen in Table 2.

5 Simulation results
5.1 Single mobile node
5.1.1 Scenario 1: gradually varying traffic
The first experiment involving a single node considers
the gradual increase and decrease of traffic as a node
Table 2 Weights calculated in [12] for each performance
metric, per CoS

Traffic class BER Delay Jitter Bandwidth

Conversational 0.04998 0.45002 0.45002 0.04998

Streaming 0.03737 0.11380 0.42441 0.42441

Interactive 0.63593 0.16051 0.04304 0.16051

Background 0.66932 0.05546 00546 0.21976
traverses from one network into another, as can be seen
in the network topology depicted in Figure 2. In this sce-
nario, the traffic applied to the Wi-Fi network is con-
trolled in order to produce gradually varying scores. The
mobile node is iteratively made to traverse from the
WiMAX to the Wi-Fi zone at different times throughout
the varying load curve, as seen in Figure 3. As a result of
the gradual variance, the mean error between the pre-
dicted score for time t (calculated at t − 1 s), and the ac-
tual aggregate score observed at time t is 9.85%.
From the figure, it can be seen that as the network be-

comes congested, the mobile node using the predicted
score at time (t) has advanced warning that the QoS of
the network is deteriorating. This can be seen at time
t = 35 s and t = 40 s, where the aggregate scores are
above the threshold and perceived as good, while the
predicted scores are below the threshold and perceived
as bad. Since the aggregate scores following the above
time instances do fall beneath the threshold, the predicted
scores allow the mobile node to make the VHO decision
sooner and maintain an increased overall experience.

5.1.2 Scenario 2: traffic spike
The second experiment carried out against a single node
considers a spike occurring within the traffic flow. In
this scenario, the traffic applied to the Wi-Fi network is



Figure 2 Single-node simulation network topology.
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controlled to produce gradually varying scores with a
sudden surge introduced temporarily and then removed.
Similarly to the first experiment, the mobile node is itera-
tively made to traverse from the WiMAX to the Wi-Fi
zone at different times throughout the varying load curve,
as seen in Figure 4.
As is evident from the figure, the spike in traffic cor-

responds to the sudden drop in the aggregate score at
Figure 3 Comparison of sampled reputation scores with gradually va
between proposed prediction model and existing aggregate model.
t = 35 s. Furthermore, it is clear that the predicted
score does not provide any additional benefits in the
case of a sudden degradation of the network and in
fact yields a very large mean error of 38.78%. This
makes sense as there are no prior values that can give
advanced warning of the sudden change in traffic load.
The advantage can be seen when the QoS is re-established
at time t = 55 s. Instead of deciding to join on the first
rying traffic load. Comparison of sampled reputation scores over time



Figure 4 Comparison of sampled reputation scores with traffic load spike. Comparison of sampled reputation scores over time between
proposed prediction model and existing aggregate model.

Figure 5 Topology and mobile node path for WiMAX and Wi-Fi traffic overload scenario.

Giacomini and Agarwal EURASIP Journal on Wireless Communications and Networking 2013, 2013:256 Page 8 of 13
http://jwcn.eurasipjournals.com/content/2013/1/256



Figure 6 Comparison of total number of handovers between the proposed predicted and original aggregate models. Comparison of
total number of handovers in WiMAX (top) and Wi-Fi (bottom) between the proposed predicted and original aggregate models throughout the
simulation in scenario 1 for multiple nodes, across all speeds.
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instance of a perceived good score, as in the case of the
aggregate score, the predicted score requires the occur-
rence of at least two ‘good’ scores. This enables the mobile
node to make a more confident VHO decision and help
reduce the number of unnecessary handovers overall in
the network.

5.2 Multiple mobile nodes
5.2.1 Scenario 1: traffic overload
The first scenario leveraging multiple nodes consisted of
60 mobile nodes rapidly overloading the WiMAX net-
work followed by overloading the Wi-Fi network, as
Figure 7 Comparison of the cumulative number of handovers over ti
existing aggregate model at 40 km/h in the Wi-Fi network.
seen in Figure 5. The summary of the total number of
handovers into the WiMAX and Wi-Fi network over the
course of the entire simulation at the three different
speeds is shown in Figure 6. As can be observed, in this
scenario, the proposed prediction model results in fewer
handovers to either network type at all speeds, except
for handovers made to the Wi-Fi network at 40 km/h.
Apart from the exception scenario just mentioned, this
aligns to the expected results due to the fact that since
the networks are being quickly overloaded, the predic-
tion model is providing advanced notice to the mobile
node, allowing more nodes to opt out of the handover.
me. Comparison between the proposed prediction model and the



Figure 8 Comparison of the reputation scores while within the Wi-Fi network with traffic overload. The scores are sampled by the mobile
nodes while within the Wi-Fi network at 40 km/h, between the prediction model and aggregate model.
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Upon investigating the exception scenario further, it can
be seen that the reason why there are more handovers at
40 km/h into Wi-Fi under the proposed prediction model
is the fact that there were very few handovers made ori-
ginally to WiMAX. As a result, at 40 km/h, the majority
of the nodes remained in UMTS when reaching WiMAX,
and since UMTS had the lowest network score between
the three networks, when these nodes arrived at the Wi-Fi
hotspot, they more readily perceived the Wi-Fi network as
better and thus joined. This is supported by Figures 7, 8,
and 9 as follows. In Figure 7, we see that the number of
handovers to Wi-Fi in the prediction model exceeds the
original model at around 115 s; subsequently, in Figure 8,
the sample scores in the prediction model are higher at
around 115 s, while the WiMAX values are substantially
lower in Figure 9. As a result, given that the UMTS score
is slightly above the threshold, around 0.075, and the Wi-Fi
scores are initially around 3, the majority of nodes handover.

5.2.2 Scenario 2: increase and decrease of traffic
In the second scenario, the WiMAX and Wi-Fi networks
are more gradually overloaded; towards the end of the
simulation, there is a reduction in traffic in the Wi-Fi
network as mobile nodes are still joining, as shown in
Figure 9 Comparison of the reputation scores while within the WiMA
mobile nodes while within the WiMAX network at 40 km/h, between the t
Figure 10. Given this, the expectation is that again, in
WiMAX there would be fewer handovers, while in Wi-Fi,
there would be more due to the decrease in traffic.
After simulating the scenario at the three different

speeds, the results can be seen in Figure 11. Contrary to
the expected results, there were more handovers permit-
ted via the proposed prediction model in WiMAX and
fewer handovers in Wi-Fi. In reviewing the 40-km/h in-
stance, for WiMAX, it is observed that due to the grad-
ual increase in traffic, the prediction curve is not as
steep, permitting more handovers in the prediction
model, as seen by the sample scores calculated by the
mobile nodes in Figure 12. In Wi-Fi, it is observed that
the prediction model requires numerous positive results
in order to result in an advertised score with increased
value; this is due to the fact that while some of the nodes
begin experiencing better QoS when the traffic slowdown
occurs, there are still numerous nodes experiencing poor
service, and the average of all the calculated scores still
tends to be low, as see in Figure 13.

5.2.3 Prediction error
When comparing the predicted score against the actual
score in scenario 1, there is a mean error of 76.23%
X network with traffic overload. The scores are sampled by the
wo models.



Figure 10 Topology and mobile node path for WiMAX and Wi-Fi with increasing and decreasing traffic scenarios.

Figure 11 Comparison of the total number of handovers in WiMAX (top) and Wi-Fi (bottom). The proposed predicted and original
aggregate models are compared throughout the simulation in scenario 2 for multiple nodes, across all speeds.
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Figure 12 Comparison of the reputation scores while within the WIMAX network with varying traffic. The scores are sampled by the
mobile nodes while within the WiMAX network at 40 km/h, between the prediction model and aggregate models.
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across the three different speeds. Similarly, in scenario 2,
the prediction error sits at 62.06% across all speeds. In
both scenarios, this can be attributed to the fact that the
prediction model is generating significantly more sam-
ples, which impact the prediction algorithm described in
the GM(1,1) model. This can be seen in Figure 8, where
only three samples are obtained for the original model
in a given timeframe while the prediction model has
roughly ten times the sample data, and in Figure 13,
where the significantly higher sample counts keep the
prediction curve much lower than the aggregate.

6 Conclusion
In synopsis, in this paper, we have investigated the per-
formance of an improved VHO reputation model based
on a reputation system proposed in [7] and extended by
the GM(1,1) algorithm. In comparing the proposed algo-
rithm vs. the original model with respect to a single node
and a network ecosystem, clear improvements can be seen
in both situations. From a single-mobile-node perspective,
Figure 13 Comparison of the reputation scores while within the Wi-F
nodes upon entering the Wi-Fi network at 40 km/h, between the predictio
there is an advanced warning of network degradation and
an increased hold-off time during surge in network load,
preventing needless handovers. From a network perspec-
tive, the proposed model reduces the number of handovers
between heterogeneous networks under rapid congestion
scenarios, allowing the traffic to be well balanced in the
ecosystem. In gradually varying network conditions, the
prediction model will have a much diminished impact on
the overall number of handovers so long as the target net-
work is providing a sufficient quality of service. Further-
more, as in the single-mobile-node case, it reduces the
number of handovers during sudden reductions in traffic,
diminishing the possibility of a handovers when the net-
work has not yet stabilized. Our future work includes ex-
ploring the advantages of using this enhanced model in
comparison with MADM and artificial intelligence solu-
tions, investigating the benefit of using other grey model
systems such as the grey residual error correction model,
and reducing the amount of score noise observed in the
results.
i network with varying traffic. The scores are sampled by the mobile
n model and aggregate models.
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