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Abstract

Cognitive radio network is expected to use flexible radio frequency spectrum sharing techniques for achieving
more efficient frequency spectrum usage. In this article, we consider the spectrum sharing problem that one
primary user (PU) can share its frequency spectrum by renting this spectrum to multiple secondary users (SUs). The
pricing scheme is a key issue for spectrum sharing in cognitive radio network. We first propose a nonlinear
one-leader—-multiple-follower (NLMF) sharing spectrum scheme as a multi-object optimization problem; the prices
are offered by PU to SUs at the same time. This problem can be solved using particle swarm optimization (PSO);
SUs gradually and iteratively adjust their strategies respectively based on the observations on their opponents'
previous strategies until Nash equilibrium is completed. We then present a general nonlinear bilevel
one-leader-multiple-follower (NBMF) optimization problem to further consider the revenue of the PU and a new
optimal strategic pricing optimization technique which applies bilevel programming and swarm intelligence. A
leader-follower game is formulated to obtain the Stackelberg-Nash equilibrium for spectrum sharing that considers
not only revenue of a PU but also the SUs utility. We develop a swarm particle algorithm to iteratively solve the
problem defined in the NBMF decision model for searching the strategic pricing optimization. The behaviors of two
pricing models have been evaluated, and the performance results show that the proposed algorithms perform well
to solve the spectrum sharing in a cognitive radio network.

Strategic pricing optimization
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1. Introduction

According to the regulations of the Federal Communication
Commission (FCC) [1], a large portion of the unutilized
priced frequency spectrum and the scarcity in spectrum
resource should be used by providing tools to utilize
spectrum holes [2]. Recently, cognitive radio (CR) provides
great flexibility by extending software radio to improve
spectrum utilization [2-6], which is now regarded as a
hopeful wireless communication system. Primary users
(licensed users) are willing to share frequency spectrum with
secondary users (unlicensed users) which can adaptively ad-
just the transmission parameters to satisfy the requirements
of quality of service (QoS) according to the environment
information and opportunistically access those available
frequency bands not occupied by primary users.
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By this way, we can use the spectrum resource to en-
hance the system performance. We consider spectrum
sharing as a spectrum trading process; therefore, price
not only acts an important role in spectrum trading but
also is an effective way to improve system utilization
and performance to maximize the primary users' profits.
The spectrum trading process indicates the values of
both spectrum pricing and purchasing by allowing the
spectrum trading between secondary users (SUs) and
primary users (PUs). The price paid by SU to PU depends
on the satisfaction to use that spectrum, while the price
determines the PU's revenue.

In this article, we address the spectrum sharing problem
in a cognitive radio environment, which consists of sev-
eral SUs to compete with each other to demand oppor-
tunistic spectrum access to a single PU. We formulate
this situation as an oligopoly market, where a few firms
(i.e., SUs) compete with each other in terms of amount
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of commodity (i.e., the frequency spectrum) supplied
to the market (i.e., PU) to gain the greatest profit.

A noncooperative game is used to analyze two situations,
one case is that SUs receive the offered price by the PU and
maximize their payoffs by the amount of their demand
spectrum. Another case is that the main objection is to
maximize the profit and revenue for all SUs and the PU,
respectively. For these scenarios, we apply a dynamic game
in which the selection of strategy by an SU is entirely deter-
mined by the pricing information obtained from the PU.
Based on this information, each SU gradually adapts the
size of its spectrum sharing which is controlled by the price
function. To solve the corresponding optimization problem,
we search the strategy space using swarm particle to
identify the optimum behavior.

Compared with the current research on the spectrum
sharing in a cognitive radio environment, the major
contributions of this article are as follows. First, the
idea is to bring together swarm particle algorithms and
Nash strategy, and make the swarm particle algorithm to
build the Nash equilibrium (NE). Nash-particle swarm
optimization (PSO) is an alternative for multiple-objective
optimizations as it is an optimization tool based on non-
cooperative game theory. Second, by applying bilevel
techniques in the cognitive radio markets, we propose
the concept and related definitions of nonlinear bilevel
one-leader-multiple-follower (NBMF) decision problem
and use swarm particle algorithm in designing the spectrum
sharing scheme among PU and SUs for CR networks.
We also build up a nonlinear NBMF decision model for
strategic pricing problems, where the Stackelberg-Nash
equilibrium is regarded as the solution.

The rest of this article is organized as follows. Section 2
addresses the related works on dynamic spectrum sharing
in cognitive radio networks (CRN). Section 3 proposes
the general NBMF decision model and introduces the
Stackelberg-Nash equilibrium. We present the system
model and describe the spectrum sharing and pricing
strategy problem in Section 4. We develop Nash-PSO
and NBMF-PSO algorithm as solutions to the NLMF, and
the NBMF problems in Section 5. Then, we verify the effect-
iveness of the proposed algorithm to validate the NLMF and
the NBMF decision model using simulation in Section 6,
and finally we make conclusions in Section 7.

2. Background and related works

For the development of communication protocols, cog-
nitive radio technology offers tremendous potential to
improve the radio spectrum usage by allowing cognitive
devices to opportunistically access vast portions of the
spectrum. Dynamic spectrum access is a new paradigm,
whereby a cognitive radio device opportunistically accesses
the unutilized or underutilized spectrum bands. There are
many important issues needed to be overcome to achieve
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the objective of dynamic spectrum access, including
spectrum sensing, spectrum allocation, spectrum access/
sharing, transmitter-receiver handshaking, and spectrum
mobility [7]. In [8], the different spectrum sharing models
are categorized as open sharing, hierarchical access, and
dynamic exclusive usage models. Some of the spectrum
sharing proposals can be identified as being hierarchical
access methods, in that there is usually a primary system
that owns the spectrum rights and a secondary system
that wants to access this spectrum whenever possible.
Dynamic spectrum sharing is a challenging in the design
of CRNs due to the requirement of peaceful coexistence
of both PUs and SUs, as well as the availability of wide
range of radio spectrum.

Various techniques were used to model the spectrum
sharing problems for CR networks. In [9], the conventional
approach based on the centralized control is proposed.
However, as the available spectrum holes in the CRN
are rapidly changing, it is difficult to use centralized
approach in the practical application. Other studies
propose distributed approaches [10,11]. The authors of [10]
provide better adaptive capacity to cognitive radios, in
dynamic communication environments. The efforts of
[11] have been absorbed in applying the distributed ARQ in
cognitive radio systems to make better the dependability
of secondary links. Dynamic spectrum sharing through
cognitive radios can significantly enhance the spectrum
utilization in a wireless network. In spectrum sharing CR
networks, the problem of fair resource allocation among
secondary users was investigated in [12]. In [13], the fair,
efficient, and power optimized (FEPO) spectrum sharing
scheme is proposed to achieve efficient spectrum utilization.
In [14], the biologically inspired spectrum sharing algorithm
is introduced based on the adaptive task allocation model of
an insect colony, which enables each cognitive radio in the
same environment to fairly share the licensed or unlicensed
spectrum bands.

Game theory [15] has been considered a feasible
mathematical tool for solving the resource allocation
problems in distributed CRNs. The fundamental con-
cept of game theory is to resolve the competition and
cooperation among multiple intelligent rational decision
makers. The comparison between cooperative and non-
cooperative approaches has been presented in [16]
through game theoretical analysis. The authors of [17]
develop the optimal resource allocation strategies in
secondary spectrum access problem using cooperative
game theory. This work applies the concept of Nash
bargaining solution to guarantee fairness and maximize
the utility of the system optimality. In [18], the dynamic
spectrum access problem is formulated as a noncooper-
ative game, and the concepts of the correlated equilib-
rium and regret learning are used to solve the dynamic
spectrum access problem. However, the abovementioned
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works do not consider the pricing issue in spectrum
trading.

Pricing impacts the incentive of the PUs (or primary
service providers) in selling the spectrum and the satisfac-
tion of the SUs in buying the spectrum. A pricing process
can maximize the utilities of both PUs and SUs according
to the spectrum dynamics. Efficient pricing techniques
not only increase the users' performance, but also improve
network utilization in consideration of the rapid growth
and variety of network demand. Researchers have already
proposed and investigated to achieve dynamic spectrum
sharing by various pricing and auction mechanisms
[19-21]. In [19], the problem of a CDMA operator par-
ticipating in a dynamic spectrum allocation scheme is
addressed in a cooperative framework based on multi-unit
Vickrey auction. The operators maximize their revenue
based on the users' willingness to pay. The authors of
[20] use a power/channel allocation scheme that uses a
distributed pricing strategy to improve the network's
performance by a noncooperative model. An auction-based
spectrum sharing approach is proposed [21], in which
many SUs purchase channels from one PU or spectrum
broker through an auction process to efficiently share
spectrum among the users in interference-limited sys-
tems. The abovementioned methods do not include the
interaction between PU and SUs.

Cognitive radios have been chosen as a pricing decision
platform to realize the cognitive network operators who
interact with a group of secondary users [22-29]. In [22], a
novel spectrum management policy based on Vickrey auc-
tion is proposed to construct the co-win situation that sim-
ultaneously satisfies four parties which are involved in CRN
operations (i.e., PUs, CR users, operators, and regulators).
In [23], a bandwidth auction game is proposed for dynamic
spectrum sharing. A game theoretic Cournot model is pre-
sented in [24], which considers the problem of spectrum
sharing among a PU and multiple SUs. However, it cannot
further consider the profit of the primary user. In addition,
a Bertrand model is presented in [25], where multiple ser-
vice providers compete with each other to obtain the Nash
equilibrium pricing. In [26], distributed algorithms were
presented for three different pricing models (i.e., market
equilibrium, competitive, and cooperative) via game
theory among the primary users and secondary users. As
such, the problem is treated from the point of view of the
primary users. The authors of [27] and [28] analyze the PU
and SU interactions exclusively without considering the
hierarchical structure of the spectrum markets. In [29], the
authors study a multiple-level spectrum sharing in cognitive
radio among primary, secondary, and tertiary services.
Therefore, a spectrum price model plays an important
role in the interaction of PUs and SUs.

The bilevel programming problem (BLPP) has a wide
variety of applications, and bilevel programming techniques
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have been applied with remarkable success in different
domains such as decentralized resource planning [30],
transport system planning [31], civil engineering [32], road
network management [33], power market [34], econom-
ics, and management [35,36]. The existing methods for
solving BP can be categorized as traditional method and
heuristic (stochastic) method. The traditional method
includes K-best algorithm [37] and branch-and-bound
algorithm [38], while the heuristic method includes
genetic algorithm-based approach [39], adaptive search
method related to the taboo search to solve such prob-
lems [40], and global optimization techniques based on
convergence analysis [41].

The NLMF model considers the case, where the prices at
the same time can be iteratively adapted for the strategies
in terms of SUs' requested spectrum size, respectively.
The NBMF decision model allows PU to choose its prices
for spectrum sharing allocation such that its revenue can
be maximized, and each SU competes noncooperatively
and independently with each other to maximize its profit,
which is determined by the demand spectrum of each SU.
The hierarchical relation between them is considered by
making the PU and the SUs decide sequentially. To the best
of our knowledge, this article is the first to utilize swarm
intelligence with game theory to the spectrum sharing
scheme among PU and SUs for CR networks.

3. Mathematic descriptions of NBMF problems

3.1 Problem statements

The BLPP is regarded as an uncooperative, two-person
game, as introduced by Von Stackelberg [42] in 1952. In
the basic model, the decision variables are partitioned
among two players who seek to optimize their individual
utility functions. The bilevel programming techniques
are mainly developed for solving decentralized manage-
ment problems with decision makers in a hierarchical
organization. A decision maker is known as the leader
at the upper level, and it is known as the follower at the
lower level. Each leader or follower optimizes his object-
ive function with or without considering the objective of
the other level, but the decision of each level affects the
optimization of the other level.

Usually, in a real-world situation, there is more than one
follower in the lower level. This type of the hierarchical
structure is called a bilevel multi-follower (BLMF) decision
making model. However, the different relationships among
these followers might force the leader to use multiple dif-
ferent processes in deriving an optimal solution for leader
decision making. Therefore, the leader's decision will
be affected not only by the reactions of these followers,
but also by the relationships among these followers. In
general, there are three kinds of relationships among the
followers: cooperative condition, uncooperative condition,
and partial cooperative condition [43].
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For the cooperative condition, the followers totally share
the decision variables in their objectives and constraints.
In the uncooperative condition, there is no sharing of
decision variables among the followers. In the partial
cooperative condition, the followers partially share decision
variables in their objectives and/or constraints. There is no
exact way to solve the nonlinear bilevel decision problems.
For solving the nonlinear bilevel decision problems, heuris-
tic approach may be an alternative in the research commu-
nity [34,44,45]. In this section, we assume that there are
one leader and N followers in a bilevel decision system. Let
x and y; be the decision variables of the leader and the ith
follower, for i=1, 2, ..., N, respectively. We also assume
that the objective functions of the leader and the ith fol-
lower are F(x, yy,..., yn) and fi(x, yp..., yn), fori=1,2, ..., N,
respectively, while G and g are the vector valued functions
of x and the set of (y;..., yn). The sets of X and Y represent
the search spaces in the upper and lower bounds on the el-
ements of the vectors x and y, An NBMF problem with
one leader and N followers is introduced with some related
definitions and notations as defined in (1), where

x€XCR"y,€Y,CR™ Y = (Y1,Ys,...YN)", F: X
XY X ... X YN—Rf;: X
XY,‘—>R1,

and

i=1,2,..,N, N22

min F(x, 97, ..., ¥y)
xeX

subject to G(x,y;,...,¥y)<0

minfi(x7y17 "'7yN)7 i= 17 7N
yi€Yi
subject to g;(%,7;,...,¥y)<0,i=1,....N.
In order to facilitate further discussion of the properties
of the NBMF decision model, the following definitions are

introduced [43]:
(a) Denote the constraint region of the NBMF problem by

S ={(%, 1, IN) EX X Y1 X . X YN, G(%, 91, oty Vyr)
<0,8(%, 1, .., ¥xn)<0,i=1,2,...., N}.

(b) Projection of S onto the leader's decision space is
defined as

S(X) = {xeX : ayieYivG(xvyh'“?yN) < 07g(an’1w,yN)
<0,i= 1,2,...,]\[}.

(c) Denote the feasible region of the follower's problem
for each fixed x € S(X) by

Sl(x) = {inYi : (x’ylv"'7yN)€Sag(xvy1"“7yN)
<0,i= 1,2,...,N}.
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(d) Let P;(x) be the follower's rational reaction set for
x € S(X), which is defined as

Pi(x) = {yie Y, :y,€argmin {fi(x,fll) :)A/ieSi(x)} },
i=1,2,...,N,

where
arg min {fl (x,)%) : yAi €S;i(x)

- [yiesi(x) Zfi(x’yz’)sfi(x’ﬁ\/i)’J//\ies(x)}7
i=1,2,..,N.

The followers observe the leader's action and simul-
taneously react by selecting y; from their feasible set to
minimize their objective function.

(e) Denote the inducible region by IR ={(x,y,... yn):
(%Y1 . ¥N) €S, ¥, € Pi(x),i=1,...,N}.

The rational reaction set P(x) defines the response,
while the inducible region IR represents the set, which
the leader may optimize his objective. The leader's prob-
lem is then to optimize its objective function over the
inducible region, the NBMF problem can be written as

min{F(x,y,....¥n) : (%, 91, ...,¥x) EIR}.

3.2 Nash equilibrium and Stackelberg-Nash equilibrium
For an optimization problem with N objectives, a Nash
strategy consists of N players, each optimizes his own
strategy. However, each player has to optimize his strategy,
given that all the other strategies are fixed by the rest of the
players. When no player can further improve his strategy, it
means that the system has reached an equilibrium state
called Nash equilibrium (NE). The bilevel programming is a
multiple person noncooperative game with leader-follower
strategy. In a game with N followers, y; € Y; is a strategy of
follower, and y_; = (y1, .., ¥i— 1, Vi + 1 -+ YN) € Y_; is the set of
others' strategy. If x,71,...,%; 1,41, ... Y are revealed by
the leader and the other followers, then the reaction y;
of the ith follower must be the optimal solution of the
follower's objection function as shown in (2)

YisLi

mirl}fi(x7y1:"'7yN)7i: 1""’N
subject to g(x,yy,...,yy) <0.

(2)

For all followers, the profile strategies (yi, S N y}\,)
€Y with respect to x is the Nash equilibrium of followers
as shown in (3), for any (y, ..., ¥, 1,05 Yje1, - Vi) €Y and
i=12,..,N. There is a unique Nash equilibrium that all
the followers might make such equilibrium because no
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follower can further improve his own objective by altering
his strategy unilaterally. The Stackelberg-Nash equilibrium
of the bilevel programming is discussed by [44]. Let us
define (x*,y’{, Vi ...,y]*\,) as the profile strategies with
x* € X, where (y’l‘, e V5 ...7y]*\,) is a Nash equilibrium of
followers with respect to x, and the profile strategies
(x*, Vs Vi, y}‘\[) are a Stackelberg-Nash equilibrium
to the bilevel programming (1) if and only if (4) is satisfied

for any x €X and the Nash equilibrium (yAl, . y/\i, )A/N)

. A
with respect to x .

fi(xuy;{v "'7y;17y;'%7y:<+17 7}/]*\]) 2fi(x7y){7 ’“vy;hyivy;—l? 7y;\[)

(3)

-, « . A A A
F(x aylm.,:yi?“'ayN) ZF(&7y1a..,:yi7"‘yN)' (4)

4, System model

We consider the cognitive scenario of dynamic spectrum
sharing consisting of only a PU and N SUs as shown in
Figure 1. When a frequency spectrum is unoccupied by
its corresponding PU, it can sell portions of the available
spectrum b; (e.g., time slots in a time division multiple
access (TDMA)-based wireless access system) to the
SU; (i=1, 2,..., N) at the offered price p. Both PU and
SUs use adaptive modulation for wireless transmission.
The spectrum demand of SUs depends on the trans-
mission rate achieved due to the adaptive modulation
in the allocated frequency spectrum and the price
charged by PU. After obtaining the right to use the
spectrum, SU uses an adaptive modulation to improve
the performance.

We adopt a widely used transmission model by adap-
tive modulation, where PU and SUs dynamically adjust
their transmission rate based on their corresponding
channel qualities. Therefore, the spectral efficiency of
the transmission for SU,, k; can be obtained by (5)
[46], where y; is the received signal-to-noise ratio
(SNR) for SU;; and BER!™ is the bit error rate (BER) at

Set price
per unit of
bandwidth

Requested )
Bandwidth b, /

wnnoads [elog,

Figure 1 System model of spectrum sharing.
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the target level, which is to guarantee the required
quality of transmission.

1.5y;
ki=logy| 14+ —— i . 5
) °g2< * ln(o.z/BERgaf)> 5)

As the owner of spectrum resources, PU has the right
to determine the spectrum price. A PU adjusts the price
of spectrum as the total requested spectrum changed, so
the PU charges all of SUs at the same price. Let P(b) be
the price function, which can be obtained as shown in (6)
[24], where by is the size of spectrum demanded by SU; at
time £, and b=1{b; | i=1, ..., N} is the demand vector.
Let us denote / and g as a fixed payment and the elasticity
(i.e., slope) of the price function, respectively, while /, and g,
are the values of / and g at time ¢, respectively. Therefore,
the price function is convex if /,, g,, and a are assumed
to be positive and greater than one; moreover, the price

function is linear if @ = 1. The item (bi[ + Zb/t> is

Ji
the total sharing spectrum at time ¢. Consequently, the
PU always determines the price function for the shared
frequency spectrum in terms of the amount of
spectrum demanded by SUs. The demand for the
spectrum is larger, and the PU will charge a higher
price in cognitive radio environment as a =1. Let us
denote w; and w; to be the worth values of the spectrum
for the PU and SU, respectively; then, it is necessary
for the condition w; x Zb/ < P(b) < wy X ij to
jeb jeb
ensure that the PU is willing to share the spectrum
with SUs, while N SUs are willing to buy the spectrum.
In the NLMF mode, the price is determined by PU, and
the values of w; and w, are set to 1 and 0, respectively. In
the NBMF mode, the PU would never have predominated,
and the part of its price will be transferred to the SUs. We
get the values of w; and w, by estimating the values of /,
and g,. Then, we can refer to this price and use the other
spectrum directly by signing the contract without compe-
tition. A contract between PU and SUs ensures that PU
will not deviate because of selfishness.

P(b) =l + g, x (bit +)° b,t) : (6)

J=i

SUs define their spectrum demands by maximizing
their payoff functions. Each SU's payoff function is de-
fined as the subtraction between the earned revenue and
the paid cost for sharing frequency spectrum with the
PU. The revenue of SU; can be obtained by R; x k; x b;,
while the cost of spectrum sharing is b,P(b), where R;
is the user revenue of achievable per unit transmission



Weng et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:265

http://jwcn.eurasipjournals.com/content/2013/1/265

rate. Let us define U;(b) to be the profit function of
each SUj;, which can be obtained by (7) [24].

To determine the optimal shared spectrum sizes for
the SUs, their profit functions should be maximized
with respect to the shared spectrum sizes b; for i=1, ..., N.
To obtain Nash equilibrium, we have to mathematically
solve the marginal profit of SU,. That is, we can derive
the profit function with respect to the shared spectrum
size and set it to zero as shown in (8). Each SU then
solves its own equation to find the amount of its
spectrum demand:

Ul(b) = Ri/(l'bl'—bip(b), i= 1, 27 7]\[ (7)
a a-1
oUu;(b
% = Riki—l—q Z b/ —qb,«a Z bl =0
i bieb bjeb
i=1,2,...,N. (8)

The Nash equilibrium is considered to be the solution
of the game to ensure all SUs satisfied, where the Nash
equilibrium is obtained using the best response (BR)
function that is the best strategy of one player, given
the others' strategies. Let us denote b_; to be the set of
strategies adopted by all SUs except SU;, where b_; =
{bj|j=1,2,..,Nforj=i} and b=b_; U {b;}. BR; is de-
noted as the BR function of SU,, given the size of the
spectrum sharing by other SU's b;, which is defined as (9).
The set b* = {b],...,by} denotes the Nash equilibrium
of any game if and only if (10) is satisfied, where b”; denotes
the set of BR; for all SUs except SU;:

BRl‘(b,i) = arg n’[‘;:dX Ui(b,iu{b,-}) (9)

b; = BR;(b*;) Vi (10)

A static game model is presented for the ideal case,
where all SUs can entirely acquire the strategies and
profit of the other SUs. Some numerical methods are
required to solve Equation (8) to obtain Nash equilib-
rium. We formulate the following optimization problem

N
with the objective, minZ|bi—BRi(b,i)|. The algorithm
i—1
reaches the Nash equilibrium when the minimum value
of the objective function is zero. Subsequently, to relax
the supposition, a dynamic game model is presented for
which the information of the other SUs is unknown to a
specific SU. In this scenario, we regard nonlinear one-
leader-multiple-follower (NLMF) model as a nonlinear
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multiple-objective optimization problem, so it can be
modeled as a dynamic game by Nash-PSO algorithms to
adjust the requested spectrum size. The objective of
the NLMF model is to maximize the profit function of
all respective SUs, which is defined as (11). When the
channel quality is getting better, the transmission rate
can be higher; accordingly, the demand and the offered
price for channels will increase. The value of b, cannot
make the supply short of demand, while the value of b,
is zero as the channel quality is very bad, which implies
that the SU has no demand for the channel.

T
maxf; = fi(le gy, b, biw) = > (Rikiby—byP(b)),

t=1

N
0<> by <B*,  bimin < bii < bimax.
i1

i=1,2,...,.N

(11)

A PU sells its spectrum resource at a fixed price per
unit time; the revenue is the sold spectrum multiplied by
the price. The PU sells a fraction of the spectrum to SUs
according to the demand, where the revenue of the PU
can be obtained by (12). In the game model, SUs pur-
chase a fraction of the spectrum by the given price, and
the PU decides the price to maximize its revenue; hence,
it can be modeled to maximize its revenue as shown in
(13). Under different channel qualities, SUs have a var-
iety of demands. The parameters /; and ¢, are introduced
to measure the negative impact from SUs to PU and find
a feasible pricing region to guarantee the primary service
and satisfactory for SUs. If [, and g, are given among a
predefined range, a feasible pricing region can be found
to guarantee that it may not produce the negative values
from the payoffs of the SUs, respectively:

F =P(b) x

15

N
b; (12)
=1

T N
l'l"clt%])t(F = F(lt7qt7 bt17 th) = Z (P(b) X ;bﬁ>7

=1

~

ltmingltSltmaxv qzminsthqtmax'

(13)

Because spectrum sharing and pricing strategy involve
two hierarchical optimizations, there exists a game relation-
ship among PU and SUs to compete selfishly in a noncoop-
erative Nash game to maximize their individual utilities. A
pricing mechanism is to guide every player toward rational
behaviors, and any one's decision may affect the others/,
which is a typical bilevel decision problem with one PU and
multiple SUs. By combining the NLMF model defined
in (11) with the strategic pricing model defined in (13),
we propose an NBMF decision model for a competitive
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strategic spectrum allocation in a pricing-based cognitive
radio market as shown in (14):

T n
max F = F(leyqp, b, bn) = Y (P(b) x thl) ,
‘ t=1 i=1

Lemin< 1y < Ly maxs D min< 4 < 9rmax

T
maxf; = (b4, bu - bv) = > (Rikiby-byP(b)), i=1,2,...N

t=1

N
0<Y bu<B,

i=1

btmin < btl' < b[max~
(14)

For the spectrum trading, we consider two different
pricing models, NLMF and NBMF, which are to hier-
archically describe the strategic pricing problems in
competitive cognitive radio markets. The NLMF model
first considers the case that PU offers his price to SUs
simultaneously. We use the Nash-PSO algorithm to
build Nash equilibrium for multiple-objective optimization.
In the NBMF model, SUs can observe the pricing strategy
of PU and adapt their strategies accordingly from a bilevel
angle. Therefore, we use an NBMF-PSO algorithm to esti-
mate and adapt the strategies of SUs to achieve the best
response and the strategy of PU to obtain the optimal
solution. The Nash-PSO and NBMEF-PSO algorithms
will be discussed in the next section.

5. NASH-PSO and NBMF-PSO algorithms

Kennedy and Eberhart first introduce the PSO in 1995
as a new heuristic method [47]. PSO works by flying a
population of cooperating potential solutions called
particles through a problem's solution space, accelerat-
ing particles toward better solutions [48,49]. PSO has a
good convergent performance and has been applied in
many optimization problems including neural network
training, multi-object optimization, and some project
applications. In PSO, each particle is treated as a point
in an n-dimensional space, where its mth particle can
be represented by a vector X,,, = (X1, X,2,---» X1p), and
it is treated as a potential solution that explores the
search space by rate of position change called velocity,
denoted by V,,, = (V,u1, Vim2s --o» Vun). Let pb,, be repre-
sented as the personal best position of any particle, i.e.,
pb,. = (pb,,1, Pby2s --.» Pbyun), Which is in accord with
the position in search space where particle had the
lowest (or highest) value as determined by the fitness
function. In addition, gb is defined to be the global best
position of particle in swarm, which yields the best
position of all particles in its neighborhood. The par-
ticle update method lies in accelerating each particle
towards the optimum value based on its present vel-
ocity, its previous experience, and the experience of its
neighbors within a reasonable time limit. Let us denote
M and w to be the size of the swarm and the inertia
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weight used to balance the global and local search abilities,
respectively. The position and velocity of each particle
can be updated according to (15) and (16) [41], where
m(m=1,2,..,M)and d (d=1, 2,..., n) are for the mth
particle and the d-dimensional vector, respectively, while
¢; and c, are the positive constants; r; and r, are two
uniformly distributed random numbers in the range [0,1];
and k denotes the iteration number. For simplicity and
immunity to the global optimum, the PSO algorithm is
employed in this article to develop a Nash-PSO algorithm
and an NBMF-PSO algorithm to reach an optimal solution
for the NLMF and NBMF strategic pricing problem in an
oligopoly market:

de(k + 1) = vad(k) + clrl(k) (15)
% (P (k) =%ma (k) + cara (k)
X (gb,q (k) =%ma(k)),

X (k + 1) = xpa (k) + Viga(k + 1). (16)

5.1 Nash-PSO algorithm

Nash presents a multiple-objective optimization problem
which originated from the game theory and economics
in 1950 [50,51]. SUs define their spectrum demands
from the single PU based on the NLMF model. It uses
Nash-PSO algorithm to find the Nash equilibrium and
maximizes its payoffs in a distributed fashion. In a
practical cognitive radio environment, each SU has the
knowledge of its payoffs and costs, but it does not know
about the strategies and profits of the other SUs. The
obtained profit of each SU is calculated based on the
opponent's previous strategies about the optimal strat-
egies which observe the pricing information from the
PU; hence, we have to achieve the Nash equilibrium
for each SU based on the interaction with the PU only.
In this case, each SU can communicate with the PU to
obtain the discriminated price function for different
strategies. It is supposed if all SUs are intelligent, then
they can apply the proposed approach to be aware of
their opponent's payoff function and try to maximize their
revenue by acknowledging the opponent's strategies. In
the Nash-PSO algorithm, we first fix the X variables for
leader (i.e., PU) and initiate a swarm to produce the fol-
lowers' (i.e., SUs') decision variable (Y-particles), each of
which has a velocity. Both their numbers are randomly
distributed among a pre-defined range. The proposed
Nash-PSO algorithm is an iterative algorithm which is
to search the Nash equilibrium from the SUs by solving
the NLMF model (11) as summarized in Algorithm 1.
The global Nash equilibrium of the problem can be
obtained if the iterations converge to a single point,
because none of the players can gain more profit just
by changing his strategic variable.
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Algorithm 1: Nash-PSO algorithm
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Stepl: Randomly generate the position and velocity for mth particle among a pre-defined range, m =

1,...,M.
Step2:i=1

Step3: For each SU;, i =1,..., N.

Step4: Take the strategies of all players from the previous iteration.

Step5: Run the PSO algorithm to update every SU's optimal strategy by fixing opponents' strategies at
their previous iteration values and acquire the optimal response respectively.

Step5.1: Initiate the SU/'s (i.e., follower's) loop counter g;= 0.

Step5.2: Compute the objection function f; in (11) of each particle, and select the previously

visited best positions pb value for all m-particles and the best one gb value among m-

particles.

Step5.3: Use (15) and (16) to calculate the new velocity vector and update the position for m-

particles.

Step5.4: g, < g, +1

Step5.5: If it finds SU;'s optimal strategy in response to the other SUs' optimal strategy, then go

to Step 6. Otherwise, we go to Step5.2.

Step6: If it already finds all SU;'s optimal strategy in response to the other SUs' optimal strategy, then

go to Step7. Otherwise, i <—i+ 1, then we go to Step3.

Step7: If no SU would change its optimal strategy, then we obtain the Nash equilibrium solution.

Otherwise, we go to Step2.

5.2 NBMF-PSO algorithm

By this PSO strategy, the framework of the NBMF-PSO
algorithm is shown as in Figure 2. The important no-
tations used in this article are summarized in Table 1.
In a real-world NBMF problem, SUs have their indi-
vidual variables, objectives, and constraints. However,
a decision from any particular SU will inevitably be
made by guessing the other SUs' strategies. In this
case, the lower-level optimization problem is a kind of
game problem, and the whole problem becomes an
NBMF game problem.

In this NBMF-PSO algorithm, we first initiate a
swarm to produce the decision variable (X-particles)
for PU and generate a population (Y-particles) for the
followers, while the corresponding velocities are ran-
dom numbers distributed among a pre-defined range.

We then bring the X-particles to the lower-level problem
of the NBMF model and use the Nash-PSO algorithm
to generate the Nash equilibrium point from the fol-
lowers by solving (14). After obtaining the best re-
sponses of the Y-particles from the followers, the
leader's objective values for each decision variable of
the X-particles can be calculated. To utilize the PSO
strategy again, we obtain the leader's optimal strategy
and find the solution changes for several consecutive
generations which are smaller than a predefined value;
hence, the Stackelberg-Nash equilibrium for the whole
NBMF problem can be obtained. The detailed NBMF-
PSO algorithm consists of two parts, Algorithm 2 and
Algorithm 3, which generate the best response from
SUs and the optimal strategies for PU, respectively, as
specified as follows:
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Algorithm 2: Generate the responses from all followers

Stepl: Input the values of x, from the leader.

Step2: For each x,,, randomly generate the position y,,,; and the corresponding
velocities v,,,; for pth particle among a pre-defined range, p = 1,..., M.

Step3:i=1.

Step4: For each follower i, i =1,...,N.

Step5: Take the strategies of all followers from the previous iteration.

Step6: Run the Nash-PSO algorithm to update every follower's optimal strategy by fixing opponents'
strategies at their previous iteration values and acquire the optimal response respectively.

Step6.1: Initiate the follower's loop counter g;= 0.

Step6.2: Compute the followers' objection function f; in (14) of each particle and select the
previously visited best positions pb,,,; value for all p-particles and the best one y.

value among p-particles.

Step6.3: Calculate the new velocity vector and update the position.

Vi (kD =wv, (k) + cri(k)(pb,,; (k) =, (k) +e ()3, (k) =, (K)),
Yuplk T D=y, () +v,,(k+1)

Step6.4: g, <= g, +1

Step6.5: If it find follower i's optimal strategy in response to the other followers' optimal
strategy, then go to Step7. Otherwise, we go to Step6.3.

Step7: If it already finds all follower i's optimal strategy in response to the other followers'

optimal strategy, then go to Step8. Otherwise, i <—i +1, then we go to Step4.

Step8: If no SU would change its optimal strategy, then output yj as the response from the ith

follower. Otherwise, we go to Step3.
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Algorithm 3: Generate optimal strategies for a leader
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Stepl: Randomly generate the position x,, and the corresponding velocities v,, for mth particle among

a pre-defined range, m = 1,..., M.

Step2: Initiate the leader's loop counter g, =0

Step3: For mth particle, m = 1,...,M,, calculate the optimal response from ith follower by Algorithm 2,

i=1,...N

Step4: Compute the leader's objection function F in (14) of each particle, and select the previously

visited best position pb,, value for all m-particles and the best one x~ value among m-particles.

Step5: Calculate the new velocity vector and update the position

v, (k+ D)= wy, (k) +cri(k)(pb,, (k)= x, (k) +c,1 (k)(x —x,, (k)

x,(kt)=x (k)+v, (k+1)

Step6: g;<— g/t 1

Step7: If g, > max_g, or the solution changes for several consecutive generations are small enough,

then we use stretching technology obtain the global solution for the current leader's solution.

Otherwise, we go to Step3.

6. Performance evaluation

In this section, we present two different spectrum sharing
models. We employ a strategic pricing problem in a CR
market to test the NLMF model with Nash-PSO algorithm
and the NBMF decision model with NBMF-PSO algorithm
developed in this article. We consider the cognitive radio
environment with one PU and two SUs sharing a frequency
spectrum of 15 MHz. We use the same parameters and the
same method as [24] compared with the Nash-PSO algo-
rithm. We obtain the same result with [24] dynamic game.

6.1 The Nash-PSO algorithm
We consider a cognitive radio environment with one PU
and three SUs sharing a frequency spectrum B*" = 25 MHz.

-

v

Sample the leader
controlled variables

Update the best

particle pairs
A local Yes
solution ?

No

——X-particle—»|

Generate the followers’
best responses by Nash-
PSOs
(nash equilibrium point )

X-particle Y-particle

Output the final
solution

Figure 2 The framework of NBMF-PSO algorithm.

The target BER (BER™) is equal to 107~* for three SUs. The
revenue of an SU per unit transmission rate (R;) is 12
for each user. For the price function of PU, we use /=0,
q=1Lw;=1,wy=0, bymnin = 0, and by = 10.

Figures 3 and 4 show the best response of three SUs in
the NLMF model obtained by (11). Figure 3 uses the param-
eters SU;(y; =7 dB), SUy(y> =8 dB), and SUs(y3=9 dB),
while Figure 4 uses the parameters SU;(y; =8 dB), SU,
(y2=9 dB), and SUs(y3 = 10 dB). The best response of
each SU is a linear function of the other user's strategy.
For the three user scenario, the best response function for
each player is a plane, and the Nash equilibrium is located
at the intersection point of three planes. For different
channel quality, the Nash equilibrium will locate at the
different places. SU can obtain higher transmission rate
from the same spectrum size by adaptive modulation;
hence, an SU with better spectral efficiency prefers to have
a larger spectrum size to gain higher profit. In addition,
the trajectory of spectrum sharing is shown for Nash-PSO
best strategies in all iterations converging to the Nash
equilibrium, which is considered to be the solution of
the spectrum sharing scheme.

The adaptation of NE under different channel qualities
is presented in Figure 5, while the SUs' revenues with
respect to channel quality are shown in Figure 6. Again, by
improving channel quality, SUs increase demands to earn
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Table 1 Important notations used in this article

Notation Meaning

M, The number of particles for the leader
Ms The number of particles for followers
Xm The my, particles for the leader, Xm = (Xm1, Xma, -« Xmn) s
m=1,..., M/
Vi The velocity of X, Vi = Vim1, Vina, -+, Vo), m=1,..,M,
Ym The follower's choice for each x,, from the leader,
T
Ym= ()/m]:ymzl --qymw)
Ymp The py, particles by the follower for the choice x,, from the
leader, Vinp = Wmp1, Vinpas -1 Vinpw) D=1, ..., My
Vimp The velocity of Yimp, Vimp = (Vmp1, Vmp2, - vmpW)T,p= 1,..., M
pb,, The best previously visited solution of

X pbm = (pbml: pbmzl s pbmn)T

Pbmp The best previously visited solution of

Ympr PPmp = (O0mpt, P2, - POmpu)”
X Current best solution for particle x,, from the leader
y Current best solution for particle y,, from the follower
Ympi The ymp value of the ith follower, i=1, ..., N
Vimpi The vy, value of the ith follower, i=1, ..., N
v The y‘value of the ith follower, i=1, ..., N
g Current iteration number for the upper-level problem
gr Current iteration number for the lower-level problem
max_g,  The predefined max iteration number for g,
max_gr  The predefined max iteration number for gr

more payoffs. As expected, SU; shares a larger spectrum
size with the PU and achieves a higher revenue when
its channel quality becomes better. In these figures, we
considered a fixed channel quality for SU, (y, =7 dB)
and SUj3 (y3 = 8 dB), while the quality of SU; changes from
5 to 11 dB. The size of shared spectrum and revenue pro-
posed by SU, are higher than those proposed by SUj, as

Page 11 of 16

the channel quality of SU; is less than 7 dB. Similarly, the
size of the shared spectrum and revenue proposed by SUj
are higher than those proposed by SUj, as the channel
quality of SUj is less than 8 dB. By improving the channel
quality of SUj, the shared spectrum sizes and revenue
offered by the SU; will be higher, as the channel quality
of SU; is greater than 8 dB. The channel quality of an
SU will impact the allocated spectrum size and revenue
for the other SUs, which replies the impact of competitive
strength among the SUs' strategies.

Figure 7 shows the evolution of the best response for
three SUs converging to the Nash equilibrium point by
the Nash-PSO algorithm. We considered a fixed chan-
nel quality for SU; (y; =8 dB), SU, (y» =9 dB), and SU3
(y3 =10 dB). The spectrum sharing gradually converges
to the Nash equilibrium, where the Nash equilibrium
point is at (1.7038, 4.0268, 6.5675).

6.2 The NBMF-PSO algorithm

We consider a cognitive radio environment with one PU
and three SUs sharing a frequency spectrum B*" = 25 MHz.
The BER™ is equal to 10™* for three SUs. The revenue
of an SU per R; is 12 for each user. As an example, we
assume that PU is fixed at (0, 0), and SU;, SU,, and SUj,
are movable and begin at (0,102), (104, 0), and (0, —106),
respectively. At £=0, SU;, SU,, and SU; move along a
straight line at the same velocity of 0.085 m/s starting from
(0, 102), (104, 0), and (0, —106) to (91.8, 102), (104, -91.8),
and (-91.8, —106), respectively, by applying the NBMF-PSO
algorithm as shown in Figure 8.

Generally, path loss is proportional to the reciprocal of
the fourth power of the distance between the transmitter
and receiver if the time-varying fading is not considered.
The transmit power of an SU is equal to 0.01 W, and
the additive white Gaussian noise (AWGN) with zero
mean and variance ¢ =10""" W is considered at the
input of the receiver. For SU,, its SNR can be calculated

SU; (MHz)

3

5 ‘
SU, (MHz2) 0o

Figure 3 Best response and trajectories to NE when y, =7 dB, y,=8 dB, y3=9 dB.

2 3
SU, (MHz)
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SU; (MHz)

g

2
SU, (MHz) 1 ™

Figure 4 Best response and trajectories to NE when y; =8 dB, y,=9 dB, y3 =10 dB.

SU, (MHz)

by (17), where P; is the transmit power of SU,, and d; is
the distance between SU; and PU:

yi = Pidi /0. (17)

In the simulation, we consider an 18-interval dynamic
game for simulations. To simplify the computation, the
limit of the coefficients does not vary by different time
slots. To design the values of /;min, limax Gemin a0d Grmaxs
it is necessary to ensure that the PU is willing to share
spectrum with the SUs, where we set w; =0.62, w, =0.72,
Limin = 0.154,  lynax =0.679,  Gimin = 0.523,  Gumax = 0.627,
Dymin = 0, and by = 10 to satisfy this condition. However,
this article does not discuss about the lendable time of
the spectrum price, but it discusses the time variety of
different channel qualities between the different prices
of the NLMF and NBMF models. In the NBMF model, the
price is $13.30 per unit spectrum as the channel quality is
the best, while the price is $4.63 per unit spectrum as the
channel quality is the worst.

9 —¥— R, (y,=7dB, y;=8dB)
8 —¢ R, (y>=7dB, y;=8dB)
—+— R;3(y>=7dB, y;=8dB)

Spectrum sharing (MHz)
W

5 55 6 65 7 75 8 85 9 95 10 105 11
Y1 (dB)

Figure 5 NE of spectrum sharing under different
channel qualities.

When the cost of the spectrum offered by the PU is
not higher than the revenue gained from the allocated
spectrum, an SU is willing to stay the shared spectrum
with the competition. Since the location of PU is fixed, the
channel quality varies with time as SU;, SU,, and SUj
move, and its SNR and spectral efficiency vary as well.
This variation in spectral efficiency affects the amount
of spectrum demanded in each interval by SU;, SU,,
and SU;,

We use Nash-PSO and NBMF-PSO to compare the
NLMF model (11) with the NBMF model (14), respectively,
at the same condition. According to (6), the price for the
unit of the shared frequency spectrum is an ascendant
function of the sharing spectrum size. In the NLMF model,
the price function has the fixed /=0 and g =1 values, only
to acquire the optimum utility function (11) of SUs. In
the NBMF model, we further consider the profit of PU.
By adapting the values of the coefficients / and g of the
price function, the PU's slope of the price function can
be changed, which helps PU achieve more demands
from SUs in each interval of the dynamic spectrum

200 —&— R, (y,=7dB, ;=8dB)
—e— R, (1:=7dB, ;=8dB)
150 —a— R;(1,=7dB, y3=8dB)
e
-
2
2 100
D
:
& 50
0

555 6 65 7 75 8 85 9 95 10 105 11
71 (dB)

Figure 6 NE of revenue under different channel qualities.
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= —— R, (1,=9dB)
o 5 —*— R;(y;=10dB)
£ 4 o
Z 3
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g 2
g
(=9
- 0

0 5 10 15 20 25

Number of iterations

Figure 7 Convergence process of three SUs by applying the
Nash-PSO algorithm.

sharing game. With the aim of maximizing both PU and
SUs' profits, PU decides how many spectrums are to be
lent based on the price each SU pays for the spectrum.
The NBMF model obtains more size of sharing frequency
than the NLMF model, and enhances the utility of the
resource. Figure 9 shows the running results for /, and ¢,
in the NBMF model.

Figures 10 and 11 show the shared spectrum sizes and
price, respectively, for unit of the shared frequency
spectrum under different pricing models. In Figure 10,
an SU shares a smaller spectrum size with PU, because

T y (m)
v
SU = Po18102)
(0,102) ,/
/
//
//
(0,0) s (104,0)
PU SU2 X (m)'
B N l v
/ \\\
// \\\
// \\\
/// \A.
v R
¢ < SU; (104,-91.8)
(-91.8,-106)
l(O,-106)
Figure 8 As an example, one PU and three SUs move by
applying the NBMF-PSO algorithm.

The values of /; and ¢,

0.7
0.65

0.61

0.55
0.5
0.45
0.4
0.35
0.3
0.25

-
—I—qt

0.2

0 1 23 456 7 8 9 1011 1213 14 15 16 17 18
Time interval (sec)

Figure 9 The running results of /; and g, for the NBMF model.

its channel quality becomes worse as the time and the
distance become longer. In Figure 11, the PU's offered
price for unit of the shared spectrum decreases, because
the shared spectrum sizes decrease as the channel quality
becomes worse. In the NBMF model, it is apparent that
the sharing spectrum size increases fast at good channel
quality. Because ¢ is small in the NBMF model, the demand
of the sharing spectrum size becomes larger by each SU,
and PU can gain higher price for the shared spectrum
under more competition. The NBMF model performs
better than NLMF model in the same situation by having
larger size of sharing spectrum for each SU and higher
unit price of the sharing spectrum for PU.

Figures 12 and 13 show the total shared spectrum sizes
and the revenue of the unit of frequency spectrum, respect-
ively, for the different pricing models. In Figure 12, SUs can
share more spectral from PU, and consequently, the total
size of the spectrum offered by PU increases in the NBMF
model. Similarly, in Figure 13, the revenue is relatively high
in the NBMF model. To increase PU's revenue, PU is more
willing to lend spectrum to SUs at a higher price. As a
result, SUs have to compete with each other only through
increasing b; for the spectrum demand. Once the spectrum
demand is improved, the frequency allocation is enhanced
for SUs, and the price may become higher for PU.

— N WA LN X oS

—&— NBMF-PSOs SU1
—e— NBMF-PSOs SU2
—a— NBMF-PSOs SU3
—3— Nash-PSOs SU1
—e— Nash-PSOs SU2
—t— Nash-PSOs SU3

Spectrum sharing (MHz)

01 234567 891011121314151617 18
Time interval (sec)

Figure 10 Three SUs compete spectrum sharing for the NLMF
and NBMF models.




Weng et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:265

http://jwcn.eurasipjournals.com/content/2013/1/265

Page 14 of 16

—8— NBMF-PSOs
—+— Nash-PSOs
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4 =
01 234567 8 9 1011121314151617 18
Time interval (sec)

Figure 11 Price per unit spectrum for the NLMF and
NBMF models.

Therefore, the NBMF model has larger revenue than the
NLMF model.

Simulation results show that our proposed NLMF model
utilizing swarm particle algorithm converges fast to the
Nash equilibrium, and the NBMF model satisfies both
groups of PU and SUs to enlarge the PU's revenue and
acquire larger shared spectrum sizes for SUs. The NBMF
model pays a lower price than the NLMF model at the
same shared spectrum sizes. The shared spectrum sizes
may be increased by improving the channel quality, and
PU can offer larger spectrum sizes with higher price. PU
provides reasonable price to SUs when the number of SUs
increases.

7. Conclusions

Pricing is an important issue not only to maximize the
revenue of PU, but also to allocate the radio spectrum
sharing with SUs efficiently. In this article, we discussed
the challenges in designing resource allocation and pricing
in cognitive radio network. We have proposed a competi-
tive spectrum sharing and pricing scheme based on nonco-
operative game for a cognitive radio network consisting of
a PU and N SUs. We presented a dynamic game in which
an SU adapts its spectrum sharing strategy by observing

—a— NBMF-PSOs
—a— Nash-PSOs

Total sharing spectrum (MHz)

01 23 456 7 8 9 10111213 14 15 16 17 18
Time interval (sec)

Figure 12 Total size of sharing frequency spectrum for the
NLMF and NBMF models.

300

—¥%— NBMF-PSOs

250
~%¢= Nash-PSOs

200

150,
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100

50

01 23 456 7 8 9 1011121314 151617 18
Time interval (sec)
Figure 13 PU’s revenue for the NLMF and NBMF models.

only the strategy which is a function of spectrum price
offered by the PU. By analyzing the strategic pricing
behavior of PU, we created an NLMF model and a specific
NBMF decision model for oligopoly market in cognitive
radio network. The NBMF model has applied NBMF-PSO
algorithms to iteratively obtain the solution of this
game for searching for the optimal solution of bilevel
programming models.

Numerical studies were carried out to evaluate the
performances of the two different pricing models. In
the proposed NBMF model, PU can share more spectrum
sizes with higher price for unit of shared frequency
spectrum to SUs, while PU achieves higher revenue and
SU acquires more size of the sharing spectrum by the
same price. The NBMF model is more satisfactory for
both groups of PU and SUs than NLMF, and enlarges
the PU's revenue and provides reasonable price to SUs.

This article applies a strategic pricing problem in a cog-
nitive radio market to help for both PU and SUs to make
the strategic decisions by the Nash-PSO and NBMF-PSO
algorithms. We combine swarm particle algorithms
with Nash strategy based on noncooperative game theory
to obtain the Nash equilibrium in multiple-objective
optimization problems. By thinking of the gaming and
bilevel relationship between PU and SUs, the NBMF
decision model can better reflect the features of the
real-world strategic pricing problems in the cognitive
radio markets and format these problems more practically.
The proposed NBMF-PSO algorithm is quite effective
for solving the strategic pricing problems defined by
the NBMF decision model. In the literature, no other
algorithm exists hierarchically for the strategic pricing
problems when both the gaming and bilevel relationships
are considered between PU and SUs. The NBMF-PSO
algorithm makes SUs using Nash-PSO algorithm to gain
their rational reactions and reach the Nash equilibrium,
and PU obtains the optimal pricing and acquires the
highest profit. Further research work will focus on building
the optimal strategic pricing models for the multiple PUs
and multiple SUs in cognitive radio network.
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