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Abstract

Optimization of sensor network architecture in order to improve the overall system performance at the end
processing station is an important challenge. A lot of architectures have been designed to optimize the bit error
rate. Conventionally, this optimization is done by inserting relays between sensors and destination. These relays
insert redundant information by mixing the incoming streams from sensor nodes, hence creating parity check
information which is very useful to help decode the transmit information from sensors. The goal is to combine
network and channel coding to match network on graph to code on graph, and this is called adaptive network
coded cooperation (ANCC). Compared to the previous works in the field, we propose a new transmit protocol
based on the use of beamforming technique which is very efficient in terms of throughput and is fully compatible
with the physical network coding (PNC) principles. Furthermore, we propose a distributed coding scheme where
the relay, the destination, and the sensors are all equipped with repeat accumulate (RA) channel code structures.

structure

The relay has a special RA structure to suit the need of the PNC multiple access channel.

Keywords: Wireless sensor networks; Physical network coding (PNC); Precoding; Repeat accumulate (RA) code

1 Introduction

Different protocols and architectures have been designed
to improve the performance of sensor networks. The use
of network coding has appeared recently as a promising
way to help find an answer to this problem [1-5]. In net-
work coding, some intermediate nodes mix the messages
they received and forward this obtained mixture to several
destinations simultaneously [6-8]. When compared to
time sharing-based schemes where destinations are served
sequentially, network coding improves considerably the
throughput efficiency [9]. Among the different network
coding techniques for wireless sensor networks, one
promising approach is the use of joint network-channel
coding (JNCC). The basic principle consists in the use of
relays which decode incoming streams and combine them
to obtain additional redundant information. The redun-
dant information from the relays is combined at the des-
tination node with the original information from the
sensors to obtain an equivalent powerful block code such
as a LDPC one. Hence, the goal of this kind of architecture
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is to couple networks on graphs with codes on graph. This
was first proposed in [10] and further developed in [11,12]
with some optimization of the coding scheme at the relay
place. The transmission protocol can be summarized in
the following way. In a first time slot, each source node
broadcasts its information to both relays and destination.
In a second time slot, the relays then decode the received
packets and combine them by XOR operation to obtain
parity check bits which are transmitted to the destination.
The second task clearly corresponds to the network cod-
ing step and contains some challenging aspects. The main
ones are of course the choice of the source incoming mes-
sages in the XOR operations and the degree of each XOR
operation (the number of incoming streams which are
combined). Finally, at the destination node, a graph code
such as low-density parity check (LDPC) or low-density
generator matrix (LDGM) codes is built and decoded
using belief propagation (BP) algorithm.

Compared to the existing literature and particularly to
[12], we propose, in this paper, new attractive features to
further improve the performance of suck kind of sys-
tems. The first point concerns the improvement of the
broadcast transmit phase. In [12], the authors propose
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to use orthogonal channels to make the transmissions
from sources to relays error free. This is quite penalizing
in terms of bandwidth or throughput efficiency depend-
ing on the used multiple access technique (FDMA or
TDMA). In this paper, supposing that the relay and the
destination are equipped with K antennas, we propose a
new transmission protocol which enables 2.K uplink and
downlink transmissions to be accomplished within (K + 2)
time slots. This outstanding performance is obtained
because we found a way to handle the co-channel inter-
ference at the relay place. The idea behind this comes
from the concept of interference alignment [13] and
consists in making the two messages delivered to and
from the same sensor fall in the same direction at the
relay. We propose precoding and beamforming tech-
niques [14-18] to ensure that the signals delivered to
and from the same sensor can be paired together. An-
other merit of our proposed system is that we consider
two-way message exchanges between the destination
and the sensors. We consider explicitly the case where
the destination node sends back information controls
toward the sensor nodes and this is not studied in [12].

Furthermore, since our proposed scheme is fully com-
patible with the physical network coding (PNC) princi-
ples, we propose a distributed coding scheme where
channel coding is applied at the destination and at the
sensors level and network coding is applied at the relay
to encode the incoming mixed streams from the destin-
ation and the sensors. We show that our proposed sys-
tem enables to transmit simultaneously the K encoded
messages from the sensors and the control encoded
messages from the destination. Thanks to the precoding
matrices, these messages are combined at the relay in
such a way that we have K streams to be network
encoded at the relay place. We suppose that the end
nodes (destination and sensors) are all equipped with
repeat accumulate (RA) codes, and we show how to de-
sign the channel decoder at the relay which channel-
decodes the superimposed channel-coded packets to
obtain the soft version of the arithmetic summation of
the source packets and transforms the superimposed
source packets to the network coded packets. These
processing tasks at the relay have been detailed in
[19,20] and the authors have named them: channel-
decoding-network-coding process (CNC). Similar con-
struction rules can be found in [21,22]. The decoder at
the relay uses a special repeat accumulate (RA) code
structure to accommodate the obtained particular in-
coming streams with precoding.

The rest of the paper is organized as follows. In the second
part (Section 2), the system model and the new proposed
transmit protocol are described. In the third part (Section 3),
the network coding scheme is detailed and we put the em-
phasis on the design of the decoder at the relay. In the

Page 2 of 12

fourth part (Section 4), we present the results of the simu-
lation. Finally, concluding remarks are given in Section 5.

The following notations are used: ()%, ()*, and E{(.)}
denote transpose, conjugate transpose, and expectation
of (.), respectively.

2 System model

We consider a real wireless sensor network with K sen-
sors, each sensor is equipped with one transmit/receive
antenna and with a channel encoder/decoder. In this
paper, we will use RA code structure for the coding of in-
coming streams from the sensors. No direct link between
sensor and destination exists. The relay is equipped with
Q multiple antennas and with K network-channel de-
coder/encoders. The destination node is equipped with
N> K multiple antennas too and contains K channel en-
coders/decoders. We will suppose classically that N> Q >
K, ie., the destination node has the best capability while
some relays are more capable than the elementary sensors.
The cooperation phases in such a system are decomposed
into two main ones.

o The first one is the broadcast phase where sensors
and destination exchange their information with the
help of the relay. We suppose that there is no direct
available link between the sensors and the
destination source.

e The second one is the network coding phase at the
relay. After decoding, the relay combines the
incoming streams and retransmits them to the
destination and sensor nodes. The way the relay
operates the network coding tasks is described in
the next section.

In this part, we put the emphasis on the transmit pro-
tocols. In [12], the authors assume that the sensors
transmit their data in orthogonal channels (typically se-
quentially in the case of TDMA). This results in bad
throughput efficiency. We propose a new transmit
protocol which enables 2. K uplink and downlink trans-
missions to be accomplished within (K +2) time slots
(Figure 1).

2.1 Transmit protocols

During the first time slot, the destination node transmits
the precoded version of the control messages to the indi-
vidual intended sensors, Pm, where m = [m,, ms, ..., m]*
and P is a Nx K precoding matrix at the destination
node. Since the transmission power at each antenna is
equal to 1, the precoding matrix should satisfy: trace
(PP™) < N. Simultaneously, each of the K sensors sends
its own message s;ic {1, ..., K} to the destination. At the
end of the first time slot, the signal at the relay can be
written as:
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Figure 1 System architecture.
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YR :HDRPerZH}-Rs/JrnR, (1)
j=1

where Hpp is the Q x N channel matrix between the
destination node and the relay, Hjz is the Q x 1 channel
vector between the relay and the jth sensor and ny de-
notes the Q x 1 additive white Gaussian noise vector.
During the second time slot, the relay decodes the re-
ceived signal to obtain soft information about the quan-
tities: n1;@s;, using a particular decoding algorithm.
Denoting i; the estimated value for m; @ s; at the end of
the decoding process, i; is then encoded by a standard

RA coder. Vectors £ = [2‘1,22, e EK}T, which represent
the encoded words corresponding to iy, iy, ..., Ux , are
then broadcast, after being BPSK modulated, to the sensor
nodes and to the destination node in different time slots.
Denoting # the modulated vector corresponding to £, the
vectors £ are transmitted during the next K time slot
to the sensors using precoders WY). Supposing that we

intend to transmit the jth element of vector £ to sensor j,
we can use WY defined by:

0 0 - 0 0 O
00 O 0 0 K x K matrix
. 00 1 0 0 0 ) . The j.th term on the
wo diagonal is equal to 1

00 0 O O 0

0 0 - 0 0 O-K nul

— O-Knulr
00 0 0 0 ul rows

In other words, matrix WY is built with the super-
position of an all zero matrix of size K x K except for
the jth term on the diagonal which is equal to 1 and an
all zero matrix of size (Q-K) x K. Physically, this corre-
sponds to the case where the components of £ are
transmitted sequentially over the first K transmit an-
tennas at the relay. We obtain the received signal at the
jth sensor as:
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yj :HRjW(j)i—Fl’ll', (2)

where Hp; is the 1 x Q channel vector between the jth
sensor and the relay. Supposing that the uplink and
downlink channels are reciprocal, we have Hpz; = Hllfe.
Of course, during this phase, the destination does not
take into account the received data.

After this phase, i.e., after the first (K +2) time slots,
vectors f are transmitted to the destination source
within the next time slot. To do this, we add Q-K zeros
at the end of £ to obtain a new transmit vector of size
Q x 1, named . The relay uses a precoding vector F of
size Q x Q and the destination source weights the re-
ceived signal with a vector G of size Q x N. Physically,
this means that the K data information are transmitted
by selecting K antennas among a set of Q antennas. We
obtain the received signal of size Q x 1 at the destination
node as:

Yp = GHRDFE + Gnp. (3)

One possible choice for G and F consists in:
F =(H#,Hyp) ' and =H%,,. Once again, we suppose that:
Hpp = HE,.

2.2 Precoding matrix design at the destination source for
the first time slot

Apart from the already cited constraint power, we have
to be sure that each sensor should not receive informa-
tion for other sensor. The proposed design is based on
the concept of interference alignment [23] and consists
in grouping the messages from and to the same sensor,
ie, m; and s; together. This is facilitated by defining the
precoding matrix P at the destination as follows:

-1
P = VaHl(HocHl) " Ha, @

where Hyp = [H,r, Hyp, ..., Hxz] and a is a factor which
ensures that the transmission power at the destination
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node is normalized. By using such a precoding matrix P,
the relay can group the messages from and to the same
user as follows:

yr = He(Vam +s) + np, (5)

where s=1[s;, ..., si]”. In this case, similar to physical
layer network coding (PNC) [4], the relay directly broad-
casts the mixture of m and s. Concerning the total trans-
mission power at the destination with the use of
precoding matrix P, we have

E trace(PP)]
—aE [trace <H§R (HprH!L) " Hy (HgR (HDRHER)_IHRY[)} .
— B trace (HorHly) ' HeHY )|
(6)
Using the condition E [trace (PPH )] <N and choosing =
N/E {trace ( (HprH 1) H RHY ) } , we ensure, provided

that [E [trace ( (HprH 1) “HyHY ) } is bounded, that the
transmission power at the base station is normalized. The
proof that [E [trace ( (HprHZR) 'H RHY )} is bounded can
be found in [15] or [24].

3 Network coding at the relay
The coding principle is directly related to the received
signal at the relay (see Equation (5)), we have

yr = Hr(vVam + s) + np.

We suppose now that the transmitted messages from
the elementary sensors and from the destination are
both encoded with a RA code structure [19,20]. The
structure of the RA code is drawn on Figure 2.

As mentioned in [19,20], there are two classical solu-
tions to address the problem of cooperative network
coding at the relay (CNC). The first one consists in de-
coding m; and s; from yp separately. The relay can first
decode m; while regarding the other message s; as

Xbji

m; Or 5 Up; or Us; =
NN

—»| Repeatg |—p| Interleaver 9o —» D —>

Figure 2 Structure of the RA code.
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interference, and can then decode s; after removing
the decoded information m; from the decoded signal.
Combining the soft outputs of the decoder P, (a, b) =
Pr(m; = a, s; = blyg)P,,is{a, b) = Pr(m; = a, s; = blyg), we can
generate: m; @ s; The second solution consists in esti-
mating Py, ex,,(a) = Pr(X,;®Xp; = a/yg) from the re-
ceived vector yr with for example the method in [25]. By
decoding the estimate of X, ;® Xp, i.e.: Px, ex,,; with a soft
input decoder, the relay can obtain: 2, @ s,.

3.1 The proposed decoding scheme

It is possible to design a decoding scheme with higher per-
formances compared to the two above-mentioned solu-
tions. The new proposed solution named Arithmetic-sum
Channel decoding Network Coding process (ACNC) has
two advantages: (1) the relay directly decodes the received
packet yz to make full use of dependency among channel
code symbols and (2) it does not decode explicitly 7; and
s; but only aims at obtaining the probability mass function
of m; +s; which can be easily transformed to: m; @ s;. We
can find similar ideas in [21,22]. Similar to [19,20], we
then look at an equivalent decoding structure at the relay
place. Adapting the idea of Arithmetic-sum Channel de-
coding Network Coding process ACNC design, we have,
for each row j of yp, the decoder at relay which can be
regarded as processing the superposition of the two simul-
taneously received signals from the destination \/am; and
the sensor s; to generate the superposition of the two in-
puts of the encoders at the sensor j and at the destination.
In these conditions, the decoder at the relay for row j
could conceptually be viewed as the decoder of a virtual
encoder whose input S ; and output Xy are given by:

Srj=mj+s; Xr;=aXp;j+Xy;. (7)

The virtual coding scheme for ACNC at the relay is
depicted on Figure 2. The virtual encoder has the same
structure as the classical RA encoder except that the
binary summation is now replaced by a general function
f. This function f needs to satisfy:

xR,,»[k] :f(xRJ-[k—l}, LlRJ‘[k]) = \/ExD_j[k] +x51[k] (8)

when: sg [l] = my[1] + s;{1]

where xp (k] is the kth coded bit of message m1; from
the destination, x,;[k] is the kth coded bit of message
from the sensor j, ug;[k] is the kth interleaved symbol of
node relay and sg (/] = ug,[k] is the /th information bit of
node relay, and the index [ is determined by the interlea-
ver. In our case, the interleavers at destination, relay,
and sensor are the same. Based on Figure 2, the relations
between xp[k], x,;[k] and m;l], s;[l] can be respectively
expressed as:
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xD,[k} = xD,j[k—l]eauD,j[k] = xDJ[k—l}@le[l] (9)
xsﬁj[k] = xs,,'[k—l]@usﬁj[k] = st[k—l]@Sj[l].

Then, combining Equations (8) and (9), we can obtain
the expression of the function fas:

xglk] = f (g [k=1], ug,[k])

= Va(xpyk-1@ml]) + xojk-1@s . 0

The possible values of xp,[k] are, 0,y; =1,y, = a,
ys=1++va,andy, =1 or yJa =y, or y,.In fact, we
have the following rules:

0 if apjlk-1] =y;, (mj+s)[]] =2
Yo if xpjlk-1]=y,, (mj+s)[l]=1
)/3 1f xRJ[k—l] = }/3, I’I’ll' +Sj m =0
Yo if xpjlk-1] =y, (mj+s)[l] =2
)/1 1f XRJ[](—I] = )/2, Wll’ +Sj m =2
xpjlk] =< 0 or y; if apjlk-1]=y,, (m+s)[l]=1.
v if xpjlk-1] =y, gm/ + Sjg =0
Yo if xpjlk-1] =y,, (mj+s)[l]=0
V3 if xR][k—l] = 0, mj +S]‘ m =2
y, if xRJ[k—l] =0, (m +Sjg m =1
(11)

For encoding, the Tanner graph is read from left to
right. For decoding, the Tanner graph is read backward
from right to left. The well-known principle is to ex-
change a posteriori probabilities between information
and check nodes until the probabilities converge after
several iterations and we could decode: ny{l] + 5;[/].

3.2 Tanner graph and decoding algorithm

The RA code structure can be described with the well-
known Tanner graph, which is the basis to use the belief
propagation algorithm [26]. The tanner graph of the vir-
tual encoder at the relay is drawn on Figure 3.

For the decoding algorithm, we have the four following
configurations of message updating steps (see Figure 4).
The decoding algorithm proceeds as follows. We suppose,
for example, that we use a MIMO ZF-based equalizer, this
entails the multiplication of the received signal y by the
invert or the pseudo-invert matrix of Hp. Hence, after the
ZF equalization step at the relay, assuming a BPSK modu-
lation scheme, the kth received symbol at the jth row of
the received vector at the relay is written as:

ek = V. (2.0p,[k]-1) + 2.x5[k] -1 + "y

= 2.(Vaxp k] + x;[k]) ~dpmj~1 + np. (12)
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Another solution may consist in employing a list
sphere decoder [27] to weight the coded symbol before
entering the belief propagation decoding module. This
affords to obtain better performances than using ZF
equalization since it is well known that LSD, which ap-
proximates the ML solution, exhibits better perfor-
mances compared to ZF equalization.

Concerning the decoding algorithm using BP, it pro-
ceeds as follows. Let P[/,t] denote the message passed be-
tween a check node and a variable node (information
node or code node), the message is associated with the
edge from node / to node t; one of 4 or ¢ is a variable
node and the other is a check node. As in [19,20], we de-
note P as the message from the kth evidence node to the
kth code node. Hence, we have the following notations:

Plh, t] = (po, p1, p2) is a vector, in which p; is the prob-
ability that the corresponding variable node (% or ¢)
takes on the value i. In fact, we have

(13)

The messages for the variable nodes are initialized to
(1/4, 1/2, 1/4).

Similarly, P}< = (p’o, 20 p;, p/s) is a vector, in which p;
is the probability that the kth coded symbol is i given
the kth received symbol. We have here:

SRJ =m; +5;

Xp,=aXp, +X,, Ya
@

O

@ @ Q OF

Code node

O

Figure 4 Tanner graph of the virtual RA code at the relay.
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Py = Pr (/@[] + 5,k = Oly, K]
Py = Pr(y/@an k] + 5[k = 11y, [K])
, (14)
Py = Pr (/@ k] + 351K = /aly,[K])
Py = Pr(vaan, k] + k] = 1+ Valyg, [K])

Initialization step: all the messages with the edges in
Figure 4 are taken equal to (1/4, 1/4, 1/4, 1/4) except for
the messages incident to the evidence nodes. These mes-
sages contain information on the received signal and the
message from the evidence node k is computed from the
received signal yz ;[k] as follows:

Py = (po, Py, Ps.P3)

1( [_(y’*"[k]“*ﬁ)z] [_(%,,-m—wﬁ)z]
=3 | P ,exp| ———

2.02 2.02

] [l

2.02 2.02

(15)
A is a normalizing factor given by:
A = 2. expnlk/2’
<exp[(1+\/a)z]/2‘”2ch (2(1 + \/&)yRJ[k]/Z.az) + ...
exp[0-v@]/2 (2(1 V@) K /2.02)> .

(16)
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3.3 Message update rules

(a) The first update rule concerns the update equations
for Output Messages going out of a Variable Node. This
corresponds to the cases of Figure 5a,c.

Figure 5a case: when the probability vectors of the
two input messages, P = (p’o,pll,plz,p;) and Q/ =
(q;), qll, q/z, q;) (associated with the edge from y to x and
from ¢’ to x) arrive at a code node of degree 3 (except
the lowest code node), the probability that the code
symbol is 0 is obtained as follows:

Pr(x = 0P, Q) = U r—(POgr(x ~0)
_ Pr(Plx = 0).Pr(Qlx = 0).Pr(x = 0)
Pr(P,Q)
Pr(x = 0|P).Pr(x = 0|Q).Pr(P).Pr(Q)
PI'(P, Q)Pr(x = 0)

= 4ypod,,
(17)

Pr(P).Pr(Q),

Pr(P.Q) ’
the two input messages are independent, given the value
of the variable node, i.e., Pr(B Q|x) = Pr(P|x), and we
suppose that Pr(x = 0) = 1/4. In a similar way, we would
obtain

Pr(x =1|P,Q) = 4yp 14, Pr(x=du,|P.Q) = 4ypya>,
and Pr(x = 1+ d,,;|P,Q) = 4ypaqs.
Hence, the output message at the variable node is

where y = we assumed in Equation (17) that

VAR(P, Q) = 4y (p'oql),p}ql ,p;q;,pQQQ) : (18)

Figure 5 Different kinds of message updating steps.

Xy
ca; Ri
SRy
JCRJ
O =
Spj Crj
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With y = 1
Y = slndpd - pdr iy
Remark:

— (1) The update equations for the scenario of
Figure 5¢ are similar except that the variable node is
an information node rather than a code node, and
the associated probabilities are related to the source
symbol rather than the code symbol.

— (2) If we consider the messages in log-likelihood (LLR)
form, ie., p; = (0, log(p,/po), log(p3/py). 1og(ps/p0)).
we find that Equation (17) is equivalent to the summa-
tion of all the incoming LLRs.

— (3) For the lowest code node in Figure 4, the output
message is always the same at the input message
from the last evidence node, which remains constant
throughout the iterations.

(b) The second update rule concerns the update equa-
tions for Output Messages going out of a Check Node.
This corresponds to the cases of Figure 5b,d.

Figure 5b case: If we consider a check node below the
topmost check node, the probability that the informa-
tion node symbol is O given the two input messages
P’ = (py,py.12.p5) and Q = (40,4145, 95) (associated
with the edge from x to ¢ and the edge from x’ to ¢, re-
spectively) is equal to:

Pr(x = 0[P, Q)
=Pr(x = y;, 4 =2|P,Q) +%Pr(x =y,x =1P,Q)+ ...
...+ Pr(x = 0,2 = 0|P,Q)
= Pr(x = y,|P).Pr(x¥ = 2|Q) + %Pr(x =y,|P).Pr(x' =1|Q) + ...
... + Pr(x = 0|P).Pr(x = 0|Q)
= Pr(x = y;|P).Pr(x' =2|Q) +%Pr(x =y, or y,|P).Pr(x' =1|Q) + ...
... + Pr(x = 0|P).Pr(x' = 0|Q)
= Pr( = 1 |P)-Pr(x = 21Q) + 5 Prlx =y, [P) Pr(s' = 1/Q) + ..
et %Pr(x =y,|P).Pr(x’ = 1|Q) + Pr(x = 0|P).Pr(x" = 0|Q).
(19)
We eventually obtain
Pr(x = 0[P, Q)

o 1. 1 ’o ro (20)
=P34, "‘5191‘11 + 5172611 + Podo-

In the same way, we get
Pr(x = 1/P, Q)
=Pr(x =y, =0|P,Q) + Pr(x = y,, & =2|P,Q) + ...
1
+§Pr(x =y,,4 =1|P,Q) +§Pr(x =0, =1|P,Q)
= Pr(x = y,|P).Pr(x = 0|Q) + Pr(x = y,|P).Pr(x' = 2|Q) + ...
1 1

et iPr(x =y,|P).Pr(x' = 1]|Q) + EPr(x =0[P).Pr(x' = 1|Q)

" N S S
=190 tPa9> t 2Pt + 2P0t

(21)
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Pr(x = \/a|P, Q)
=Pr(x = y,,& =2|P,Q) + Pr(x = y,, & =0|P,Q) + ...

+%Pr(x =y;,x =1|P,Q) +%Pr(x =0, =1|P,Q)
= Pr(x = y,|P).Pr(«' = 2|Q) + Pr(x = y,|P).Pr(x' = 0|Q) + ...
et %Pr(x =y,|P).Pr(x = 1|Q) +%Pr(x = 0|P).Pr(x' = 1]Q)

;o ;o | 1.,
=P19; P90 + 51’3‘11 +5p°q1

(22)
Pr(x = 1+ ValP, Q)
1
= Pr(x = )/3,96/ = O‘P Q) +§Pr(‘x = }’4,.?6/ = 1|P~ Q) +
e +Pr(x = 0,4 =2|P,Q)
1
= Pr(x = y3,#' = 0[P, Q) + 3 Pr(x =y, = 1P, Q) + ..
1
+§Pr(x =y, =1|P,Q) + Pr(x = 0,x =2|P,Q)
T S S '
=p3do + Eplf’h +§P2q1 + Pods-
(23)

Figure 5d case: in this case, we have two messages
coming from C;?.j and c/,; ; corresponding to xg [k - 1] and
xg,lk] in Equations (10) and (11), and we deduce the dif-
ferent probabilities: P[4, t] = (po, p1, p2)-

po = Pr((m; +5;)[[] = 0|P, Q)

= Pr(x = y3|P).Pr(x’ = y3|Q) + Pr(x = y,[P).Pr(x’ = y,|Q) + ...
«o. + Pr(x = 1|P).Pr(x = 1|Q) + Pr(x = 0|P).Pr(x’ = 0|Q)
=Podo T P191 T P2y + P33

(24)

P = Pr((my+ 5)[0] = 1P, Q)
= Pr(x = y,|P).Pr(x' = y5|Q) + Pr(x =0 or y;|P).Pr(x' =y,|Q)+ ...
.. + Pr(x = y,|P).Pr(x' = 0/|Q)
ZPrx =y, or y,lP)Pr(¥ — 7,]Q)+
wo +Pr(x =0 or y,|P).Pr(x' =y, or y,|Q) + ...
. + Pr(x =y, or y,|P).Pr(x’ =0|Q)
= Pr(x = y,|P).Pr(x' = y5|Q) + Pr(x = y,|P).Pr(x’ = y;|Q) + ...
<. + Pr(x = 0|P).Pr(x’ = y1|Q) + Pr(x = y4|P).Pr(x' = y;|Q) + ...
... + Pr(x = 0|P).Pr(x' = y,|Q) + Pr(x = y;|P).Pr(x' = y,|Q) + ...
et Rr(x = y/llP)./Pr/(x’ =/0\/Q) + P/r(x = y/z\P).l/’r(,x’ =/0|/Q)
= D193 T Paq3 + Pody t P3d1 T Pody + P3dy + P1do t Pado-
(25)

And, similarly, we obtain

pa = Pr((m; +5)[l] = 2|P, Q)

= Pr(x = 0|P).Pr(x’ = y5|Q) + Pr(x = y,|P).Pr(x' = y,|Q) + ...
et Rr(x =7 |P).,Prl(x' = )’;‘Q) + Pr(x = y3|P).Pr(x’ = 0|Q)
=Po4s + P2q1 T P192 T P340

(26)

4 Simulation results
We reuse Equations (5) and (11), we have

yr = Hr(Vam +s) + np
yp=1 +HgD”D .

We are interested in evaluating the achievable data
rate or ergodic capacity at the destination node. As we
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Figure 6 The performance results of the proposed network scheme at outage capacity 4/3 bpcu.

have supposed that there is no direct link between sen-
sor nodes and destination nodes the upper bound for
the achievable data rate at the destination node can be
approximated by [28]:

1 o
c:EE[mln(log2[det(I+’%DHR}J(HR},)H>],...

logz[det(I +p1i<RHR(HR)H)]].

Where the factor 0.5 denotes the half multiplexing loss
due to relaying compared with a relay-free scenario. pgr
denotes the signal-to-noise power ratio for the link be-
tween sensors and relay and pzp denotes the signal to
noise power ratio for the link between relay and destin-
ation. In the following, supposing that the relay is lo-
cated at the same distances from the sensor network and
the destination, we will assume that: psg = prp=p

We consider a sensor network with respectively four,
six, eight, and ten sensors, and we deal with the case of

10" -

FER

-&- outage capacity 2 bpcu
—+— FER block size 6000, SD

102 —+— FER block size 6000, ZF H
[ —=— FER block size 2000, SD |
—=— FER block size 2000, ZF
10‘3 i i 1 i I i i
-5 -4 -3 -2 -1 0 1 2 3
SNR (dB)

Figure 7 The performance results of the proposed network scheme at outage capacity 2 bpcu.
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Figure 8 The performance results of the proposed network scheme at outage capacity 8/3 bpcu.

a BPSK modulation at both sensor and destination

nodes. We set the repeat factor g to 3 and the interleave
pattern is randomly selected for each packet. This entails
a coding rate of 1/3. The simulated channel models are
quasi static block fading channels, i.e., the channel pa-
rameters stay fixed for the duration of a transmitted
block but vary from block to block. No power
optimization is done, ie., that means that transmit
power at the destination source and at the sensor nodes

10°e

-]
(-]

is normalized to one. We compare the performances of
two decoding schemes using a ZF equalizer or a sphere
detector before BP decoding. We consider two size
blocks for the RA encoder scheme: 2,000 and 6,000 bits.
The performance results of the proposed network
scheme are illustrated on Figures 6, 7, 8, and 9. The con-
clusions are nearly the same for each picture. Working
with the highest block size, i.e., 6,000 bits together with

a SISO (Soft In Soft Out) Sphere Decoder [27] enables

10"+

FER

~&- outage capacity 10/3 bpcu
—+— FER block size 6000, SD
1021 —+— FER block size 2000, ZF
B —=— FER block size 2000, SD
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Figure 9 The performance results of the proposed network scheme at outage capacity 10/3 bpcu.
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to work close to the theoretical capacity of formula (27).
For example, for a ten-sensor network, we are able to
work within less than 1 dB from the achievable data rate
at a Frame Error Rate (FER) of 1072 (see Figure 9). The
use of receiver architecture equipped a ZF equalizer
yields to a degradation approximately equal to 0.6
0.7 dB, thus enabling to work within 1.7 dB from the
ergodic capacity. The degradation is clearly more im-
portant when we use a small size RA block code. With a
block size of 2,000 bits, the performances of a SD-based
receiver are nearly 2 dB far away from the ergodic cap-
acity at FER = 107> (see Figure 8). Concerning the re-
ceiver with a ZF equalizer, we are nearly 2.5 dB from the
ergodic capacity (once again for the case FER = 1072).

All of these results constitute an outstanding perform-
ance since we are able, in all the cases, to work close to
the theoretical ergodic capacity of the system.

5 Conclusion

In this paper, we have proposed a physical network
coding-based system to improve the throughput efficiency
of a wireless sensor network. Thanks to powerful beam-
forming techniques, supposing that the relay and the des-
tination are equipped with K antennas, we built a new
transmission protocol which enables 2.K uplink and
downlink transmissions to be accomplished within (K + 2)
time slots. This outstanding performance is obtained be-
cause we found a way to handle the co-channel interfer-
ence despite the poor capacities of elementary wireless
sensors which have only one antenna.

Furthermore, since our proposed scheme is fully com-
patible with the physical network coding (PNC) princi-
ples, we propose a distributed coding scheme where
channel coding is applied at the destination and at the
sensors level and network coding is applied at the relay
to encode the incoming mixed streams from the destin-
ation and the sensors. We show that our proposed sys-
tem enables to transmit simultaneously the K encoded
messages from the sensors and the control encoded
messages from the destination. Simulation results dem-
onstrate that our proposed distributed coding scheme
enables to work close to the theoretical ergodic capacity
of the system. Typically, considering different kinds of
receiver architectures, we are always within less than
2 dB from the ergodic capacity of the equivalent system.
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