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Abstract

In this paper, we address the challenging issue of multi-hop cooperative relaying over heterogeneous compound
channels, where constituent channels can incorporate topographical variations and respective distribution changes
(due to environmental factors). Existing methods in the literature address various issues pertinent to receiver design
by assuming a homogeneous framework. Since real-time signal level monitoring at the relay node is impractical in
transparent relaying, statistical knowledge of the end-to-end channel is critical for an energy-efficient system design.
As the received signal quality and hence the signal-to-noise ratio (SNR) depend on the channel condition, an exact
characterisation of the end-to-end compound channel is essential for the implementation of transparent relay
networks in a particular coverage area. This demands a realistic heterogeneous compound channel model, having
distinct component distributions, that can accommodate variations in per-hop channel distribution. Exact probability
density function and cumulative distribution function of the end-to-end compound channel are derived in closed
form, through an inverse Mellin transform approach. As there can be many combinations of heterogeneous channels,
we propose a unified approach for deriving statistical properties of interest. Two typical cases of heterogeneous
channels, Nakagami × Weibull and Rayleigh × Weibull, are considered to validate the proposed generic analytical
approach. Based on the derived exact statistics of these models, performance metrics, such as coefficient of variation,
average SNR, outage probability, and average SER, are evaluated. Through appropriate use of these metrics, optimal
power boosting at the relays and quality stream selection for arbitrary diversity combiner units can be done. The
pertinent analytical results are also validated through simulation studies to demonstrate the accuracy and
applications of the results.

Keywords: Mellin Transform; Multi-hop non-regenerative relay; Compound channels; Weibull distribution;
Rayleigh distribution; Nakagami-m distribution

1 Introduction
With the possibility of providing enhanced network cover-
age as well as spatial diversity, wireless cooperative relay-
ing is undoubtedly one of the most significant communi-
cation strategies today. Of the many possible schemes of
relaying, transparent or amplify and forward (AF) relay-
ing is usually preferred, as the processing burden on the
relay is minimal, though the compounding channel effects
due to cascaded channel gain multiplication is a serious
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issue. However, this demands sophisticated implemen-
tation techniques, as it can bring much more attenua-
tion and uncertainty to the transmitted signal than other
schemes do. Technologically, the extensive applications
of wireless relay transmissions are impedimented by the
undesirable features of the wireless transmission environ-
ments. One of the fundamental challenges to be addressed
for wireless communication is the random fluctuation
of the transmitted signal, which is mainly due to the
multi-path effects and shadowing. In the context of multi-
hop transparent relaying, additional impairments on the
end-to-end channel from multiple relaying, with dis-
tinct per-hop distributions due to distinct environments,
require special attention as it affects the system design and
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receiver performance. Appropriate power amplification
by the intermediate relays is another major issue that has
to be addressed in AF relay system. Amplification by the
relay node based on respective signal strength measure-
ment is impractical in AF systems, as this may increase
overall delay and processing burden at the relay node.
Hence, a statistical knowledge of the end-to-end chan-
nel under consideration is critical, to implement a robust
communication system. The main objective of the pro-
posed work was to provide a unified approach to extract
the statistical properties of any compound channel, which
will enable us to design links that account for per-hop
channel distributions and to reap the benefits of diversity.
To address the issue of modeling random fluctuations

of the transmitted signal, terrain dependent fadingmodels
for direct link transmissions, based on empirical study of
the received signal, are available. Extending this to multi-
hop scenario results in homogeneous compound channel
models as in [1-3], and is more suitable for indoor appli-
cations. The double Rayleigh model analysis using Meijer
G-function for multiple-input multiple-output (MIMO)
systems in [4,5] is often used in multi-hop relay trans-
missions where homogeneous product channel effects are
experienced. As the relays are physically apart in multi-
hop transmissions, spatial correlation can be neglected in
modeling.
In outdoor multi-hop transmissions, the assumption

of homogeneous scattering environment for all the con-
stituent links is definitely an approximation; because in
actual scenario, cascaded links are often characterised
by heterogeneous environment due to scattering density
variations. Hence, a more realistic channel model suit-
able for transparent relay transmissions is presented. The
analysis is extended to it so as to make realistic predic-
tion of signal variations at the receiver, and to facilitate
appropriate detection strategies. Two cases of heteroge-
neous channel models, Nakagami × Weibull (NW) and
Rayleigh × Weibull (RW), are considered to demonstrate
the validity of the proposed generic approach. (Nakagami-
m and Weibull distributions belong to different classes of
distributions, while Rayleigh and Weibull belong to same
class of distributions.) A homogeneous compound chan-
nel model Weibull × Weibull (WW) is also considered for
reference and comparison. Appropriate performancemet-
rics required for a transparent relay system are derived for
the given compound channel models.
The rest of the paper is organized as follows. A brief dis-

cussion on the methodology adopted for analysis, metrics
chosen for evaluation, and contributions are presented
in the rest of this introduction. In Section 2, closely
related work from the literature are discussed. In Section
3, the cooperative communication system and the channel
model under consideration are presented. Exact expres-
sions for the primary statistics like pdf and cdf are derived

in Section 4. Performance measures such as coefficient of
variation, average SNR, and outage probability are com-
puted in Section 5. Using simulation studies, validation of
analytical results, determination of average BER perfor-
mance of a transmission system, and study of quantile-
quantile (q-q) profiles for different channel models are
done in Section 6. Discussion on the results are included
in Section 7, and the paper is concluded in Section 8.

1.1 Summary of methodology, metrics, and contributions
Instead of exploring new distributions for the end-to-end
compound channels, a closer match to the actual sce-
nario can be obtained if product combinations of known
distributions are selected according to the topographical
variations. This results in distributions that show accurate
fit to the practical scenario. Analytical study of this unex-
plored framework for the compound channels in multi-
hop AF relay communication is too complex and often
uses approximate solutions. The generic approach that we
propose can be used to obtain the exact probability den-
sity functions (pdfs) of new random variables (RVs) that
are algebraic combinations or functions of independent
RVs.
Moment generating function (mgf ) and Mellin trans-

form (MT) are the two commonly used tools for the com-
putation of distribution moments [6,7] in communication
theory. As we focus on a generic approach for finding the
pdf of a heterogeneous compound distribution, the prod-
uct convolution property of MT for independent RVs is
exploited. Also, as MT translates exponentials to polyno-
mials, complexity of the analysis can thus be reduced to
a certain extent. Using certain other properties of MT,
convenient computation of signal-to-noise ratio (SNR)
statistics is also possible. The ease of computation of met-
rics related to SNR, convenient extension to three or more
hop counts, and computation of the end-to-end moments
without the knowledge of overall pdf are some of the
added benefits of this transform.
We can find the pdf from the inverse transform. The

inverse transform computation requires the evaluation of
a contour integral. For the case of known standard homo-
geneous compound distributions, this integral evaluation
can be done directly by using theMeijer G-function which
is available as built-in functions in computing software
packages [8]. But it is not readily available for every prod-
uct distributions of interest. Therefore, conversion of the
contour integral to appropriate Meijer-G format is essen-
tial for the evaluation. However, the coefficients of the
transform variable may not be identical for two different
distributions. This issue is solved in our work by applying
gamma duplication formula and reduction rule to one of
the component distributions.
Modeling the distribution of the signal fluctuation is just

the first step. In order to employ a fading model in link
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budget, it is also vital to determine suitable performance
metrics based on the statistical properties of the model.
A performance metric involving higher order moments
is often required to asses the possible signal variations.
Hence, a metric called coefficient of variation (CV) is
derived which reflects the slightest change in distribution
with respect to the fading factors and hop counts. Per-
formance prediction adaptive to hop count and terrain is
essential for robust system implementation. Hence, out-
age probability is evaluated for different channel models
using the exact pdf of SNR distributions.
As power allocation in AF system critically depends on

the SNR and power constraints of relays, accurate esti-
mation of average SNR, which is sensitive to hop count
and individual hop distributions, is essential for the effec-
tive implementation of the system. Hence, an expression
for the average SNR is derived (in terms of relay ampli-
fication factor). It is then used to simulate a two-hop AF
relay transmission system and the bit error performance
is analysed for different compound channel models.
Metrics like CV and average SNR derived can be used
to select appropriate branches in a selection or switched
diversity combining systems [9,10].

2 Related works
Most of the previous works on product pdf are based on
mgf. When known standard distributions with the avail-
able mgf are used for the pdf and other statistics, readily
available results from computing software packages can
be used for evaluation.
In some of the previous works [6,8,11], harmonic dis-

tribution is assumed for the end-to-end SNR. But this is
based on the condition that the real-time channel state
information (CSI) is available at the relay node so that
the relay amplification factor can be chosen accordingly.
However, real-time CSI at relay node is impractical for
the case of a transparent relay networks. In such situa-
tions, the end-to-end SNR distribution is to be obtained
from the product distribution of the compound chan-
nel coefficients as we show in Section 3. Based on the
upper bound obtained using the inequality between har-
monic and geometric means of positive RVs, the moments
of the end-to-end SNR for Rayleigh, Nakagami-m, and
Nakagami-n fading channels are derived in [6],[8]. The
approximation of harmonic distribution is valid only at
high SNR, as per the derivation. Same approach based on
bounds is followed in [11,12] for Nakagami-m and gen-
eralized Gamma channels. The related works with non-
identical constituent distributions either deal with same
class of distributions with non-identical scale parameters
or resort to approximations.
Exact primary statistics, pdf and cdf, for the product

of n-Rayleigh RVs are derived in [7], using the Meijer
G-function. The corresponding infinite series expansions

of the expressions from subroutine packages are also
provided. Exact expressions for capacity and SNR for
n-Weibull distributions are derived in [2], where approx-
imations to pdf are also provided. Using inverse Laplace
transform of the mgf of product RVs, compound pdf for
Nakagami-m distribution is derived in [13] in terms of
Hyper geometric functions. Performance measures for a
homogeneous n-Weibull distribution are derived in [3],
where only the statistics based on moments of homoge-
neous compound channels are considered. The primary
statistics like fading distributions and SNR distribution for
homogeneous or heterogeneous compound channels are
not obtained in this work.
In [11] and [1], Nakagami-m distribution is assumed

for the individual channels, whose SNR distribution
falls under another known standard distribution, namely
Gamma. Since known identicalpdf s are used, for the con-
stituent channels, mathematical subroutines can directly
provide the corresponding pdf of the compound channel
in special function formats. Using the Fox’s H-function,
the pdf, cdf, and mgf for the N-product generalized
Nakagami-m distribution for differentm are found in [14],
along with channel capacity and amount of fade (AoF).
However, series form expansions of Fox’s H-function are
tedious to obtain, especially when multiple order poles
are involved. Using mgf approach, approximate average
bit error rate and AoF are computed for identical n-
Weibull distributions in [15]. In this work, the end-to-end
SNR is taken as the product distribution of individual
SNRs for the AoF computation. The upper bound of
SNR in a dual-hop system having non-identical Weibull
distributions is considered in [16], where the overall
SNR effect is approximated by selecting a channel hav-
ing the minimum SNR. The same approach is followed
in [17], for cascaded Rayleigh and Rican distribution,
where effectively, the compound channel reduces to sin-
gle channel model for further analysis. Despite these
contributions, a unified approach for the exact charac-
terisation of compound channels with combinations of
distinct component distributions is not available in the
literature.
An explicit investigation on the fading effects due to

heterogeneous cascading and correspondingmetrics eval-
uation is essential. Certain distributions, considered as
special cases of other distributions, can be derived from
the original distribution by parameter substitution. But
for the integral inversion, when product effect is consid-
ered, parameter substitution to the original distribution
may not produce accurate results. As the integral will only
pick up the values of the residues at each pole, a single
contour of integration is required for the inverse compu-
tation. This may not be always possible due to the change
in the transform variable coefficients of the correspond-
ing function arguments. This issue has to be addressed in
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order to analyse heterogeneous case, and it is in this aspect
that our work is different from the above works.

3 Compound channel and systemmodel
Our focus is on the exact characterisation of the fad-
ing statistics of cascaded links having distinct constituent
distribution for each link, which are referred to as hetero-
geneous compound channels. Formation of such a channel
is illustrated in Figure 1.

3.1 Compound channel model
We represent the composite channel coefficient by the
product of n independent, but not necessarily identically
distributed RVs Xi, i.e.,

V =
n∏

i=1
Xi, (1)

where Xis are non negative RVs that can be of any dis-
tribution depending on the nature of the propagation
environment. This model is justified as we will see in
the system model in the following subsection. Weibull
and Nakagami-m are the two terrain specific distribu-
tions which are commonly used to model the empirical
data depicting the environmental variations in outdoor
communications. A generic Weibull pdf, unlike the basic
Weibull pdf considered in [2,15,16], and suitable for radio
systems operating in any frequency range is selected as the
reference fading distribution:

fWi(w;α,β) = β

α
(
w
α

)β−1e−( w
α

)βU(w);α > 0,β > 0,

(2)

where U(x) is the unit step function, and α (resp. β)
represents the scale (resp. shape) parameter. Note that,
here, the exponentiated RV value ′w ′ is raised to a vari-
able power equal to fading factor (β). Therefore, this
distribution can depict the zonal variations in the topog-
raphy (as β is a terrain dependent factor) more effectively
than other distributions. In order to study the effects of
heterogeneous compounding, another entirely different
distribution namely Nakagami-m with pdf

fYi (y;�,m) = 2
�(m)

(
m
�

)my2m−1e−(
my2
�

)U(y);� > 0,m ≥ 1
2
,

(3)

Figure 1 The heterogeneous compound channel formation in a
multi-hop transparent relay network. A realistic channel model
that accounts for the scattering density variations of the environment
is considered for the statistical analysis.

is selected along with the Weibull distribution. The
parameter m is also known as the fading factor and � =
E[Y 2] is the scaling factor. E[.] is the expectation operator.
In Nakagami-m distribution, the exponentiated squared
RV value ′y ′ is multiplied by the fading factor (m). Hence,
variability of this distribution will be less compared to
Weibull distribution.
The RV representing the channel fading in an environ-

ment having uniform local scatterers is usually charac-
terised by Rayleigh distribution, given by the pdf

fR(r; λ) = 2
( r

λ2

)
e−( r

λ )
2
U(r), (4)

where λ2/2 denotes the variance. Note that the exponen-
tiated RV in this case is raised to a constant power of
2 and belongs to the same class of Weibull distribution.
Two cases of heterogeneous compound channels formed
by the combinations of these distributions are considered
to check the validity of the unified approach.

3.2 Systemmodel
We extend the two-hop system model in [18] to n hops.
With reference to Figure 1, there are n hops between
source and destination. Using this system model, the sig-
nal degradation due to changes in hop count and channel
distributions can be assessed. The received signal at desti-
nation at any epoch k is represented as

y(k) = vef (k)d(k) + eef (k), (5)

where vef (k), eef (k),, and d(k) are the effective end-to-end
channel fading coefficient, effective noise, and the source
data, respectively. The effect of end-to-end channel on
signal and noise is evident from the given system model.
Here,

vef (k) =
n−1∏
j=1

Aj

n∏
i=1

Xi(k)

eef (k) =
n−1∑
l=1

n−1∏
j=l

Aj

n∏
i=l+1

Xi(k)el(k) + en(k),

(6)

where Aj denotes the amplification factor of the jth relay,
Xi denotes the fading coefficient of ith hop, el denotes the
additive noise at the lth relay, and en denotes the additive
noise at the destination. As exact CSI is not available at
intermediate relay nodes for a non-regenerative system,
minimum amplification by the relay is considered as the
bound (worst case condition). This imposes the condition
that A1 = Ai = An−1 = 1, and therefore, effective chan-
nel coefficient vef = V (defined in Equation 1). Under
this situation, the relays act just like nodes that establish
connectivity to the succeeding nodes.Moreover, consider-
ing normalised channel coefficients Xis, the additive noise
effect get reduced due to channel multiplication. In short,
the signal (data) distortion due to channel attenuation
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(multiplication) becomes much more significant than the
additive noise.

4 Exact primary statistics of compound channels
In this section, the pdf and cdf of compound channels
are derived, and the multiplicative effects of channel coef-
ficients are investigated for homogeneous as well as het-
erogeneous cases. The approach can be extended to any
combinations of distributions like Erlang, Beta, Gamma,
etc., for which the MT are defined.

4.1 Probability density function
Using MT and its properties, computations can be made
simpler for product RVs. The MT of a pdf fX(x) is defined
as [19]:

M( fX(x), s) =
∫ ∞

0
xs−1fX(x)dx, (7)

and it is denoted by MX(s), where s = a + jb ∈ C
is a complex transform variable. This transform opera-
tor represents the second kind characteristic function.
The usual techniques of conditioning on RV s or Jacobian
transformations are no longer required if Mellin trans-
form properties are applied; and the transform of the
productpdf can be readily converted to moments of the
compound channel pdf.

4.1.1 pdf of n-Weibull channel
The MT for the given n-Weibull distribution, using the
MT properties [3,19], is

M[ fV (v), s]= α(s−1)n�n
(
s + β − 1

β

)
= MV (s), (8)

where V represents the product of n-Weibull RVs. By set-
ting s = p+1, various moments of n-hop relay system can
be obtained as [3],

m(W )
p = E

[
Vp] = αnp

[
�

(
1 + p

β

)]n
. (9)

The mean and variance of the n-hop relay system can be
easily computed from Equation 9. The pdf of n-Weibull
channel can be derived from the end-to-end moments by
finding the inverse of the product transform, defined as

fV (v) = 1
2π j

∫ c+j∞

c−j∞
v−sM(fV (v), s)ds. (10)

Integration path Re(s) = c is taken in the fundamental
strip of the MT. The inverse MT of Equation 8 yields n-
Weibull pdf as

fV (v) =
(

β

αn

)
1
2π j

∫
L

[
�(1 − 1

β
+ s′)

]n (
vβ

αnβ

)−s′

ds′.

(11)

Note that, to express the integral as a Meijer G-function,
it is rewritten as Equation 11 using an appropriate variable
substitution s′ = s

β
. This integral equation can be reduced

to the Meijer G-function as:

fV (v) = β

αn G
n,0
0,n

(
vβ

αnβ
|−1− 1

β
,1− 1

β
...

)
. (12)

See Appendix for the definition of general Meijer
G-function.

4.1.2 pdf of heterogeneous channel - Nakagami×Weibull
Following the transform development steps in [3], the MT
of the Nakagami-m channel can be obtained as

M
[
( fY (y), s)

] = �

m

s−1
2 �

(
m + s−1

2
)

�(m)
. (13)

Considering Weibull as the succeeding constituent chan-
nel, the MT of the NW compound pdf (denoted as
fNW(v)) can be obtained as

M
[
(fNW(v), s)

]=
(
�α2

m

)
s−1
2

1
�(m)

�

(
m + s − 1

2

)
�

(
s+β − 1

β

)
.

(14)

Corresponding to this, the pth moment becomes

m(NW)
p =

(
�α2

m

) P
2 1

�(m)
�

(
m + p

2

)
�

(
1 + p

β

)
.

(15)

The NW compound pdf is found by inverting the trans-
form given in Equation 14. Even though H-function can
be used to represent the inverse integral, as the series form
expansion of H-function is often difficult and tedious,
most of the computational packages make use of Meijer
G-function integral format for the evaluation of defi-
nite and indefinite integral equations. By using Gamma
reduction rules along with variable transformation, the
results can be expressed in Meijer G-function, which
makes the computation accurate. Software packages like
Mathematica andMatlab can be used for the computation
and simplification of integral equations of known standard
distributions which are homogeneous. But as these pack-
ages do not contain built-in subroutines for such hetero-
geneous cases, closed-form expressions must be derived
in the required format so that accurate computation is
possible. Taking the inverse MT of Equation 14, the com-
pound channel pdf of Nakagami × Weibull distributions
can be expressed as

fNW(v) = 1
2π j

∫
L

(
�α2

m

) s−1
2 1

�(m)
�

(
m + s − 1

2

)

× �

(
s + β − 1

β

)
v−sds. (16)
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In order to translate the variable coefficient in the argu-
ment of the last term to unity, set s

β
= s′ which results

in

fNW(v) = β

�(m)
(
�α

m
)
1
2

1
2π j

∫
L
�

(
m − 1

2
+ βs′

2

)

× �

(
1 − 1

β
+ s′

) (
�α2

m

) βs′
2
v−βs′ds′. (17)

Now, application of gamma reduction rule (see
Appendix) to this will transform the integral to the for-
mat of Meijer G-function. Hence, in terms of Meijer
G-function, the pdf reduces to

fNW(v) = Kβbb

D�(m)
Gb+1,0
0,b

(
vβ

(b
1
2D)β

|−2m−1
β

, 2m+1
β

,..., 2m+β−3
β

,1− 1
β

)
,

(18)

where b = β
2 , D = (�α2

m )
1
2 , and K =

√
2π

2πb/2 . This is
computed for specific values of m,β and is given in the
Appendix.

4.1.3 pdf of heterogeneous channel - Rayleigh×Weibull
The approach can be extended to the RW heterogeneous
compound channel. Rayleigh distribution can be consid-
ered as a special case of Weibull by using β = 2. The MT
of the Rayleigh distribution can be obtained as

M
[
(fR(r), s)

] = λs−1�

(
s + 1
2

)
. (19)

The MT of the RW compound pdf (denoted as fRW (w)) is
thus

M
[
(fRW(v), s)

] = λs−1�

(
s + 1
2

)
α(s−1)�

(
s + β − 1

β

)
.

(20)

Corresponding to this, the pth moment becomes

m(RW)
p = λp�

(
p + 2
2

)
α(p)�

(
p + β

β

)
. (21)

Using the inverse Mellin transform and denoting λ.α =
α2, the compound channel pdf of Rayleigh × Weibull
distribution can be expressed as

fRW(v)=
(

β

α2

)
1
2π j

∫
L
�

(
1− 1

β
+ s′

)
�

(
1
2

+ βs′

2

)
k−s′ds′,

(22)

where k =
(

vβ
α

β
2

)
, s = βs′. The application of gamma

reduction formula to the second of the two gamma func-
tions will reduce the integrand to

fRW(v) =
(

β

α2

)
K

1
2π j

∫
L
�

(
1 − 1

β
+ s′

)
�

(
k
b

)−s′

ds′,

(23)

where � = ∏β/2−1
i=0 �( 1

β
+ 2i

β
+ s′). In terms of Meijer

G-function, the heterogeneous compound pdf becomes

fRW(v) =
(

β

α2

)
KG

β
2 +1,0
0, β2

(
k
b
|−1− 1

β
, 1
β
, 3
β
...,1− 1

β

)
. (24)

Corresponding expression for the given specific parame-
ter values is given in the Appendix. The exact expressions
for the various compound pdfs are plotted in Figure 2 and
will be discussed along with other results in Section 6.

4.2 Cumulative distribution function
Note that the pdf expressions given in Equations 11, 17,
and 23 have two variables, the transform variable s′ and
the pdf argument v. Integrating the pdf with respect to
the variable v to an integration limit of a given threshold
value yields the exact cdf. The double integral can then be
rewritten to express the inner integral in terms of v and
the outer integral in terms of s′. The former one is then
subjected to some algebraic manipulations ( by making
use of Gamma reduction rule) so that the exact cdf can be
expressed in terms of Meijer G-functions.

4.2.1 cdf of the n-Weibull compound channel
By integrating Equation 11 with respect to the product
variable v inside the contour integral, and separating out
those terms in v only, we have

T =
∫ vt

0
v−βs′dv = t v−βs′

t

β
(
1
β

− s′
) , (25)

where the upper limit of the integration vt represents
the threshold value for the product RV of the WW dis-
tribution. Using gamma reduction rules,

(
1
β

− s
)
can be

ww

RW

NW

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

v

pd
f

Figure 2 pdf comparison plots for Weibull×Weibull(WW) ,
Rayleigh×Weibull (RW) as well as Nakagami×Weibull (NW)
distributions. Variations in the density function due to
homogeneous and heterogeneous channel assumptions are evident
from this figure. For comparing the statistical behaviour of the
channels, fixed scaling and fading parameters of the distributions are
used for plotting the graph (α = λ = � = 1,β = m = 4).
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written as
�(1+ 1

β
−s)

�( 1
β
−s) . Doing some algebraic manipulations

and substituting the result to the original integral equation
yield the cdf :

FV (vt) = vt
αn G

n,1
1,n+1

(
vβ
t

αnβ
|1−

1
β

1− 1
β
,...1− 1

β
,−1

β

)
. (26)

4.2.2 cdf of Nakagami-m×Weibull channel
By integrating Equation 17 with respect to v inside the
contour integral, we have

FNW(vt) = bm−1

D�(m)

Kvt
2π j

∫
L
	b−1

i=0 �

(
2m − 1

β
+ i/b + s′

)

×�

(
1 − 1

β
+ s′

)
�( 1

β
− s′)

�( 1
β

− s′ + 1)

(
vβ
t

Dβ

)−s′

ds′.

(27)

Evaluation of this integral can be done as described in
the previous case, and thus the cdf in terms of the corre-
sponding Meijer G-function is

FNW(vt)= vtbm−1

D�(m)
KGβ/2+1,1

1,β/2

(
vβ
t

Dβ
|1−

1
β

2m−1
β

, 2m+1
β

, 2m+3
β

...1− 1
β
,−1

β

)
.

(28)

In order to plot the cdf, the function may be computed for
some specific parameter values, as given in the Appendix.

4.2.3 cdf of Rayleigh×Weibull channel
Following the same procedure as above, the cdf of the
RW compound channel can be obtained by integrating
Equation 23 with respect to v inside the contour integral,
resulting in

FRW(vt) = vt
α2

KGβ/2+1,1
1,β/2

(
vβ
2

α
β
2 b

|1−
1
β

1− 1
β
, 1
β
, 3
β
...1− 1

β
,−1

β

)
.

(29)

Using computation software (Mathematca), exact cdf
expressions are plotted in Figure 3, for various channel
types, and are discussed in Section 6.

5 Application of the results-performance
evaluationmetrics

As suggested in [20], in the general context of describ-
ing the behaviour of a diversity system with arbitrary
combining techniques, the channel quality based on chan-
nel statistics can be used for performance evaluation.
Three different measures have been investigated to evalu-
ate the performance of multi-hop networks using diversity
schemes.

NW

RWn=2
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Figure 3 The cdf comparison plots for various hop counts of
n-Weibull (with n = 1 − 4) and Rayleigh×Weibull(WW) as well
as Nakagami×Weibull (NW) distributions. The required linear
dynamic range of the receiver can be selected based on these plots.
Fixed scaling and fading parameters of the distributions
α = λ = � = 1,β = m = 4 are used for plotting the graph.

5.1 Coefficient of variation-CV
CV is a suitable metric for comparison and evaluation of
channel (signal) variability due to cascading order and fad-
ing distributions. Investigation about the variability of the
distribution of the compound channel coefficients is quite
useful, as it accounts for the variability to the data being
transmitted. In practice, the main problem with variance
(ν) is that it is expressed in units that are square of the
units of observations. Since standard deviation (SD) is
having the same unit as mean, it is preferable to use the
ratio of SD (σ ) to mean (μ). This measure is better than
variance as it takes the scale of measurement out of vari-
ability considerations. The possible signal deviation due
to parameter variations and order of multiplications can
be computed using this ratio measure[3]. The first and
second order moments required for the evaluation of CV
can be computed using the derived expression for the pth
order moments of the respective compound channels. As
per the definition,

CV = σ

μ
=

√
ν

μ
. (30)

In the case of WW channel, using Equation 9 with n = 2,

CV(WW) =
√

�N (1 + 2/β)

�2N (1 + 1/β)
− 1. (31)

Similarly, using the pth order moments given by
Equation 15, the CV for the NW compound channel can
be obtained as

CV(NW) =
√

�(m)�(m + 1)�(1 + 2
β
)

�2(m + 1/2)�2(m + 1/β)
− 1. (32)
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Using the moments given by Equation 21, the CV for the
RW distributed channel can be obtained as

CV(RW) =
√

4 �(1 + 2/β)

π �2(1 + 1/β)
− 1. (33)

The CV plots for the above mentioned compound chan-
nels are shown in Figure 4, in which is also provided
the simulation results to demonstrate the accuracy of the
derived expressions.

5.2 Average SNR
SNR is a commonly used performance measure in com-
munication receivers and is an indicator of the overall
fidelity of the system [20]. In the context of a communi-
cation system subject to fading impairment, more appro-
priate performance measure is the average SNR, where
the term ‘average’ refers to statistical averaging over the
probability distribution of the SNR. In order to use this
measure for the system design, expressions are derived
that involve overall relay amplification factor also. The
instantaneous received SNR is given by

γ = V 2 Eb
N0

, (34)

where v is the RV representing the compound channel
coefficient as specified in Equation 1. Eb is the average
bit energy and N0 is the corresponding additive white
Gaussian noise power spectral density of the end-to-end
system. The corresponding average SNR is

γ = E [γ ] = E
[
Eb
N0

V 2
]
. (35)
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Figure 4 Empirical and theoretical CV plots of Weibull×Weibull
(WW), Rayleigh×Weibull (RW), and Nakagami×Weibull (NW)
distributions. This performance metric accounts for the channel
variability and can be selected as a quality index of the channel.

In order to use this statistics in the system design, it
is more beneficial to express the overall bit SNR, Eb

N0
,

in terms of per-hop bit SNR, represented by ebj
n0j , and

relay amplification factors Aj. Therefore, using the sys-
tem model Equations 5 and 6, the overall bit SNR can be
written as

Eb
N0

= E

⎡
⎣n−1∏

j=1
A2
j
ebj
n0j

⎤
⎦ . (36)

Under the assumption of constant ebj
n0j that averages to

unity in each single hop, Eb
N0

becomes A2, where A =∏n−1
j=1 Aj.
Based on the properties of MT, various moments and

the distribution of V 2 can be computed easily, without
the need for pdf transformation approaches followed in
[2,20]. The proposed approach will be suitable for com-
puting the pdf of SNR of any arbitrary combination of
product distributions. Denoting V 2 by ϒ , the MT of ϒ is
given by Mϒ(s) = E

[
V 2s−2] = MV (2s − 1). The MT of

the pdf of γ is

Mγ (s) = E
[
γ s−1] = (

A2)s−1MV (2s − 1). (37)

Various moments of γ are computed from this by set-
ting s = p + 1. Using this expression for the average
SNR computation, and by selecting scaling factors propor-
tional to path-loss due to distance, the appropriate hop
distance and relay amplification factor can be designed for
a threshold average SNR for each compound distribution.

5.2.1 Average SNR of n-Weibull channel
The MT of ϒ for n-Weibull distribution is given by
Equation 8, with s replaced by 2s − 1:

Mϒ(s) = α(2s−2)n�n
(
2s − 2 + β

β

)
. (38)

Using this, the expression for the pth moment of SNR for
n-Weibull distribution is

m(γ )
p = α2pn�n

(
β + 2p

β

) (
A2)p . (39)

Then, the average SNR for n-Weibull channel is computed
as

m(γ )
1 = γ = α2n�n

(
β + 2

β

)
A2. (40)
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5.2.2 Average SNR of NW channel
As in the previous case, the MT of the pdf of ϒ for NW
channel is given by Equation 14 with s replaced by 2s − 1

Mϒ(s)(NW) =
(

�α2

m

)−1 1
�(m)

� (m + s − 1)

× �

(
1 − 2

β
+ 2s

β

) (
�α2

m

)s
, (41)

from which the pth order moment of SNR is

m
(
γNW

)
p =

(
�α2

m

)p 1
�(m)

� (m + p) �

(
1 + 2p

β

) (
A2)p .

(42)

Thus, the average SNR of the Nakagami × Weibull dual-
hop compound channel is

m
(
γNW

)
1 =E[γ ]=

(
�α2

m

)
1

�(m)
� (m + 1) �

(
1 + 2

β

)
A2.

(43)

5.2.3 Average SNR of RW channel
Repeating the approach to the RW case, from Equation 20,
the MT of the pdf of ϒ for RW case is given by

Mϒ(s)(RW) = α2s−2
2 �(s)�

(
2s + β − 2

β

)
(44)

from which the pth moment of SNR is

m
(
γRW

)
p = α

2p
2 � (p + 1) �

(
1 + 2p

β

) (
A2)p . (45)

Hence, average SNR of the Rayleigh × Weibull compound
channel is

m
(
γRW

)
1 = α2

2�(2)�
(
1 + 2

β

)
A2. (46)

In order to validate these theoretical expressions, simula-
tion studies were conducted and the comparative results
are plotted in Figure 5 for β = m = 4. Based on Figure 5,
for a two-hop transparent relay system, the required over-
all amplification factor for a target average SNR can be
computed. For a system operating over NW channel, the
required amplification factor will be more compared to
that of RW or NW channel.
Comparison of Equations 46 and 40 reveals that the

average SNR of RW compound channel reduces to that of
a single-hop Weibull channel if λ is unity, since �(2) = 1,
and λ.α = α2. (With reference to Equation 4, λ = 1
corresponds to Rayleigh distribution with variance 0.5.)
A single-stream two-hop AF relay transmission system

was simulated for a relay amplification factor of 2, to
investigate the error performance of the system over each
compound channel.
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Figure 5 Average SNR of compound channels of Weibull×
Weibull(WW) , Rayleigh×Weibull (RW), and Nakagami×
Weibull (NW) distributions. Average SNR from simulated samples
shows close match to that evaluated from theoretical expressions at
specific values of fading factors β = m = 4. It is plotted against
overall relay amplification factor. The required amplification factor for
a target average SNR of the system operating under NW or RW or NW
channel model can be obtained from this figure.

5.3 Outage probability
QoS of a system operating over fading channels can be
predicted using the outage probability metric. It gives the
probability that the instantaneous error rate exceeds a
specified value. This metric, denoted by Pout, is equiva-
lently defined as the the probability that the received SNR,
γ , falls below a certain specified threshold, γth :

Pout =
∫ γth

0
fγ (γ )dγ (47)

which is thecdf of γ , evaluated at γ = γth. To compute the
outage, the pdf of SNR is to be obtained first through the
inverse MT approach.

5.3.1 Outage probability for n-Weibull channel
The SNR pdf for n-Weibull compound channel is
obtained by substituting Equation 38 in Equation 37, and
finding the inverse MT:

fγ (γ ) = β/2
2cπ jα2n

∫
L

[
�(1 − 2

β
+ s′)

]n ( γ

cαn

)−β/2s′
ds′,

(48)

where s′ = 2s
β
, and c = Es

N0
. Rewriting this integral in terms

of the Meijer G-function, it becomes

fγ (γ ) = β

2cα2n G
n,0
0,n

(
z|−1− 2

β
,1− 2

β
...

)
, (49)

where z = γ β/2cα−nβ/2. Substituting Equation 48 in
Equation 47, we get the outage probability for n-Weibull
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channel, which is a double integral. Using gamma reduc-
tion rule, the inner integral can be simplified as

T2 =
∫ γth

0
γ − β

2 s
′
dγ =

γ
− β

2 s
′+1

th �
(
2
β

− s′
)

�
(
1 + 2

β
− s′

) . (50)

Substituting this in to the outer integral, we get

Pout = Fγ (γth) = c1
2π j

∫
L

�
(
2
β

− s′
)

�
(
1 − 2

β
+ s′

)n
�

(
1 + 2

β
− s′

)

×
⎛
⎝ γ

β
2
th

(cαn)β/2

⎞
⎠

s′

ds′, (51)

where c1 = cβ
2 α−2n. Denoting z1 = (γthc−1α−n)β/2

and expressing in terms of Meijer G-function, the outage
probability for n-Weibull channel is

P(W)
out = c1Gn,1

1,n+1

(
z1|1−

2
β

1− 2
β
,1− 2

β
...,−2

β

)
, (52)

5.3.2 Outage probability for NW channel
Substituting Equation 41 in Equation 37 and finding the
inverse MT, the pdf of SNR for NW channel can be
obtained as

fNW(γ ) = 1
2D2�(m)c

1
2π j

∫
L

� (m + s − 1) �

×
(
1 − 2

β
+ 2s

β

) (
cD2)s γ −sds, (53)

Changing the transform variable, for integer even values
of β greater than 2, this gets reduced to

fNW(γ ) = β

2N1

1
2π j

∫
L

�

(
m + βs′

2
− 1

)
�

×
(
1 − 2

β
+ s′

) (
cD2) βs′

2 γ
−βs′
2 ds′, (54)

where N1 = D2�(m)c. To reduce this to a tractable form
in Meijer G-function, apply gamma duplication formula
to the arguments of first gamma function. This results in

fNW(γ ) = N2
2N1π j

∫
L

	b−1
j=0 �

(
m − 1

b
+ j

b
+ s′

)
�

×
(
1 − 2

β
+ s′

) ( γ

cD2

)−βs′
2 ds′, (55)

where N2 = bm−1(2π)
1−b
2 . Substituting Equation 55 in

Equation 47, and following the previous approach for
simplification, we get Pout as

P(NW)
out = N2

N1
γthGb+1,1

1,b+2

((γth
cD2

)β/2 |1−
2
β

2(m−1)
β

, 2
β
, 2m

β
,,...1− 2

β
, 2(m−3)

β
,1−2

β
,−2

β

)
.

(56)

5.3.3 Outage probability for RW channel
Substituting Equation 44 in Equation 37 and taking the
inverse MT, we get the pdf of the corresponding SNR as

fRW(γ ) =βα−
2 2

4cπ j

∫
L

�

(
β

2
s′
)

�

(
1 − 2

β
+ s′

)

×
(

γ
β
2

(cα2)β/2

)−s′

ds′,
(57)

for the variable transformation s′ = 2s
β
. Again substituting

this into Equation 47 and following the previous approach,
Pout is obtained in Meijer G-function as

P(RW)
out = c2G

β
2 +1,1
1, β2 +2

(
z2|1−

2
β

0, 2
β
, 4
β
,...1− 2

β
,1− 2

β
,−2

β

)
, (58)

where c2 = cβ
2

1
2 2π1− β

4 α2
2γth and z2 = γ

β
2
th

(cbα2)β/2 . Using
these expressions, the exact probability that the received
SNR is above a threshold can be computed by evaluating
1 − Pout and is plotted in Figure 6.

6 Simulation studies
The derived expressions for cdf, CV, and average SNR
were validated by Montecarlo simulations. The various
sample data corresponding to each basic distribution were
generated, and the respective product channels, for both
homogeneous (n-Weibull) as well as heterogeneous (NW,
RW) channels, were obtained. Weibull distributed coef-
ficients Wi were generated using the Gaussian in-phase
components Wi1 and quadrature components Wi2 as in
[21]:

Wi = (Wi1 + jWi2)
2/β , (59)
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Figure 6 Evaluation of system performance under various
compound channel models. Using the simulated transparent two-
hop transmission system, the BER performances corresponding to
NW, RW, and WW channels are plotted. Lowest error rate is obtained
when the system is operating under WW channel, as expected.
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Table 1 Comparison of analytical cdf to simulation cdf

Product distributions NW RW WW

Threshold (vt ) Empirical cdf Analytical cdf Empirical cdf Analytical cdf Empirical cdf Analytical cdf

0.5 0.0823 0.0779 0.4266 0.4478 0.4508 0.4609

0.7 0.1322 0.1217 0.4677 0.4782 0.5066 0.5174

0.9 0.1245 0.1348 0.5201 0.5217 0.5577 0.5609

1 0.3256 0.3217 0.6789 0.6869 0.7567 0.7695

1.2 0.4912 0.4956 0.7800 0.7862 0.8701 0.8764

where j = √−1. The Rayleigh channel coefficients were
generated in the same way with β = 2, and the Nakagami-
m using the Gamma random variates from the Matlab
software package. Using these random variates generated
for the different constituent channel coefficients with var-
ious parameter values, the corresponding product channel
coefficients were obtained for different hop count values.
For the analytical and simulation cdf comparison in

Table 1, data samples were generated withm = β = 4 and
unity scaling factors for the various given distributions.
The empirical cdf was computed from the generated

samples {v1, v2, ....vz} as:

F(v) = 1
Z

Z∑
i=1

1{vi≤vt}, (60)

where 1{vi≤vt} represents an indicator function which
takes value unity when vi ≤ vt , and Z represents the total
number of observations.
For the computation of empirical CV, sample moments

are to be evaluated. From the generated data, the sample
moments were computed as

m1 = 1
Z

Z∑
i=1

vi (61)

m2 = 1
Z

Z∑
i=1

v2i , (62)

The empirical CV was then computed from the sample
moments and using the basic definition of CV:

CVe =
√
m2

m2
1

− 1. (63)

The empirical CV, denoted as CVe, was computed from
the samples generated for various values of β ,m and n.
For the computation of the sample moments and CVe, 106
samples were generated in each of the homogeneous and
heterogeneous compound channel cases. The exact match
between the theoretical CV and Empirical CV shows the
accuracy of the exact expressions derived for CV and
moments.

In order to validate the expressions for average SNR,
different sample data were generated with m = β = 4.
The scaling factors for the samples were selected as relay
amplification factor. A single-stream two-hop AF relay
transmission system was also simulated for a relay ampli-
fication factor of 2, to analyse the error performance of the
system over each compound channel. BPSK modulated
signals were transmitted, and additive white Gaussian
noise was added at each hop. Corresponding to NW dis-
tributions, the first hop was modeled by Nakagami-m
with m = 4 and the second hop was modeled by Weibull
with β = 4 distributed coefficients. Scale factors were
selected as unity for both distributions, so that relay
amplification factor stands for the scale factor for the
samples, when implemented to the system. Similarly, RW
andWWcompound channel models were also developed.
The received signals were detected using zero crossing
detector. Average bit error rate (BER) performance of the
system corresponding to the three channel models was
thus evaluated using simulations and plotted in Figure 7.
The sample data generated were also used to obtain an
empirical q-q plot of the quantiles of dataset-1 (WW)
versus the quantiles of the dataset-2 (NW or RW).
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Figure 7 Complementary outage probability plots for Rayleigh
×Weibull and Nakagami×Weibull distributions are shown.
Various hop counts ( n = 1 − 4) of n-Weibull distribution is also
considered in this figure for α = λ = 1,β = m = 4, based on which
number of hop count that can give the required threshold SNR can
be selected.
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7 Results and discussions
The analytical and simulation results obtained are dis-
cussed in this section. The plots of derived analytical pdf
forWeibull×Weibull(WW), Nakagami×Weibull (NW),
and Rayleigh × Weibull (RW) are shown in Figure 2. It
may be noted that the pdf ofWWdistribution approaches
Gaussian distribution for β = 4. These exact pdf expres-
sions can be used to identify the distribution from empir-
ical data, using q-q plots.
Figure 3 shows the plots corresponding to the derived

exact expressions of cdf for different values of n and for
the NW, RW cases. Knowledge of cdf can be used to fix
the dynamic range (DR) at the receiver unit.
The DR can be obtained as the ratio vtmax/vtmin and the

thresholds are decided based on the cdf values. It is seen
from Figure 3 that the required DR at receiver will have to
be increased as the order of multiplication increases. The
smaller slope of cdf for RW and NW cases, compared to
the 2-Weibull (WW) case, and the corresponding differ-
ence in DR are obvious from Figure 3. Simulation results
show exact match to the analytical results as tabulated in
Table 1.
Lower values of CV indicate better regularity of the

channel coefficients. In Figure 4, CV is plotted against
fading factors β orm. For β = 2, the RW and WW distri-
butions give the same CV, as both distributions reduce to
RR (two-Rayleigh) distribution. Among the three distribu-
tions, NW shows the minimum variability (most regular),
as expected. Simulation and analytical values (CVe, CV)
show exact match in Figure 4, proving the accuracy of the
derived analytical expressions. The exact match between
the theoretical CV and Empirical CV shows not only the
accuracy of the expressions derived for CV but also the
exact agreement of the derived (population) moments to
the sample moments.
The average SNR computed analytically and through

simulation (as discussed in Section 6) for each case are
plotted against the relay amplification factor in Figure 5.
The close match between the simulation and theoreti-
cal plots observed in Figure 5 shows the accuracy of the
derived expressions for average SNR of WW, RW, and
NW channel models. The lowest average SNR for the NW
channel under the given fading factors (β = m = 1)
means that the required amplification factor for a target
average SNR for a system operating over this channel will
be higher compared to that of RW or NW channels. Based
on Figure 5, the required overall amplification factor for
any target average SNR can be computed.
The plot of 1 − Pout in Figure 6 gives the probability of

the received SNR to be above a threshold, for n-Weibull
compound channel with various hop counts. Based on
the minimum γth required at the receiver, the number
of hop counts can be selected. Also shown in Figure 6
are the plots for the NW and RW dual-hop compound

channels. The improved performance of RW case over 2-
Weibull case, in the high SNR region, and the degradation
of NW channel over the homogeneous case are exposed
in Figure 6.
In order to demonstrate the application of the derived

average SNR, a two-hop transparent relay transmission
system was simulated as discussed in Section 6. The aver-
age BER performance of the system over NW, RW, and
WW channels are plotted in Figure 7. Obviously, max-
imum error rate occurs with NW channel as it delivers
minimum average SNR. For the system operating over
NW channel, an additional 3-dB increment in Eb

N0
is

required for achieving an average BER of 10−3 in compar-
ison with WW channel scenario.
The quantile-quantile (q-q) plot in Figure 8 shows the

quantile deviations of the models NW, RW with respect
to a homogeneous model WW. The first and third quar-
tiles of each dataset are found first, which are extrapolated
out to the ends of the samples to evaluate the linearity
of the data. These are shown as the reference plots 1 to
3. The departure from these reference lines indicates that
the two data sets have come from populations with dif-
ferent distributions. The horizontal axis corresponds to
estimated quantiles from data set-1 (WW), while vertical
axis corresponds to estimated quantiles from data set-
2 (RW or NW). Even though the distributions, Rayleigh
and Weibull, belong to the same class of distributions, the
quantiles of RW are different from that of WW.
From the derived exact expressions for the various pri-

mary statistics and the corresponding simulation results,
it is evident that the end-to-end channel distribution
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Figure 8 Quantile-quantile plots of heterogeneous channels
against homogeneous channel. The changes in the quantiles due
to variations in the constituent distribution can be assessed using this
plot. From the given q-q plot, it is evident that even though the
distributions, Rayleigh and Weibull, belong to the same class of
distributions, the quantiles of RW are different from that of WW
channel.
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for different number of hops may deviate significantly
in modality, skewness, Kurtosis, etc., due to cascading.
The derived performance metrics depend on the num-
ber of hops and the constituent distributions. These exact
expressions, and the unified approach that can be used
for other cases as well, are expected to be of great use in
the realistic system design and performance evaluation of
the multi-hop, diversity attaining transparent cooperative
systems.

8 Conclusion
Exact expressions are derived for the moments, pdf, and
cdf, of the proposed heterogeneous compound channel
models in multi-hop transparent cooperative relay trans-
missions for outdoor applications. The statistical proper-
ties of heterogeneous compound channels, Nakagami ×
Weibull and Rayleigh × Weibull, are compared with that
of homogeneous compound channel assumption. The
expressions are derived in tractable compact forms, in
terms of Meijer G-functions, so that accurate and easy
computations are possible. Coefficient of variation, aver-
age SNR, and outage probability are the performance
metrics derived to quantify the variability, fidelity, and
acceptable SNR level of the system, respectively. Corre-
sponding to the SNR statistics, a two-hop transparent
relay transmission system is simulated, and the average
BER performance of the system under the proposed chan-
nel models are also evaluated. The approach can be easily
extended to other combinations of distributions also, if the
constituent channels are Mellin transform defined. The
results are expected to be useful in the design of receivers
in multi-hop diversity attaining cooperative relay systems,
to achieve predefined QoS.

Appendix
A.1 General formulae used
Meijer G-function:
The general Meijer G-function, defined using the con-
tour integral equation of ratios of products of Gamma
functions, is given by:

Gm,n
p,q

(
z|a1,...apb1,...bq

)
= 1

2π j

∫
L

∏m
i=1 �(bi + s)

∏n
i=1 �(1 − ai − s)∏p

i=n+1 �(ai + s)
∏q

i=1+m �(1 − bi − r)
z−sds,

(64)

where �(.) is the complete gamma function [22]
[Eqn.9.301].

Gamma duplication formula[19]:

�(bx) = (2π)
1−b
2 bbx−

1
2

∏b−1
i=0 �( i

b+x) (65)

Gamma reduction rule:

�(x + 1) = x�(x) (66)

A.2 Analytical Steps for the Integral Evaluations
The inverse integral equations need to be reduced into
a computable Meijer G-function format. As software
packages do not have built-in subroutines for the eval-
uation of such integrals for heterogeneous combina-
tions of distributions, appropriate format conversion is
necessary. For illustration, details of the conversion of
pdf of NW channel and cdf of RW channel are given
below.

A.2.1 Steps for the computation of pdf for NW case:
Considering the MT of NW channel given by the
Equation 14, the coefficient of the transform variable
s in the two arguments of gamma functions are nei-
ther identical nor unity (in most of the cases, this will
not be unity). Transformation of one of the coefficients
to unity will alter the other coefficient. Hence, gamma
duplication formulae can be used at this stage to con-
vert the variable coefficient of the first argument to unity.
Thus, the pdf of NW channel given by Equation 14 is
converted as

fNW(v) = β

�(m)
(
�α

m
)
1
2

1
2π j

∫
L
�

(
m − 1

2
+ βs′

2

)
�

×
(
1 − 1

β
+ s′

) (
�α2

m

) s′β
2
v−βs′ds′, (67)

where s′ = s
β
. Now, the first gamma function term con-

tains a transform variable s′ with coefficient as β
2 . This can

be eliminated by the application of appropriate gamma
duplication formula, which will reduce the expression to a
more convenient form as

fNW(v) = β

�(m)

(
�α

m

)−1
2 1
2π j

∫
L
(2π)

1−β/2
2

β

2

β
2 ( 2m−1

β
+s′)

β
2 −1∏
i=0

�

(
2m − 1

β
+ s′ + i

β/2

)

�

(
1 − 1

β
+ s′

) ⎛
⎝ vβ

(�α
m )

β
2

⎞
⎠

−s′

ds′

(68)
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this can be expanded as

fNW(v)=(2π)
1−b
2
2(β/2)m

�(m)

(
�α

m

)
−1
2

1
2π j

∫
L
�

(
2m−1

b
+s′

)

�

(
2m − 1

b
+ 1

b
+ s′

)

�

(
2m − 1

b
+ b − 1

b
+ s′

)
.....�

(
1 − 1

2b
+ s′

)

×
⎛
⎝ vβ

(b�α
m )

β
2

⎞
⎠

−s′

ds′.

Now, the expression can be converted to generalMeijer-G
format (Equation 64), and the corresponding computable
pdf expression is obtained as

fNW(v) = Kβbb

D�(m)
Gb+1,0
0,b

(
vβ

(b
1
2D)β

|−2m−1
β

, 2m+1
β

,..., 2m+β−3
β

,1− 1
β

)
,

(69)

where b = β
2 , D = (�α2

m )
1
2 , and K =

√
2π

2πb/2 . For computing
the pdf of NW channel at m = β = 4 and unity scale
factors, this function reduces to

fNW(v) =
(

32√
(2π)�(4)

)
G3,0
0,2

(
v4

2
|−7
4 ,

9
4 ,

3
4

)
. (70)

Similarly, for RW channel, the computable pdf at the same
parameter values becomes

fRW(v) = 4√
2π

G3,0
0,2

(
v4

2
|−3
4 ,

1
4 ,

3
4

)
. (71)

A.2.2 Steps for the computation of cdf for RW case:
Integrating the pdf , given by Equation 23, with respect to
v and using gamma reduction rule (66), the cdf for RW
channel becomes

FRW(vt)=
(

β

α2

)
1
2π j

∫
L
�

(
1 − 1

β
+s′

)
�

(
1
2

+ βs′

2

) �
(
1
β

− s
)

�
(
1+ 1

β
− s

)

×
(
vβ
t

α
β
2

)−s′

ds′.

(72)

The next step is to convert this integral, using gamma
duplication formula (65), in to the form given by:

FRW(vt) =
(

β

α2

) √
2π

(2π)
β
4

1
2π j

∫
L
�

(
1 − 1

β
+ s′

) β
2 −1∏
i=0

× �

(
1
β

+ 2i
β

+ s′
) �

(
1
β

− s
)

�
(
1 + 1

β
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)
(
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t

α
β/2
2
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ds′

(73)

=
(

β

α2

) √
2π

(2π)
β
4

1
2π j

∫
L
�

(
1− 1

β
+s′

)
�

(
1
β

+s′
)

�

(
3
β

+s′
)
....

× �

(
1 − 1

β
+ s′

)
�( 1

β
− s)

�(1 + 1
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(
vβ/2
t

α
β/2
2
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(74)

Converting this to Meijer-G format, the cdf becomes

FRW(vt) = vt
α2

KGβ/2+1,1
1,β/2

(
vβ
t

α
β
2 b

|1−
1
β

1− 1
β
, 1
β
, 3
β
...1− 1

β
,−1

β

)
.

(75)

For specific parameter values as in 70 given above, the
expression get reduced to the form:

FRW(vt) = vt
(2π)1/2

G3,1
1,2

(
v4t
2

|
3
4
3
4 ,

1
4 ,

3
4 ,

−1
4

)
. (76)

Similarly for NW channel, the tractable cdf becomes

FNW(v1) = 16v1
�(4)

√
(2π)

G3,1
1,2

(
(2v1)4|

3
4
7
4 ,

9
4 ,

3
4 ,

−1
4

)
. (77)

Adopting similar steps for the integral equations of SNR
will facilitate the computations of SNR statistics also.
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