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Abstract

This paper investigates the sparse channel estimation issue of multiple-input multiple-output orthogonal frequency
division multiplexing (MIMO-OFDM) systems. Beginning with the formulation of least squares (LS) solution to sparse
MIMO-OFDM channel estimation, a compressed channel sensing (CCS) framework based on the new smoothed
l0-norm-regularized least squares (l2-Sl0) algorithm is proposed. Three methods, namely quasi-Newton, conjugate
gradient, and optimization in the null and complement spaces of the measurement matrix, are then proposed to
solve the l2-Sl0 unconstrained optimization problem. Moreover, the two former are also applied to solve the l2-Sl0
channel estimation. A number of computer simulation-based experiments are conducted showing a better reconstruction
accuracy of the l2-Sl0 algorithm as compared with the smoothed l0-norm (Sl0) algorithm in the presence of noise.
The proposed CCS approach can save nearly 25% pilot signals to maintain the same mean square error (MSE) and
bit error rate (BER) performances as given by the conventional LS method.
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1. Introduction
Coherent detection and equalization in multiple input
multiple output orthogonal frequency division multiplexing
(MIMO-OFDM [1]) systems require channel state informa-
tion (CSI) at the receiver. In real wireless environments,
however, the CSI is not known. Therefore, channel estima-
tion is of crucial importance to MIMO-OFDM systems.
In various wireless propagation environments, the channel
may consist of only a few dominant propagation (non-
zero) paths, even though it has a large propagation delay.
Thus, the channel impulse response has a sparse nature
[2-4]. However, conventional methods, such as least squares
(LS), ignore this prior information about the unknown
channel leading to lower spectral efficiency. Recently,
sparse channel estimation with an objective of decreas-
ing the training sequence to improve spectral efficiency
is becoming a hot research topic.
* Correspondence: yaya_ye@126.com
1Institute of Signal Processing and Transmission, Nanjing University of Posts
and Telecommunications, Nanjing 210003, China
2College of Physics and Electronic Information, Anhui Normal University,
Wuhu 241000, China
Full list of author information is available at the end of the article

© 2013 Ye et al.; licensee Springer. This is an o
Attribution License (http://creativecommons.or
in any medium, provided the original work is p
Previously reported approaches for sparse channel esti-
mation can broadly be categorized into two types, namely
the most significant tap (MST) detection and compressed
channel sensing (CCS). The MST detection methods [4-6]
used a measure to determine if a channel tap was non-
zero (‘active’). The disadvantage of this type of methods is
that a large number of pilots are needed to render an
accurate MST detection and effective channel estima-
tion. The CCS methods are based on the compressed
sensing (CS [7]) technology. In [8], the authors formal-
ized the notion of multipath sparsity and proposed the
CCS approach. In [9], the orthogonal matching pursuit
(OMP) and basis pursuit (BP) algorithms were applied to
estimate underwater acoustic channels with large Doppler
spread. In [10], the authors proposed an overcomplete
basis for doubly selective channels and a metric called
localized coherence for selecting training signals to ensure
good estimation performance. In [11], a CCS approach for
doubly selective channels and a sparsity-enhancing basis
expansion with a method for optimizing it were proposed.
In [12], two criteria as guiding principles to optimize the
pilot pattern for CCS in OFDM systems were proposed.
Methods of this type utilize the prior sparse information
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of the unknown channel and the advantage of CS and
thus can improve the spectral efficiency by reducing the
number of pilot symbols to be transmitted.
Different from literatures [9-12] that used the existing

sparse reconstruction algorithms for CCS in OFDM or
single carrier systems, we aim to exploit a novel recon-
struction algorithm for CCS in MIMO-OFDM systems.
The proposed smoothed l0-norm-regularized least squares
reconstruction algorithm is named l2-Sl0 in this paper,
which differs from the smoothed l0-norm reconstruction
algorithm (Sl0 [13]) in two aspects. First, Sl0 is a con-
strained optimization problem which is solved in [13]
using the steepest descent approach. However, l2-Sl0 is
an unconstrained minimization problem which is to be
solved in this paper by using three methods, namely
quasi-Newton approach, conjugate gradient approach,
and optimization in the null and complement spaces
of the measurement matrix. Second, unlike the Sl0 using a
fixed step size to control the decrease of the parameter σ,
which determines the degree of smoothness and the
approximation accuracy of l0-norm, l2-Sl0 uses a variable
one. Simulation results show that the proposed l2-Sl0
reconstruction approach outperforms the Sl0 approach
in the presence of noise, and at the cost of slightly more
computational time, the CCS approach using l2-Sl0 in
conjunction with conjugate gradient yields a performance
slightly better than that of the CCS method using fast
iterative shrinkage-thresholding algorithm (FISTA [14])
or orthogonal matching pursuit (OMP [15]) algorithm.
The remainder of the paper is organized as follows:

Section 2 formulates the sparse channel estimation prob-
lem of MIMO-OFDM systems based on LS, ideal-LS,
and compressed sensing. Section 3 presents three sparse
reconstruction algorithms using the proposed l2-Sl0 ob-
jective function, based on which a new CS-based sparse
channel estimation approach is developed. Section 4
comprises a number of experiments showing a better
reconstruction accuracy of the l2-Sl0-based method as
compared with the Sl0 algorithm, and a higher spectrum
efficiency of the sparse channel estimation employing
l2-Sl0 than that using the LS method. Section 5 con-
cludes this paper by highlighting some of the contribu-
tions presented.
2. The sparse channel estimation problem of
MIMO-OFDM systems
Consider a similar MIMO-OFDM system as described
in [16] with NT transmit and NR receive antennas. The
MIMO channel can be characterized by an array of L-tap
finite impulse response (FIR) filters given by a number of
NR ×NT matrices H(n), (n = 0,1,…,L − 1), whose (iR,iT)-th
element hiR;iT lð Þ; 0≤l≤L−1ð Þ represents the l-th tap of the
channel response between the iR-th receive antenna and
the iT-th transmit antenna. In the case of uniform sam-
pling, a wireless channel can often be modeled as a sparse
channel [17-19], i.e., only a few elements are nonzero
in hiR;iT 0ð Þ; hiR;iT 1ð Þ;…; hiR;iT L−1ð Þ� �

. If the length of the
cyclic prefix (CP) is not less than the channel length L,
the received pilot signal in iR-th receiver antenna can be
written as

YiR;pilot ¼ diag X1;pilot
� �

Fpilot ;…; diag XNT ;pilot
� �

Fpilot
� �

hiR

þniR;pilot ;

ð1Þ

where XiT ;pilot ¼ XiT k1ð Þ;…;XiT kp
� �� �T

and YiR;pilot ¼
Y iR k1ð Þ;…;Y iR kp

� �� �T
are the pilot signals in the iT-th

transmit antenna and iR-th receive antenna, diag(X1,pilot)
is a diagonal matrix with Xl,pilot as the main diagonal

elements, hiR ¼ hT
iR;1;…;hT

iR;iT ;…;hT
iR;NT

h iT
with hiR;iT ¼

hiR;iT 0ð Þ;…; hiR;iT L−1ð Þ� �T
, and niR,pilot represents the

frequency domain noise. Let FL be a K × L matrix
formed by the first L columns of a K × K DFT matrix
F, then Fpilot can be formed by taking only the rows
of FL associated with the KP pilot sub-carriers.
By letting A ¼ INR⊗ diag X1;pilot

� �
Fpilot ;…; diag XNT ;pilot

� ��
Fpilot � , Ypilot ¼ YT

1;pilot ;…;YT
NR;pilot

h iT
, h ¼ hT

1 ;…;hT
NR

h iT
,

and npilot ¼ nT
1;pilot ;…;nT

NR;pilot

h iT
, where⊗ represents

Kronecker product, we can get

Ypilot ¼ Ahþ npilot; ð2Þ
which can be solved by the conventional LS method,

giving ĥ ¼ A†Ypilot , where † represents the pseudoinverse.
Assuming the positions ld (d = 0,1,…,D-1, and l0 <

l1 <… < lD-1) of the MST are correctly estimated,
Equation 1 can be rewritten as

YiR ;pilot
¼ diag X1;pilot

� �
Wpilot ;…; diag XNT ;pilot

� �
Wpilot

� �
ziR

þniR;pilot ;

ð3Þ

where ziR ¼ zTiR;1;…; zTiR;iT ;…; zTiR;NT

h iT
with ziR;iT ¼

ziR;iT 0ð Þ;…; ziR;iT D−1ð Þ� �T
, D is the number of nonzero

taps, and Wpilot can be formed by taking only the D
columns of Fpilot associated with the nonzero tap positions
ld. Let ~A ¼ INR⊗ diag X1;pilot

� �
Wpilot ;…; diag XNT ;pilot

� ��
Wpilot� and z ¼ zT1 ;…; zTNR

h iT
. We can obtain

Ypilot ¼ ~Azþ npilot: ð4Þ
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When npilot is white noise and the positions ld of
MST are correctly estimated, we can obtain the estimate
of the MST as ẑ ¼ ~A†Ypilot . We can also obtain the

Cramer-Rao bound of the sparse channel estimate ĥ
through setting the elements of the positions ld equal
to ẑ and other elements equal to zero [4]. The above

method to obtain the Cramer-Rao bound of ĥ is named as
ideal-LS for comparison in this paper.
Note that the dimension of Ypilot is proportional to the

number of pilot subcarriers, and Equation 2 is an under-
determined problem when the dimension of Ypilot is
smaller than that of h. Therefore, the sparse channel
estimation in MIMO-OFDM systems can be viewed as
solving an underdetermined linear inverse problem with
sparsity constraint, i.e.,

min
h

jjhjj0 s:t: Ypilot ¼ Ahþnpilot ; ð5Þ

where || · ||0 represents the number of nonzero compo-
nents named as l0-norm.

3. Sparse channel estimation using l2-Sl0
reconstruction algorithm
The sparse signal reconstruction problem in CS is to esti-
mate a sparse vector x ∈ ℂN from an observed vector y ∈ ℂM

based on the linear model

y ¼ Φxþ w; ð6Þ
where w ∈ ℂM is unknown noise and Φ ∈ℂM ×N is a
known measurement matrix, typically with M≪N. This
means that the signal x is ‘sensed’ by a reduced or ‘com-
pressed’ number of measurements. Therefore, the signal
reconstruction problem can be described as the following
constrained minimization problem,

min
x

jjxjj0 s: t: jjΦx−yjj2≤ε; ð7Þ

where the bound ε ≥ 0 is used to allow certain error toler-
ance. In general, ε is related to the variance of noise w.
Unfortunately, the problem in Equation 7 is a NP-hard
combinatorial problem, whose computational complexity
grows exponentially with the increase of the signal size
and becomes prohibitive even for signals of moderate sizes.
Consequently, several techniques have been proposed to
tackle this difficult problem. One of the approaches is the
convex relaxation, such as BP [20], which replaces ||x||0
with ||x||1 to make the problem easier to solve. Another
approach, such as matching pursuit (MP [21]) or OMP, is
much faster than BP but is a greedy algorithm and does
not have provable reconstruction quality at the level of
BP method [22]. Different from the above techniques,
the smoothed l0-norm approach [13] is to approximate
the discontinuous l0-norm by a suitable continuous one
and then minimize it by an optimization algorithm
dedicated to continuous functions. For example, the
following continuous function

Fσ xð Þ ¼
XN
i¼1

f σ xið Þ with f σ xið Þ

¼ 1− exp
−x2i
2σ2

� �
; ð8Þ

where σ is a small value, has been proposed to approxi-
mate ||x||0 in [13]. In other words, the minimum l0-norm
solution is then found by minimizing Fσ(x) for a very small
value of σ. The parameter σ determines how smooth the
function Fσ(x) would be and the accuracy of the approxi-
mation. Generally speaking, for larger values of σ, Fσ(x) is
smoother and contains less local minima, but the ap-
proximation to l0-norm is worse. On the other hand, for
smaller values of σ, a highly nonsmooth Fσ(x) results,
which gives a better approximation to l0-norm but a
difficult minimization problem. Consequently, the Sl0
approach used a ‘decreasing’ sequence for σ.
The Sl0 reconstruction algorithm is typically 2 to 3

orders of magnitude faster than BP, while resulting in
the same or better accuracy [13]. However, in the presence
of noise, the accuracy of Sl0 algorithm needs to be im-
proved. Therefore, in the next section, we will propose
several improved Sl0 reconstruction algorithms.

3.1 The l2-Sl0-BFGS reconstruction algorithm for channel
estimation
Like l1-regularized l2 approach (l2-l1 [14,23,24]) and
lp-regularized l2 algorithm [25], we use a parameter λ > 0
to balance the twin objectives of minimizing both error
and sparsity, giving the following unconstrained optimiza-
tion problem:

min
x

F xð Þ ¼ 1
2
jjΦx−yjj22 þ λ

XN
i¼1

1− exp
−x2i
2σ2

� �� 	
: ð9Þ

The objective function in Equation 9 remains differen-
tiable, and its gradient can be obtained as

∇F xð Þ ¼ ΦT Φx−yð Þ þ g; ð10Þ

where g = [g1, g2,…, gN]
T with gi being given by

gi ¼ λ xi=σ
2

� �
e−x

2
i =2σ

2
: ð11Þ

For a fixed value of σ, the problem in Equation 9 is
now solved using a quasi-Newton algorithm where an
approximation of the inverse of the Hessian is obtained
using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) up-
date formula [26-28]. As such, the algorithm is referred to
as the l2-Sl0-BFGS algorithm.
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The quadratic (l2-norm) error term 1
2 jjΦx−yjj22 in

Equation 9 is a convex function, but the convex region of

the approximate l0-norm term Fσ xð Þ ¼
XN
i¼1

1− exp½ −x2i
2σ2


 �
�

depends on parameter is σ. In general, the greater the value
of σ, the larger the convex region is. To see this, we com-

pute the gradient of Fσ(x), denoted as g
0 ¼ g

0
1; g

0
2;…; g

0
N

� �T
,

whose element is given by

g
0
i ¼ xi=σ

2
� �

e−x
2
i =2σ

2
: ð12Þ

Also, the Hessian of Fσ(x) is a diagonal matrix as
given by

∇2Fσ xð Þ ¼ diag h11; h22;…; hNNf g with hii

¼ 1
σ2

−
x2i
σ4

� �
e
−x2

i
2σ2 ð13Þ

Therefore, Fσ(x) is convex if and only if

xij j≤σ; 1≤i≤N : ð14Þ

Since Equation 14 defines an N-dimensional hypercube
whose volume is (2σ)N, the size of the convex region in
the x-space is proportional to σ. On the other hand, in
order to better approximate the l0-norm, σ must be suffi-
ciently small. Consequently, to avoid getting trapped into
local minima, we gradually decrease the value of σ, as in
the Sl0 approach. More specifically, for minimum F(x) at
σi, the initial point is x*(σi-1) obtained in the previous
iteration, which is near the global optimal solution.
Since a broadband wireless channel response h usu-

ally consists of a few dominant propagation paths and
Equation 2 has a similar form as Equation 6, the estima-
tion of h can be viewed as a sparse signal reconstruction
in compressed sensing. Thus, we refer to this kind of sparse
channel estimation method as CCS. Using Equations 2, 6,
and 9, we can obtain the objective function of CCS based
on the l2-Sl0 reconstruction algorithm,

min
h

F hð Þ ¼ 1
2
jjAh−Ypilot jj22

þ λ
XN
i¼1

1− exp
−h2i
2σ2

� �� 	
: ð15Þ

From the above analysis, the proposed CCS using
the l2-Sl0-BFGS algorithm can be implemented by the
pseudo-code in Algorithm 1.
Algorithm 1 CCS using the l2-Sl0-BFGS algorithm

Note that in Algorithm 1, the values of δr and rJ are
chosen such that 0 < δr < 0.1 and 0.5 < rJ < 1. The method
of l2-Sl0 uses a variable factor ri = ri − 1 + δr to control the
decrease of the parameter σ. Our idea is to use an ‘increas-
ing’ step size corresponding to the decreasing values of σ.

3.2 The l2-Sl0-CG reconstruction algorithm for channel
estimation
The Hessian matrix of the objective function F(x) in
Equation 9 can be computed as

∇2F xð Þ ¼ ΦTΦþ λ∇2Fσ xð Þ; ð16Þ
where ∇2Fσ(x) is computed using Equation 13. Since the
gradient and Hessian matrix of F(x) can be efficiently
evaluated using the closed-form formula in Equations 10
and 16, it is convenient to apply the conjugate gradient
method to solve the l2-Sl0 optimization problem. The
algorithm is thus referred to as the l2-Sl0-CG algorithm.
In the k-th iteration of the conjugate gradient tech-

nique, xk is updated as

xkþ1 ¼ xk þ αkdk ; k ¼ 0; 1;…; L−1ð Þ: ð17Þ
The conjugate direction dk is computed as

dk ¼
(

−g0; k ¼ 0
−gk þ βk−1dk−1; k ¼ 1; 2;…; L−1 with

βk−1 ¼
gTk gk

gTk−1gk−1
;

ð18Þ
and the k-th step size αk is computed using

αk ¼ gTk gk
dT
k Hkdk

; ð19Þ
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Where gk is the gradient vector computed using
Equation 10 and Hk is the Hessian matrix obtained using
Equation 16 at x = xk, respectively. The proposed CCS
using l2-Sl0-CG algorithm can be implemented by the
pseudo-code in Algorithm 2.

Algorithm 2 CCS using l2-Sl0-CG algorithm

3.3 Signal reconstruction via optimization in null and
complement spaces of Φ
Let Φ =UΣVT be the singular value decomposition (SVD)
of Φ where UM×M and VN×N are unitary matrices, and
Σ = [S, 0]M ×N with S = diag(s1,…, sM) being a diagonal
matrix composed by the singular values of Φ. Let V=
[Vr,Vn], where the columns of Vn span the null space of
Φ and the columns of Vr span the orthogonal comple-
ment of the null space. Using Vn and Vr, a signal x of
length N can be expressed as

x ¼ Vrαþ Vnβ; ð20Þ
Where α and β are vectors of length M and N −M,

respectively. Applying the SVD of Φ, the l2-norm term
in Equation 9 can be simplified as [25]

1
2
jjΦx−yjj22 ¼

1
2
jjΣα−~y jj22 ¼

1
2

XM
i¼1

siαi−~yið Þ2; ð21Þ

Where Si is the i-th singular value of Φ, αi and ~yi are
the i-th component of α and ~y ¼ UTy , respectively.
Using Equations 20 and 21, the optimization problem
in Equation 9 can be recast as

min
α;β

F α;βð Þ ¼ 1
2

XM
i¼1

siαi−~yið Þ2

þλ
XN
j¼1

1− exp
− V r;jαþ Vn;jβ
� �2

2σ2

 !" #
;

ð22Þ
Where Vr,j and Vn,j are the j-th row of Vr and that of

Vn, respectively.
An iterative algorithm to solve the optimization prob-

lem in Equation 22 is proposed as follows. In the k-th
iteration of the optimization process, signal x(k) is
updated as

x kþ1ð Þ ¼ x kð Þ þ μ kð Þd kð Þ; ð23Þ
where

x kð Þ ¼ Vrα
kð Þ þ Vnβ

kð Þ;

d kð Þ ¼ Vrd
kð Þ
r þ Vnd

kð Þ
n

ð24Þ

and the step size μ(k) > 0 is determined by the inexact
line search method of Roger Fletcher [26]. Assuming

that the updating vectors d kð Þ
r and d kð Þ

n are written as

d kð Þ
r ¼ d kð Þ

r;1 ; d
kð Þ
r;2 ;…; d kð Þ

r;M

h iT
;

d kð Þ
n ¼ d kð Þ

n;1; d
kð Þ
n;2; ::; d

kð Þ
n;N−M

h iT
ð25Þ

which are determined by minimizing F(α,β) along each
of the directions defined by the column vectors of

[Vr,Vn]. Therefore, d
kð Þ
r and d kð Þ

n become descent direc-

tions of F(α,β), and in the case of real Φ and x, d kð Þ
r;i can be

calculated via iteration as

d kð Þ
r;i


 � pð Þ
¼

si~yi−s
2
i αi−

λ
σ2

XN
j¼1

exp
− xj þ v j;ið Þ

r d kð Þ
r;i


 � p−1ð Þ� �2

2σ2

0
BBB@

1
CCCAxjv

j;ið Þ
r

2
6664

3
7775

s2i þ λ
σ2

XN
j¼1

exp
− xj þ v j;ið Þ

r d kð Þ
r;i


 � p−1ð Þ� �2

2σ2

0
BBB@

1
CCCA v j;ið Þ

r


 �2
2
6664

3
7775

;

1≤i≤Mð Þ;
ð26Þ

Where xj is the j-th component of vector x(k), v j;ið Þ
r is

the (j,i)-th component of matrix Vr, αi is the i-th compo-

nent of vector α(k), and d kð Þ
r;i


 � pð Þ
is the p-th iteration

value of d kð Þ
r;i with the initialization value d kð Þ

r;i


 � 0ð Þ
¼ 0.
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Similarly, d kð Þ
n;i in Equation 25 is given by

d kð Þ
n;i


 � qð Þ
¼

−
XN
j¼1

exp
− xj þ v j;ið Þ

n d kð Þ
n;i


 � q−1ð Þ� �2

2σ2

0
BBB@

1
CCCAxjv

j;ið Þ
n

2
6664

3
7775

XN
j¼1

exp
− xj þ v j;ið Þ

n d kð Þ
n;i


 � q−1ð Þ� �2

2σ2

0
BBB@

1
CCCA v j;ið Þ

n


 �2
2
6664

3
7775
; 1≤i≤N−Mð Þ; ð27Þ

where v j;ið Þ
n is the (j,i)-th component of matrix Vn, and d kð Þ

n;i


 � qð Þ
is the q-th iteration value of d kð Þ

n;i with the

initialization value d kð Þ
n;i


 � 0ð Þ
¼ 0. The derivation of Equations 26 and 27 is given in the Appendix. In addition, the

computation of d kð Þ
r;i using Equation 26 requires vector α(k) to be computed first as

VT
r x

kð Þ ¼ VT
r Vrα

kð Þ þ Vnβ
kð Þ


 �
¼ α kð Þ: ð28Þ

The reconstruction algorithm via optimization in null and complement spaces of measurement matrix Φ is
referred to hereafter as the l2-Sl0-NC algorithm, which can be implemented by the pseudo-code in Algorithm 3.

Algorithm 3 The l2-Sl0-NC reconstruction algorithm
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4. Simulation results
In this section, the reconstruction performance of the pro-
posed approach (l2-Sl0) is evaluated by computer simula-
tions. The spectral efficiency of the CCS using l2-Sl0
algorithm is also discussed. More specifically, the l2-Sl0
algorithm includes l2-Sl0-BFGS, l2-Sl0-CG, and l2-Sl0-NC
in the scenario where y, Φ ,x are real-valued. While in
complex-valued scenarios, l2-Sl0 only means l2-Sl0-BFGS
and l2-Sl0-CG. Note that Equations 26 and 27 are obtained
only in the case where y, Φ, x are real-valued. Namely, the
l2-Sl0-NC is not suitable to reconstruct complex signals.
In all the experiments, the initial value of r is set to 0.5 for
both Sl0 and l2-Sl0 algorithms. The values of δr and rJ re-
quired by the l2-Sl0 algorithm are chosen as 0.05 and 0.7,
respectively.
In experiments 1 and 2, the signal length and the num-

ber of measurements are set to N = 1,000 and M = 400,
respectively. A K-sparse source x was artificially created
as follows: (1) set x to a zero vector of length N, (2)
generate a vector z of length K assuming that each
element zi is a random value drawn from the normal
distribution N(0,1) in the real-valued scenario or from
N(0,1/2)+jN(0,1/2) in the complex-valued scenario, and
(3) randomly select K components of x and set them
to z. Each element of the measurement matrix Φ is
randomly generated using the normal distribution N(0,1)
or N(0,1)+jN(0,1), and each row is normalized to unity.
Then, the mixtures are generated using the noisy model
y=Φx+w, where w is an additive white Gaussian noise
with covariance matrix σwΙM (IM stands for the M ×M
identity matrix). To evaluate the estimation accuracy, the
signal-to-noise ratio (SNR) defined as 20 log jjxð jj2=jjx−x̂jj2Þ
is used, where x and x̂ denote the true value and its
estimate, respectively.
In experiment 1, we compare the reconstruction per-

formance of l2-Sl0 with that of Sl0. Figures 1 and 2 show
the reconstruction SNR at different powers of noise σw
in real and complex signal scenarios, respectively. For
each value of σw, the reconstruction SNR is averaged
over 100 runs. It is seen that l2-Sl0 produces a better SNR
than Sl0, which shows the robustness of l2-Sl0 against
noise. The objective function of l2-Sl0 algorithm in

Equation 15 comprises the quadratic error term 1
2 jjAh−

Ypilotjj22 which permits a small perturbation. Therefore,

the l2-Sl0 algorithm has a larger capability to reconstruct

sparse signal in the presence of noise than Sl0. For
smaller values of σ, Fσ(x) contains more local minima.
Therefore, the decrease of σ should not be too quick in
the Sl0 and l2-Sl0 algorithms. Moreover, unlike Sl0 using
a fixed step size to control the decrease of the parameter
σ, l2-Sl0 uses a variable one, and the step size δr slightly
increasing with the reduction of σ may also help the
l2-Sl0 to improve its estimation accuracy.
In experiment 2, the l2-Sl0 algorithms are tested using
N = 1,000, M = 400, and various K sparse signals with
σω = 0.01, to examine the algorithms' performance for
signals of different sparsity levels. The results obtained
are plotted in Figures 3 and 4 with y, Φ, x being real
and complex values, respectively. It is observed that
the performance of the l2-Sl0 algorithm is better than
the Sl0 algorithm in most cases. In real-valued scenario,
the l2-Sl0-BFGS, l2-Sl0-CG, and l2-Sl0-NC are compar-
able for K smaller than 130, but l2-Sl0-BFGS performs
better for K between 130 and 210. In addition, when
K is smaller than 90, the final SNR of the Sl0 algorithm
increases with the rise of sparsity K. This is because the
initial estimate x̂0 is set to the minimum l2-norm solution
of y =Φx +w, which has few zero elements and is far away
from the actual signal with many zero elements, and x̂0 is
gradually close to the actual signal with the rise of sparsity
K. However, this phenomena is not obvious in l2-Sl0
algorithm, since the initial estimate x̂0 is set to zeros
in l2-Sl0-CG and l2-Sl0-NC, which is near the actual
solution for a small value of K. Because of x̂0 being set
to zeros and the thresholds of δ1 and δ2 being not small
enough for the value sparsity K above 230, the l2-Sl0-NC
performs the worst among the algorithms tested.
Next, we investigate the accuracy and the spectral

efficiency of CCS method using l2-Sl0. We consider a
MIMO-OFDM system with two transmit and two re-
ceive antennas (NT =NR = 2). The number of subcarriers
is 512, and the QPSK modulation is used. The length of
cyclic prefix is 20, which equals the length of wireless
channel impulse response. In experiment 3, a Rayleigh
channel modeled by a 4-tap MIMO-FIR filter is assumed,
in which each tap corresponds to a 2 × 2 random matrix
whose elements are i.i.d. complex Gaussian variables with
zero mean and unit variance, and the position ld of MSTs
is {2, 6, 13, 19}. The estimation performance is evaluated
in terms of the bit error rate (BER) and mean square error

(MSE) given by MSE(Δh) =

XM

i¼1
jjĥi−hijj22X

M

i¼1
jjhijj22

, where M

represents the number of simulations and hi and ĥi

represent the actual and the estimated channels from
the i-th simulation, respectively.

In experiment 3, we investigate the performance and
required computational time of the CCS using l2-Sl0-
BFGS, l2-Sl0-CG, and Sl0 reconstruction algorithms with
30 pilot signals in each transmit antenna. The simula-
tion consists of 2,000 Monte Carlo runs. Moreover, their
performance is compared with those of the CCS using
OMP and FISTA. OMP is the most popular one in the
type of greedy reconstruction algorithm, and FISTA is
the most fast one in the type of l2-l1 reconstruction
algorithm. Figures 5 and 6 show the MSE and BER plots
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resulting from the above five CCS methods and the con-
ventional LS method, respectively. As can be seen, the
CCS method using l2-Sl0-CG only needs 30 pilot signals
to obtain the approximate performance of the LS method
using 40 pilot signals which implies that the CCS using
l2-Sl0-CG can save nearly 25% pilot signals. This merit
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Figure 2 Reconstruction SNR versus noise power in complex-valued s
of CCS is due to the prior sparse information of the
wireless channel utilized and the efficient reconstruc-
tion of sparse signals from a very limited number of
measurements allowed by CS. In addition, the CCS
applying l2-Sl0-CG or l2-Sl0-BFGS outperforms the CCS
using Sl0 more obviously than that in experiment 1,
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which shows that the l2-Sl0 has a larger capability to
reconstruct sparse signal than Sl0 in the case when each
row of measurement matrix is not normalized to unity.
Since the l2-Sl0 algorithm is halted after a fixed number
of iterations, furthermore, the fixed number does not
depend on the sparsity of the signal directly; it is
convenient to set the number in practical applications.
We use the CPU time as a measure of complexity. The

simulations are performed in MATLAB R2009b environ-
ment using an Intel Core i3, 2.53-GHz processor with
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Figure 6 BER versus SNR.
2 GB of memory, and under Microsoft Windows XP
operating system. The results shown in Figure 7 indicate
that the CCS using l2-Sl0 requires more computational
time than that using other algorithms tested. The l2-Sl0
algorithm needs an iterative process to find the optimal
solution at each value of σ; therefore, the running time
of l2-Sl0 is longer than that of others tested. However, at
the cost of slightly more computational time, the CCS
using l2-Sl0-CG yields slightly better performance than
the CCS using OMP or FISTA, and the threshold value
20 25 30
R(dB)
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for termination iteration in the l2-Sl0 algorithm is easier
to be set. More specifically, it is shown in Algorithm 2
that l2-Sl0-CG applies a constant value L to stop the
iteration, and the constant value is independent of the
sparsity of signal and the power of noise. However, the valid
threshold values for termination iteration in the OMP and
FISTA algorithms always depend on the power of noise or
the sparsity of signal, which are both quite difficult to
estimate beforehand in practical applications.
In experiment 4, we investigate the BER of the CCS

using 30 pilot signals in each transmit antenna under
different channel sparsities, namely for different numbers
of MSTs. Moreover, the position ld of MST is randomly
selected in each Monte Carlo simulation. Figure 8 shows
the BER plots of CCS using l2-Sl0-CG and l2-Sl0-BFGS
algorithms. The figure shows that a better BER perform-
ance can be expected in general for less number of MSTs.
In addition, when the length of channel response is 20,
the CCS using l2-Sl0-CG and that using l2-Sl0-BFGS are
found to yield acceptable BERs for up to 8 and 4 MSTs,
respectively.

5. Conclusion
In this paper, a new approach for sparse channel estima-
tion of MIMO-OFDM systems based on compressed
sensing has been presented. The new approach uses a
smoothed l0-norm-regularized least squares (l2-Sl0) ob-
jective function and solves the optimization problem by
three reconstruction algorithms: quasi-Newton, conjugate
gradient (CG), and optimization in the null and comple-
ment spaces of measurement matrix (ONCS). The better
reconstruction accuracy of the l2-Sl0 as compared with the
Sl0 algorithm and the higher spectrum efficiency of the
CCS using l2-Sl0-CG or l2-Sl0-BFGS as compared with the
conventional LS method have been shown by computer
simulations.

Appendix
Derivation of Equations 26 and 27
Suppose that ei is the i-th column of an M ×M identity
matrix, and the vectors α and β in Equation 22 are fixed.
At point α, a line search along direction ei is carried out
by solving the one-dimensional optimization problem

mindr;i F αþ dr;iei;β
� � ¼ 1

2
j js αþ dr;iei
� �

−~y jj22
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XN
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1− exp −
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Figure 8 BER of CCS using l2-Sl0 at different channel sparsities.

Ye et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:282 Page 12 of 13
http://jwcn.eurasipjournals.com/content/2013/1/282
Where xj is the j-th component of vector x, and v j;ið Þ
r is

the (j,i)-th component of matrix Vr. By equating the
derivative ∂F(α + dr,iei, β)/∂dr,i to zero, for real Φ and
x, we can obtain

dr;i ¼

si~yi−s
2
i αi−

λ
σ2

XN
j¼1

exp
− xj þ v j;ið Þ

r dr;i
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Note that dr,i can be solved via iterations with the ini-
tial value of dr,i being set to zero in the right side of (30).
In a similar manner, dn,i can be obtained as

dn;i ¼

−
XN
j¼1

exp
− xj þ v j;ið Þ
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where v j;ið Þ
n is the (j,i)-th component of matrix Vn.
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