
Cao et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:275
http://jwcn.eurasipjournals.com/content/2013/1/275

RESEARCH Open Access

A novel pre-processing and adaptive statistical
threshold for sphere detection in MIMO
systems
Haiyan Cao1,2, Jun Li3*, Xin Fang1 and Xiumin Wang3

Abstract

In this paper, an efficient sphere detection (SD) scheme for multiple-input multiple-output (MIMO) systems is
presented. The proposed SD scheme can substantially reduce computational complexity by introducing a
pre-processing scheme and an adaptive threshold. In particular, our proposed pre-processing scheme is based on an
iterative successive interference cancelation (SIC). The proposed adaptive threshold is used to judge whether a
traversed path is correct or not and obtained by analyzing the distributions of the correct and erroneous estimates
which have the minimum error pattern among all the SD searching paths. Simulation results show that our proposed
scheme offers a substantial complexity reduction in terms of the number of visited nodes while keeping a significantly
small performance degradation compared to conventional approaches.

1 Introduction
The maximum likelihood (ML) detection is considered
as an optimal solution for achieving the minimum error
probability of multiple-input multiple-output (MIMO)
systems. However, the ML detection, also a well-known
non-deterministic polynomial-time (NP)-complete prob-
lem, comes at an expense of computational complexity.
To overcome this shortcoming, several suboptimal detec-
tion algorithms, such as zero forcing (ZF), minimum
mean-square error (MMSE), and successive interference
cancelation (SIC), have been proposed. Although these
algorithms have lower complexity than ML, the achiev-
able performance is far below the performance of the ML
receiver.
Sphere detection (SD) algorithm is a tree search strategy

that can achieve a similar performance to that of ML and
is widely considered to be the most promising approach
for MIMO detection. It has polynomial expected com-
plexity for problems with moderate size and can be effi-
ciently used for moderate signal-to-noise ratios (SNRs)
[1,2]. However, the expected complexity is exponential in
the number of antennas and constellation size for fixed
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SNRs [2], and it still requires a large amount of compu-
tations compared to MMSE- and ZF-based algorithms,
especially for high numbers of antennas and large constel-
lation sizes. Hence, many efforts have been made to mod-
ify the SD algorithm to further reduce the computational
complexity such as the Schnorr-Euchner (SE) [3] strategy,
channel matrix pre-processing (ordering scheme) [4-6],
modification of the lattice representation [7], probabilistic
tree pruning strategy [8], and k-best algorithm [9]. All the
schemes can improve SD efficiency to some degrees while
still maintaining a large amount of computations.
Motivated by all of the above, in this paper, we pro-

pose an efficient ordering scheme and adaptive threshold
to decrease SD complexity while keeping the system per-
formance satisfactory. An ordering scheme based on SIC
which the authors call sorted SIC (SSIC) ordering is pro-
posed. Then, an adaptive threshold which can be seen as
the extension of the threshold used in fixed-complexity SD
(FSD) [10] is developed. Simulation results show that the
proposed scheme combining SSIC ordering with adaptive
threshold results in almostminimum complexity (in terms
of the number of visited nodes) compared to other exist-
ing approaches with neglected performance degradation.
Throughout this paper, the following notations are

adopted. Bold uppercase and lowercase letters stand for
matrices and vectors, respectively. (•)T and (•)−1 describe
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the transpose and inverse of a matrix, respectively. Fur-
thermore, ‖•‖ and |•| denote the norm and absolute
operator, respectively, and E [•] is the expectation opera-
tor. In addition, (•)i means the ith row for a matrix or the
ith element of a vector.

2 Systemmodel and sphere detection
Consider a MIMO system with N transmit andM receive
antennas where M ≥ N . The input-output relationship
can be expressed as

y = Hs + w, (1)

where s = (s1, s2, . . . , sN ) ∈ CN is an N-dimensional
transmitted complex vector whose entries si, i =
1, 2, . . . ,N , are drawn from some quadrature amplitude
modulation (QAM) constellation with the real and imag-
inary parts being integers; y = (y1, y2, . . . , yM) ∈ CM is
an M-dimensional received complex vector; H ∈ CM×N

denotes the M × N MIMO channel matrix; and w ∈ CN
is the additive white Gaussian noise (AWGN) vector. The
matrix H is defined by H = [hij] for 1 ≤ i ≤ M and
1 ≤ j ≤ N , where hij, the ith row and jth column entry
of H, is assumed to be an independent and identically
distributed (i.i.d.) circular symmetric complex Gaussian
random variable with 0 mean and 1 variance. The tuples
of N-dimensional Gaussian noise vector w are i.i.d. circu-
lar symmetric complex Gaussian random variables with 0
mean and σ 2 variance. Herein, the SNR at the receiver is
defined as

SNR = E
[‖s‖2]

E
[‖w‖2] = E

[‖s‖2]
Nσ 2 . (2)

For simplicity, the complex-valued model given in (1) is
usually transformed into a real-valued model, where the
dimension is doubled such as m = 2M and n = 2N . As
such, (1) can be rewritten as[� (y)

� (y)

]
=

[� (H) −� (H)

� (H) � (H)

] [� (s)
� (s)

]
+

[� (w)

� (w)

]
, (3)

where � (•) and � (•) denote the real and imaginary parts
of complex numbers, respectively. Since all the complex
form of (1) can be written as (3), we assume that (1) is a
real-valued model without loss of generality in the follow-
ing. Suppose perfect channel knowledge is available at the
receiver, the ML detection problem can be formulated as

sML = argmin
ŝ∈D

∥∥y − Hŝ
∥∥2, (4)

where ‖•‖ denotes the Euclidean norm and D = An and
A is the signal constellation set, e.g.,A = {−3,−1, 1, 3} for
16QAM. For a generalH, this problem is known to be NP-
hard. Sphere decoding solves (4) by searching only over
those points that satisfy a constraint of the form∥∥y − Hŝ

∥∥2 ≤ d20. (5)

In other words, the SD algorithm only searches the lat-
tice points inside the hypersphere centered at the received
vector with radius d0 instead of searching all lattice points.
By applying QR decomposition toH, (5) can be written as

∥∥∥∥y − Q
[

R
0(m−n)×n

]
ŝ
∥∥∥∥
2

=
∥∥∥QT

1 y − Rŝ
∥∥∥2 +

∥∥∥QT
2 y

∥∥∥2 ≤ d20, (6)

where R is an n× n upper triangular matrix,Q = [Q1 Q2]
is an m × m orthogonal matrix, and Q1 and Q2 rep-
resent the first n and last m − n orthonormal columns
of Q, respectively. Suppose radius d0 is sufficiently large
so that the ML solution lies in the hypersphere, and let
d2 = d20 − ∥∥QT

2 y
∥∥2 and z = QT

1 y = Rs + QT
1 w; thus,

sphere decoding solves (4) by

sML = argmin
ŝ∈D

∥∥z − Rŝ
∥∥2

= argmin
ŝj∈A

⎛
⎜⎝

1∑
i=n

∣∣∣∣∣∣zi −
n∑
j=i

Rijŝj

∣∣∣∣∣∣
2

≤ d2

⎞
⎟⎠ , (7)

where Rij denotes the ith row and jth column tuple of
matrix R. From (7), we can see that sML can be solved
recursively by following a similar fashion to that in the SIC
technique. Specifically, we use a constrained tree search
through multiple levels, starting from ŝn down to ŝ1, as
shown in Figure 1.

3 Proposed scheme
In this section, we propose the SSIC ordering scheme to
significantly improve the ML performance using the SD
algorithm. In addition, we further reduce the SD com-
plexity by developing a new adaptive threshold to judge
whether an estimate is correct or not, attempting to out-
put the good estimate as early as possible.

3.1 Proposed pre-processing
It has been shown that the SD complexity is highly sen-
sitive to the order of the columns of the channel matrix,
which is dependent on both the channel matrix and the
received signal. Reordering the channel matrix columns
is a simple and efficient pre-processing to reduce the SD
complexity while maintaining reliability of the system per-
formance. Some channel matrix reordering approaches,
such as V-BLAST ordering [4], balanced sorted QR
decomposition (BSQRD) ordering [5,9], and gradient-
based (GB) ordering [6], have been proposed to improve
the SD efficiency. Good ordering schemes should exploit
properties of the channel matrix and the received signal as
fully as possible. Among these ordering approaches, ZF is
the only simple and efficient reference for ordering. How-
ever, the reliability of ZF is highly sensitive to the noise
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Figure 1 Tree search example for a 16QAM system.

component, which is amplified by the row norm of the
pseudo-inverse of the channel matrix as

H†z = s + H†v, (8)

where H† = (
HTH

)−1HT is the pseudo-inverse of chan-
nel matrix H, and v = QT

1 w is an i.i.d. noise vector with
the same distribution as w. Therefore, the ith tuple of ZF
solutions is given by(

H†z
)
i
= si +

(
H†

)
i
v, i = 1, 2, . . . , n, (9)

where
(
H†

)
i denotes the ith row of matrix H†. It is

shown that each component of the ZF solution vector is
detected out of various noise levels which is modified by(
H†

)
i. Motivated by the observation, we define the signal

reliability:

reliability (si) =
∥∥(
H†z

)
i − si

∥∥∥∥(
H†

)
i
∥∥ , (10)

where si ∈ A. Based on (10) and due to the similar oper-
ation between SD and SIC, the proposed SSIC ordering is
described as follows (for i = 0, 1, . . . , n − 1):

1. SetH0 = H, z0 = z, andN = {1, 2, . . . , n}.
2. Calculate the matrixH†

i , whereH
†
i is the

pseudo-inverse of the i th iteration channel matrixHi.

3. Calculate the ZF solution vector szfi =
[(

szfi
)
1
,

(
szfi

)
2
, . . . ,

(
szfi

)
n−i

]T
= H†

i zi, where zi is the i th

iteration received signal, and for each element
(
szfi

)
j

of szfi , find s(1)j ∈A such that
∥∥∥∥s(1)j −

(
szfi

)
j

∥∥∥∥≤
∥∥∥s(�)j −

(
szfi

)
j

∥∥∥∥ holds for any � = 2, 3, . . . , L, where s(�)j ∈ A
and L is the constellation size.

4. For each element
(
szfi

)
j
, find out k̂i = argmax

j=1,...,n−i∥∥∥∥s(1)j −
(
szfi

)
j

∥∥∥∥∥∥∥∥
(
H†

i

)
j

∥∥∥∥
, and ki = N

(
k̂i

)
, the k̂ith element in set

N , is the corresponding column index of channel
matrixH, and letN = N \

{
k̂i

}
, where \ denotes the

set subtraction.
5. Cross the k̂ith column out ofHi to beHi+1, let

zi+1 = zi − hki s
(1)
ki , i = i + 1, and repeat steps 2 to 5

until i = n − 1, where hki , i = 0, 1, . . . , n − 1 is kith
column ofH.

6. The columns of the channel matrix are reordered as
H = [

hkn−1 ,hkn−2 , . . . ,hk1 ,hk0
]
.

3.2 Proposed adaptive threshold
In the tree searching, each full traversed path metric is
calculated by

C = ∥∥z − Rŝ
∥∥2 = ∥∥R (

s − ŝ
) + v

∥∥2. (11)

When the estimate is correct, i.e., ŝ = s, C = ‖v‖2
is a central chi-square-distributed random variable with
n degrees of freedom denoted as χ2

n . In contrast, the
metric for the case of ŝ �= s is the non-central chi-square-
distributed random variable with n degrees of freedom.
Given a certain error pattern, if the Hamming distance
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between signal vector s and estimated vector ŝ is K, then
s and ŝ differ at K places denoted as i1, i2, . . . , iK . In this
case, the metric C now turns to be C′ given by

C′ = ∥∥R (
s − ŝ

) + v
∥∥2 =

∥∥∥∥∥
K∑

k=1
rik

(
sik − ŝik

) + v

∥∥∥∥∥
2

, (12)

where rik is the ikth column of R. Obviously,
K∑

k=1
rik

(
sik − ŝik

) + v is a Gaussian vector with the mean

vector
K∑

k=1
rik

(
sik − ŝik

)
and the same covariance matrix

as v. Thus, C′ is the non-central chi-square-distributed
random variable with n degrees of freedom denoted as
χ2
n,γ 2 , where the non-central parameter γ 2 is shown as

γ 2 =
∥∥∥∥∥

K∑
k=1

rik
(
sik − ŝik

)∥∥∥∥∥
2

. (13)

Since the probability density function (PDF) of the met-
ric for correct path is different from that of the metric
for erroneous path, the intersection point for PDFs of χ2

n
and χ2

n,γ 2 can be set as the optimum threshold whether an
estimate is correct or not. Among all the error patterns,
the minimum one is that there exists one path which has
Hamming distance 1 to the correct path, say, they differ
at the site, and the corresponding column of R exactly has
the minimum norm. Therefore, we select the optimum
threshold to be the intersection point for PDFs of χ2

n and
χ2
n,γ 2 , which gives the minimum non-central parameter as

γ 2
min = min

i=1,2,...,n
‖ri‖2 × d2min, (14)

where d2min = min
s,ŝ∈A,s�=ŝ

(
s − ŝ

)2 is the minimum squared

distance of two constellation points. Based on the non-
central parameter, the threshold can be approximately
linearly calculated by [10]

T = (
α × γ 2 + n

) × σ 2, (15)

where α is a constant coefficient depending on the degrees
of freedom, which can be calculated offline by numeric
computation since the intersections for PDFs of χ2

n and
χ2
n,γ 2 almost lie on a line if the non-central parameters

are not very large, as shown in Figure 2 which indicates
the PDF for central and non-central χ2 of 8 degrees of
freedom. In this way, α can be obtained, for instance, as
0.3465, 0.366, and 0.4082 for the case where the degrees
of freedom are 4, 8, and 16, respectively. The proposed
threshold based on minimum error pattern (MEP-T)
is applied when the SD searching reaches level n (leaf
nodes). Based on our SSIC ordering scheme and proposed
threshold, our SD search process can be described as
follows:

1. Initialize radius d → ∞.
2. Perform SSIC precessing algorithm to reorder the

columns of channel matrixH.
3. Apply QR decomposition to the reordered channel

matrix, i.e.,H = QR.
4. Calculate threshold T by (15).
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5. Normally run a depth-first constrained tree search
through n levels.

6. Compute the whole accumulated metric C through n
levels by (11), and compare C with threshold T.
Terminate the SD decoding process and output the

solution if C ≤ T holds.
7. Otherwise, compare C with radius d. If C ≤ d, update

radius d as d = C and repeat steps from 5 to 7 until a
path, which is the first one such that C ≤ T holds or
has the minimum accumulated metric C, is found.
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Figure 5 Complexity comparison for a 4 × 4 64QAM system.

4 Simulation results
In this section, we display the comparisons of system
performance in terms of symbol error rate (SER) and
the computational complexity in terms of the average
numbers of visited nodes for 4 × 4 and 6 × 6 MIMO
systems with 16QAM and 64QAM modulation. As can
be observed from Figure 3, SD with our SSIC ordering
and MEP-T show very small SER degradation compared

to the original SD. However, a considerable complexity
reduction can be observed from Figures 4, 5, 6, and 7.
It is clearly shown that our SSIC ordering itself is much
more efficient than other conventional approaches such
as BSQR, GB, and V-BLAST ordering. Moreover, com-
bining SSIC ordering with MEP-T can further reduce
the complexity and offer almost fixed complexity in
average. Specifically, for SNR = 5 dB, our proposed
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Figure 6 Complexity comparison for a 6 × 6 16QAM system.
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Figure 7 Complexity comparison for a 6 × 6 64QAM system.

scheme yields a little bit more than 8 visited nodes for
a 4 × 4 system with 16QAM (Figure 4) and 64QAM
(Figure 5) and a little more than 12 visited nodes for
6 × 6 16QAM (Figure 6) and 64QAM (Figure 7), whereas
other approaches require at least 25 visited nodes or even
higher.
Intuitively, the reason why it has such a low complex-

ity in average can be investigated through the behavior of
the SSIC ordering and MEP-T threshold. The SSIC order-
ing leads to the case that the lattice point which has the
most possible to be the solution has the higher privilege to
be searched. Moreover, the threshold is set properly and
can be considered that it constrains a hypersphere area in
which all the lattice points (corresponding to the full path
in the searching tree) are the ‘ML solution.’ Since the real
ML solution has the minimum metric, it certainly lies in
the area. Once any one lattice point in the area has been
searched, the searching process terminates. As the SNR
increases, the number of lattice points in the area goes
down, and the probability of obtaining the real ML solu-
tion goes larger and larger. That is why the complexity is
lowwhile having a negligible performance loss at the high-
SNR region under our scheme. At the low-SNR region,
the area contains more lattice points, which leads to an
incorrect estimate with a larger probability. However, the
errors given in this way do not affect the performance sig-
nificantly because even the real ML solution yielded by
the exhaustive search at the low-SNR region also gives
the wrong estimate. Therefore, in our SSIC with MEP-T
scheme, the correct and incorrect estimates are well dis-
tinguished at the high-SNR region, and the complexity

reduction is preferred at the low-SNR region instead of
improving a little performance while increasing enormous
complexity.

5 Conclusions
In this paper, we propose an efficient SD algorithm by
jointly combining the SSIC ordering scheme and the
adaptive threshold MEP-T. In particular, the SSIC order-
ing scheme is based on the iterative SIC and MEP-T
is obtained by analyzing the PDFs of the correct and
erroneous estimates, which have the minimum error pat-
tern among all the SD searching paths. Simulation results
show that our SSIC ordering scheme is more efficient
than BSQR, GB, and V-BLAST by reducing the computa-
tional complexity in terms of the number of visited nodes.
More importantly, combining SSIC ordering with MEP-
T can further reduce the complexity and offer almost a
fixed average complexity at an expense of an unnoticeably
small performance degradation compared to conventional
methods.
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