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Abstract

In this paper, we present a comprehensive performance analysis of dual-hop multiple antenna channel state
information (CSI) assisted amplify-and-forward (AF) relaying systems over Rayleigh fading channels employing
arbitrary transmit antenna selection (TAS) and receiver maximum ratio combining (MRC) with feedback delay in the
presence of co-channel interference (CCI) at both the relay and destination. Specifically, an upper bound on the
cumulative distribution function (CDF) of the end-to-end signal-to-interference ratio (SIR) is proposed, based on
which closed-form expressions for the outage probability and the average symbol error rate (SER) are derived. To gain
further insights, simple and high informative expressions for the outage probability and the average SER are obtained
at the high SIR regime, which readily enable us to characterize the achievable diversity order and coding gain of the
system. Moreover, we present new analytical upper and lower bounds for the ergodic capacity of the system, which
apply to the system with arbitrary number of antennas, CCI and feedback delay at any SIRs. Finally, to minimize the
outage probability of the system, an optimum power allocation scheme is devised under the total transmission power
constraint between the source and the relay. The findings suggest that the feedback delay limits the diversity order to
one, while the CCI degrades the outage performance by affecting the coding gain of the system.

Keywords: Amplify-and-forward (AF) relaying; Multiple antenna system; Co-channel interference (CCI); Outage
probability; Symbol error rate (SER); Ergodic capacity; Power allocation

1 Introduction
Relaying transmission has been proposed as a promis-
ing technique to improve the coverage and throughput
of wireless communication systems [1]. Among the var-
ious relaying protocols, the most two common relaying
schemes are amplify-and-forward (AF) and decode-and-
forward (DF). In particular, the AF relaying scheme has
received significant attention due to its low implementa-
tion complexity. Depending on the availability of chan-
nel state information (CSI) at the relay, the AF relaying
scheme generally falls into two categories, i.e., variable
gain relaying [2] and fixed gain relaying [3]. Over the last
decades, a significant amount of effort has been devoted
to investigate the key performance measures such as
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outage probability, average symbol error rate (SER), and
ergodic capacity for AF relaying schemes over various
fading channels [4-8].
Nevertheless, all the above works assume that the relay-

ing systems operate in a noise-limited environment. How-
ever, future wireless communication networks tend to
operate in an interference-limited environment due to
aggressive frequency reuse.Motivated by this observation,
many works have investigated the effect of co-channel
interference (CCI) on the performance of the relaying
systems in a variety of different scenarios. In [9], the
authors proposed a relay selection algorithm for dual-
hop CSI-assisted AF relaying networks in the presence
of interference at the relay. In [10], the outage proba-
bilities for both AF and DF relaying systems with noisy
relay and interference-limited destination were derived. In
[11], the authors investigated the outage performance of
dual-hop fixed-gain relaying systems in the presence of
interference at both the relay and destination and pointed
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out that the worst outage performance occurred when
the power of interference at the relay and destination was
equal. In [12,13], the authors investigated the joint effects
of imperfect channel estimation and CCI on the perfor-
mance of dual-hop relaying systems, respectively. Most
recently, some works addressed the case with Nakagami-
m fading [14-18]. In [14], the authors studied the outage
probability and the average BER of dual-hop fixed-gain AF
relaying systems with a single interferer in Nakagami-m
fading channels. In [15], the authors considered the per-
formance of interference-limited dual-hop CSI-assisted
AF systems in Nakagami-m fading channels. In [16], the
outage probability of multi-branch dual-hop DF cooper-
ative relaying systems with CCI over Nakagami-m fading
channels was analyzed. In [17], the authors derived the
exact closed-form expression for the outage probability of
multi-hop transmission systems with AF and DF relaying
protocols in Nakagami-m fading channels in the presence
of CCI and made a comprehensive comparison between
the two relaying protocols. In [18], the authors analyzed
the ergodic capacity of dual-hop CSI-assisted AF relaying
system with both CCI at the relay and destination.
While these prior works have improved our understand-

ing on the impact of CCI on the performance of dual-
hop relaying systems, the key limitation of these works
is that they all consider a single antenna relaying sys-
tem. With the fact that the multiple antenna technique
will be adopted as one of the key enabling technologies
for the next generation wireless communication systems,
the importance of understanding the fundamental per-
formance of multiple antenna relaying systems becomes
increasingly evident [19-22]. In [19], the outage proba-
bility and the average SER were analyzed in a two-hop
multiple-input multiple-output (MIMO) relaying network
using transmit antenna selection with receiver maximal-
ratio combining (TAS/MRC). In [20], a unified framework
for the average SER of distributed TAS/MRC in MIMO
relaying networks was proposed. In [21], two attractive
MIMO protocols, i.e., TAS/MRC and transmit antenna
selection with receive selection combining (TAS/SC),
were analyzed in a dual-hop AF relaying network with
respect to the average SER. In [22], a low-complexity
protocol that guaranteed a two-fold diversity, i.e., multi-
antenna diversity via TAS/MRC and multiuser diversity
via opportunistic scheduling, was proposed in multiuser
AF relaying networks. However, it is worth pointing out
that these aforementioned works also assume the noise-
limited scenario; hence, the impact of CCI on the perfor-
mance of dual-hop multiple antenna AF relaying systems
has not been well understood. Recently, only a few ana-
lytical results concerning the performance of dual-hop
multiple antenna AF relaying systems in the presence of
CCI are available in the literature [23-25]. In [23], the
performance of dual-hop fixed-gain AF relaying systems

with a single Rayleigh interferer at the relay was investi-
gated under the special case, where only one of the nodes
is equipped with multiple antennas. In [24], the outage
performance of a dual-hop fixed-gain AF MIMO relaying
network using maximum ratio transmission and maxi-
mum ratio combining (MRT/MRC) in the presence of
interference was analyzed. In parallel, [25] investigated
the effect of feedback delay on the outage probability and
the average SER of multiple antenna AF relaying systems
employing MRT/MRC.
In this paper, different from these prior works, we con-

sider a dual-hop multiple antenna CSI-assisted AF relay-
ing system applying arbitrary TAS/MRC in the presence
of interference at both the relay and destination. Further-
more, the CSI feedback delay of the first-hop link is also
taken into consideration. For such practical systemmodel,
we pursue a comprehensive analysis of the joint effects of
feedback delay and multiple antennas on the performance
of the system. The main contributions of the paper are
summarized as follows:

• We propose an upper bound of the equivalent end-
to-end signal-to-interference ratio (SIR) of the system
and derive its cumulative distribution function (CDF).

• With the help of the CDF of the proposed upper
bound, we investigate the joint effects of number of
antennas, CCI, and feedback delay on the system
performance in terms of the outage probability and
the average SER. Specifically, we present closed-form
expressions for the outage probability and the average
SER, which provide a fast and efficient means to
evaluate the performance of the system. In addition,
we look into the asymptotic high SIR regime and
characterize the key performance measures such as
diversity order and coding gain. Our findings suggest
that the impact of feedback delay on the performance
of the system is significant as it limits the diversity
order to one regardless of the number of antennas at
the source and destination. On the other hand, the
impact of CCI on the performance of the system is
less significant, since it does not reduce the diversity
order, but affects the coding gain of the system.

• We also present new analytical upper and lower
ergodic capacity bounds for interference-limited
dual-hop multiple antenna CSI-assisted AF relaying
systems with feedback delay. The proposed bounds
apply to arbitrary number of antennas, CCI, and
feedback delay at any SIR. Moreover, they involve
only standard mathematical functions and therefore
can be easily and efficiently evaluated.

• We investigate the optimum power allocation scheme
to minimize the asymptotic outage probability of the
system under the constraint that the total transmit
power of the source and relay is fixed, and present
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closed-form power allocation expressions. Simulation
results demonstrate that the optimum power
allocation scheme achieves better coding gain
compared to the equal power allocation scheme.

The remainder of the paper is organized as follows.
Section 2 introduces the system model. In Section 3, we
derive the upper bound of the equivalent end-to-end SIR
and investigate the outage probability, average SER, and
ergodic capacity of the system. In Section 4, the opti-
mum power allocation scheme is proposed to minimize
the outage performance of the system. Numerical results
are presented in Section 5. Finally, Section 6 concludes the
paper.

2 Systemmodel
We consider a dual-hop CSI-assisted AF relaying sys-
tem in the presence of multiple interference at both the
relay and destination as illustrated in Figure 1, where
the source S communicates with the destination D with
the help of an intermediate relay node R. The source
S is equipped with Nt antennas and the destination D
is equipped with Nr antennas, whereas the relay R only
has a single antenna. The S → R channel vector is
denoted by hsr = [

h1r , . . . , hNtr
]T , and its entries follow

independent and identically distributed (i.i.d.) Rayleigh
fading with parameters E

[|hir|2] = λsr , while the R → D
channel vector is denoted by hrd = [

h1d, . . . , hNrd
]T , and

its entries follow i.i.d. Rayleigh fading with parameters
E
[∣∣hjr∣∣2] = λrd. To reduce the cost and the complexity of

system design while maintaining satisfying performance,
we adopt TAS algorithm in this paper, in which a single
antenna is selected based on the feedback of CSI from the
relay R. We consider the general scenario where the kth
worst antenna is selecteda. Clearly, k = N corresponding
to the case where the best antenna is selected. In addition,
due to imperfect feedback link, the feedback delay of CSI
about the first link is also considered.
The entire communication between the source S and

the destination D consists of two orthogonal phases. In
the first phase, the source S transmits the desired signal
to the relay R with an average transmit power Ps, which
is impaired by NI1 interfering signals with an average

power of Pir , i ∈ {1, · · · ,NI1
}
. Assuming the interference-

limited environment, the received signal at the relay can
be expressed as

yR = √
Psh(k)rxs +

NI1∑
i=1

√
Pirgirxir , (1)

where h(k)r is the channel coefficient between the selected
kth worst antenna and the relay node, xs is the source sym-
bol with E

[|xs|2] = 1, xir is the ith interference symbol
satisfying E

[|xir|2] = 1, and gir is the corresponding inter-
ference channel link, whose amplitude follows Rayleigh
distribution with parameter λir .
In the second phase, the relay R forwards the received

signal to the destination D after applying a gain factor G.
As in the previous literature [3,26,27], the relay gain G is
given by

G =

√√√√√Pr

/⎛⎝Ps ∣∣h(k)r
∣∣2 +

NI1∑
i=1

Pir
∣∣gir∣∣2

⎞⎠ , (2)

where Pr denotes the transmit power at the relay R. There-
fore, the received signal at the destination D, after MRC
processing, is given by

yD =GwThrd

⎛⎝√Psh(k)rxs +
NI1∑
i=1

√
Pirgirxir

⎞⎠
+ wT

NI2∑
j=1

√
Pjdgjdxjd,

(3)

where w = hrd‖hrd‖F is the Nr × 1 weight vector with ‖·‖F
being the Frobenius norm, NI2 is the number of inter-
ferers at the destination, Pjd is the transmit power
of the jth interference at the destination, xjd is the
jth interference symbol at the destination with a unit
energy, gjd = [

gj1d, . . . , gjNrd
]T is the jth interference

channel vector for j ∈ {1, . . . ,NI2
}
, and the amplitude of

its entries follows i.i.d. Rayleigh fading with parameter
E
[∣∣gjmd

∣∣2] = λjd form ∈ {1, . . . ,Nr}.

N1 1 N

Source

1
1I

N 1 IN

Relay Destination

Figure 1 Systemmodel.
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Defining fjd = wTgjd, and using the results reported
in [23,24], it can be easily shown that |fjd| follows the
Rayleigh distribution with parameters E

[∣∣fjd∣∣2] = λjd for
j ∈ {1, . . . ,NI2

}
. To this end, after some mathematical

manipulations, the end-to-end SIR can be expressed as

γ = γ̃1(k)γ2
γ̃1(k)γI2 + γ2γI1 + γI1γI2

, (4)

where γ̃1(k) = Ps
∣∣h(k)r

∣∣2, γ2 = Pr ‖hrd‖2F , γI1 =
NI1∑
i=1

Pir
∣∣gir∣∣2,

and γI2 =
NI2∑
j=1

Pjd
∣∣fjd∣∣2.

Let γ1(1) ≤ · · · ≤ γ1(Nt) be the order statistics obtained
by arranging γ1(k) for k ∈ {1, · · · ,Nt} in an increas-
ing order, where γ1(k) denotes the instantaneous transmit
power between the kth worst antenna and the relay with-
out feedback delay, then γ̃1(k) is the τ time delayed version
of γ1(k). According to [28-30], the relation between γ̃1(k)
and γ1(k) can be modeled as

γ̃1(k) = √
ργ1(k) +√

1 − ρω1(k), (5)

where
∣∣ω1(k)

∣∣2 is the chi-square distributed random vari-
able (RV) having the same variance as γ1(k), and ρ is
the correlation coefficient between γ̃1(k) and γ1(k) which,
according to Jakes’ autocorrelation model [30], can be
expressed as

ρ = [
J0
(
2π fdτ

)]2, (6)

where J0 (·) denotes the zeroth-order Bessel function of
the first kind ([31], eq. (8.411)), and fd is the maxi-
mumDoppler frequency. The probability density function
(PDF) of γ̃1(k) is given by

fγ̃1(k) (x) =
∫ ∞

0
f γ̃1(k)|γ1(k) (x| y) fγ1(k) (y) dy, (7)

where f γ̃1(k)|γ1(k) (x| y) = fγ̃1(l),γ1(l) (x, y)
/
fγ1(l) (y) is the PDF

of γ̃1(k) conditioned on γ1(k). Since γ̃1(l) and γ1(k) are the
two correlated exponentially distributed RVs, the joint
PDF of γ̃1(l) and γ1(k) can be expressed as [32]

fγ̃1(l),γ1(l) (x, y) = 1
(1 − ρ) γ 2

1
e−

(x+y)
(1−ρ)γ 1 I0

( 2√ρxy
(1 − ρ) γ 1

)
,

(8)

where γ 1 = Psλsr denotes the average power of the first
hop, and I0 (·) denotes the modified Bessel function of the

first kind ([31], eq.(8.406.1)). On the other hand, the PDF
of γ1(k) can be derived as

fγ1(k) (y)=k
(
Nt
k

) [
Fγ1(l) ( y)

]k−1 [1−Fγ1(l) ( y)
]Nt−k fγ1(l) ( y) ,

(9)

where fγ1(l) ( y) = 1
/
γ 1 e−y/γ 1 and Fγ1(l) ( y) = 1 − e−y/γ 1 .

Hence, substituting (8) and (9) into (7) and utilizing the
approach in [33], we have

fγ̃1(k) (x) = k
(
Nt
k

) k−1∑
n=0

(−1)n

γ 1

(
k − 1
n

)
α

β
e−

α
γ 1

x, (10)

where α = β
(Nt−k+n)(1−ρ)+1 and β = Nt − k + n + 1. To

this end, the corresponding CDF of γ̃1(k) can be deduced
from (10) as

Fγ̃1(k) (x) = 1 − k
(
Nt
k

) k−1∑
n=0

(−1)n

β

(
k − 1
n

)
e−

α
γ 1

x. (11)

3 End-to-end performance analysis
In this section, we perform a comprehensive performance
analysis of the system under consideration by presenting
closed-form analytical expressions for key performance
measures, i.e., the outage probability, the average SER,
and the ergodic capacity. We start by characterizing the
statistics of the upper bound of the end-to-end SIR. Based
on which, the closed-form approximations for the outage
probability and the average SER are obtained. Moreover,
to gain more insights, we look into the asymptotic high
SIR regime and present simple analytical expressions for
the outage probability and the average SER. Finally, we
investigate the ergodic capacity of the system and propose
tight upper and lower bounds on the ergodic capacity of
the system.

3.1 Upper bound of the end-to-end SIR
In general, an exact analysis of the statistics of the end-
to-end SIR shown in (4) is very challenging. Hence, to
circumvent this difficulty and obtain useful analytical
results to evaluate the performance of the system, we first
propose the following upper bound for the end-to-end
SIR:

γ ≤ γup = min
(

γ̃1(k)
γI1

,
γ2
γI2

)
. (12)

It is worth pointing out that the same bounding technique
has been widely adopted in the performance analysis of
various relaying systems (see [12] and references therein).
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In addition, it has been demonstrated that this upper
bound is in general very tight, especially in the high SIR
regime.
To this end, to analyze the outage and SER performance

of the system, the statistical behavior of the SIR upper
bound γup is required, which is given in the following
theorem:

Theorem 1. The exact CDF of γup is given by

Fγup (x) = 1 − k
(
Nt
k

) k−1∑
n=0

(−1)n

β

(
k − 1
n

) NI1∑
i=1

ηiγ 1
αxγ 3i + γ 1

×
⎡⎣1 −

NI2∑
j=1

ζj

(
xγ 4j

xγ 4j + γ 2

)Nr
⎤⎦ .

(13)

Proof. From (12), the CDF of γup can be expressed as

Fγup (x) = 1 −
[
1 − Fγ̃1(k)

/
γI1

(x)
] [

1 − Fγ2
/
γI2

(x)
]
,
(14)

where Fγ̃1(k)
/
γI1

(x) and Fγ2
/
γI2

(x) are the CDFs of
γ̃1(k)

/
γI1 and γ2

/
γI2 , respectively. As all the links

undergo Rayleigh fading, the CDF of γ2 is given by
Fγ2 (x) = γ

(
Nr, x

/
γ 2
) /

(Nr − 1) ! , where γ 2 = Prλrd is
the average power of the second hop and γ (·, ·) is the
lower incomplete Gamma function ([31], eq.(8.350.1)).
The PDFs of γI1 and γI2 are given by [25]

fγI1 (x) =
NI1∑
i=1

ηi
γ 3i

e−x/γ 3i , (15)

fγI2 (x) =
NI2∑
j=1

ζj

γ 4j
e−x

/
γ 4j , (16)

where γ 3i = Pirλir and γ 4j = Pjdλjd are the average power
of the ith interference at the relay and the jth interference
at the destination, respectively. In this paper, we assume
that γ 3i = Pirλir , i = 1, · · · ,NI1 , and γ 4j = Pjdλjd , j =
1, · · · ,NI2 are distinct. ηi and ζj are given by

ηi =
⎡⎣ NI1∏
u=1,u �=i

γ −1
3u(

s + γ −1
3u

)
⎤⎦
s=−γ −1

3i

, (17)

ζj =
⎡⎣ NI2∏

θ=1,θ �=j

γ −1
4θ(

s + γ −1
4θ

)
⎤⎦
s=−γ −1

4j

. (18)

Now, by utilizing (11) and (15), Fγ̃1(k)
/
γI1

(x) can be
derived, after performing some required integrations, as

Fγ̃1(k)
/
γI1

(x) =
∫ ∞

0
Fγ̃1(k) (xy) fγI1 (y) dy

= 1−k
(
Nt
k

)k−1∑
n=0

(−1)n

β

(
k − 1
n

)NI1∑
i=1

ηiγ 1
αxγ 3i + γ 1

.

(19)

Similarly, by employing the CDF of γ2 and the PDF of γI2 ,
and making a change of ω = xy, the CDF of γ2

/
γI2 can be

computed as

Fγ2
/
γI2

(x)=
∫ ∞

0
Fγ2 (xy) fγI2 (y) dy=

∫ ∞

0

Fγ2 (ω)

x
fγI2

(ω

x

)
dω

=
NI2∑
j=1

ζj

(
xγ 4j

xγ 4j + γ 2

)Nr

,

(20)

where we have used [31] eq.(6.451.1) to solve the corre-
sponding integral. Finally, substituting (19) and (20) into
(14) yields the desired result.

3.2 Outage probability
As an important performance measure of wireless com-
munication systems, the outage probability is defined as
the probability that the instantaneous achievable rate falls
below a given threshold R. Mathematically, the outage
probability can be expressed as [32]

Pout (R) = Pr
[
1
2
log2 (1 + γ ) < R

]
≈ Fγup (
) , (21)

where 
 = 22R − 1. Hence, with Theorem 1 at hand, the
lower bound of outage probability can be directly obtained
from (13). Note that the expression (13) only involves
the standard function which allows for fast evaluation in
popular mathematical software such as Matlab or Mathe-
matica, thereby providing an efficient means to assess the
impact of various key system parameters such as number
of antennas, CCI, and correlation coefficient on the outage
performance of the system.
To gain further understanding on the impact of number

of antennas, CCI and correlation coefficient on the outage
performance, we now look into the asymptotic high SIR
regime. We find it convenient to treat the following two
cases separately. Case 1: interference only (no feedback
delay), i.e., ρ = 1, and Case 2: interference and feedback
delay, i.e., ρ < 1.
For notational convenience, we define z = 


/
γ 1 and

γ 2 = μγ 1, where μ is a positive constant. We first con-
sider the case where only CCI exists in the system, and we
have the following important result:
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Corollary 1. With only CCI, i.e., ρ = 1, the asymptotic outage probability of interference-limited dual-hop multiple
antenna CSI-assisted AF relaying systems is given by

P∞
out (z) ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

NI1∑
i=1

ηik
(Nt
k
) k−1∑
n=0

(−1)n+k+1(k−1
n
)
βk−1(γ 3iz

)k , k < Nr

NI1∑
i=1

ηi

NI2∑
j=1

ζj

[(
γ 4j
μ

)L − L
(Nt
L
) L−1∑
n=0

(−1)n+L(L−1
n
)
βL−1γ L

3i

]
zL, k = Nr = L

NI2∑
j=1

ζj
(

γ 4j
μ
z
)Nr

, k > Nr

. (22)

Proof. See Appendix 1.

Corollary 1 suggests the intuitive result that the out-
age performance of the system depends on the selection
order of the transmit antenna, i.e., k. Moreover, the impact
of CCI on the outage performance varies as the selection
order k changes. As we can readily observe, when k < Nr,
the outage probability is solely affected by the CCI at the
relay and is independent of the CCI at the destination.
Similarly, when k > Nr, the outage probability is only
affected by the CCI at the destination regardless of the
CCI at the relay. Only for the case k = Nr, the impact
of CCI at both the relay and destination on the outage
probability becomes evident. This phenomena is some-
how expected, since in a dual-hop relaying system, the
overall outage performance is limited by the worst link.
Now, we look at the case when the system is subjected

to both the CCI and feedback delay, and we have the
following key result:

Corollary 2. With both the CCI and feedback delay, i.e.,
ρ < 1, the asymptotic outage probability of interference-
limited dual-hop multiple antenna CSI-assisted AF relay-
ing systems is given by

P∞
out (z)≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NI1∑
i=1

ηi

NI2∑
j=1

ζj

[
γ 4j
μ

+k
(Nt
k
)k−1∑
n=0

(−1)n+k(k−1
n
) αγ 3i

β

]
z,Nr=1

NI1∑
i=1

ηik
(Nt
k
) k−1∑
n=0

(−1)n
(k−1

n
) αγ 3i

β
z, Nr>1

.

(23)

Proof. Following the same lines as in the proof of Corol-
lary 1, the asymptotic outage probability when ρ < 1 can
be computed as

P∞
out (z) ≈ 1 −

NI1∑
i=1

ηi

⎡⎣1 + k
(
Nt
k

) k−1∑
n=0

(−1)n+1
(
k − 1
n

)
α

β
γ 3iz

⎤⎦
×

NI2∑
j=1

ζj

[
1 −

(
γ 4j

μ
z
)Nr

]
.

(24)

To this end, the desired results can be obtained after some
algebraic manipulations.

Corollary 2 shows that the achievable diversity order
is one when the transmitter only has access to a delayed
version of the CSI. Moreover, whether the interference at
the destination affects the outage probability of the sys-
tem depends on the number of antennas employed at the
destination. It is worth noting that when the destination
has a single antenna, the interference at the destination
will affect the outage probability of the system. Otherwise,
the interference at the destination has no impact on the
outage probability.

3.3 Average symbol error rate
In this section, we analyze the average SER of the system,
which is another important metric to quantify the per-
formance of wireless communication systems. For a wide
range of modulation schemes, the average SER is given by

Pe = E
[
aQ
(√

2bγ
)]

, (25)

where Q (x) = 1√
2π

∫∞
x e−y2/2 dy is the complementary

error function, and a and b are the modulation specific
constants. For instance, a = 1, b = 1 for BPSK, a = 1, b =
0.5 for BFSKwith orthogonal signaling, a = 2(M − 1) /M ,
b = 3

/(
M2 − 1

)
for M-PAM, and a = 2, b = sin2 (π/M )

for M-PSK.
Utilizing the result presented in [34], the average SER

can be alternatively computed by

Pe ≈ a
2

√
b
π

∫ ∞

0

e−bx
√
x
Fγup (x) dx. (26)

To this end, with the help of the CDF of the SIR upper
bound, we have the following key result:
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Theorem 2. The average SER of interference-limited dual-hop CSI-assisted multiple antenna AF relaying networks with
feedback delay is lower bounded by

Pe ≈ a
2

− ak
2

(
Nt
k

) k−1∑
n=0

(
k − 1
n

) NI1∑
i=1

(−1)nηi
β

⎡⎣√ bγ 1
αγ 3i

�

(
1
2
,
bγ 1
αγ 3i

)
e

bγ 1
αγ 3i −

NI2∑
j=1

(
γ 4j

bγ 2

)Nr ζjH1√
π� (Nr)

⎤⎦, (27)

where � (·, ·) is the upper incomplete Gamma function ([31], eq.(8.350.2)) and

H1 = H1,1,1,1,1
1,[1:1],0,[1:1]

[
γ 4j

bγ 2
,
αγ 3i
bγ 1

∣∣∣∣ (Nr + 1 /2 , 1) ; (1 − Nr, 1) ; (0, 1)
−−; (0, 1) ; (0, 1)

]
(28)

with H1,1,1,1,1
1,[1:1],0,[1:1] [·] being the generalized Fox’s H-function ([35], eq.(2.2.1)).

Proof. See Appendix 2.

Theorem 2 presents an analytical expression for the average SER of the system, and it applies to the generic scenario
with arbitrary number of antennas, CCI, and feedback delay at any SIR. The closed-form expression involves the gen-
eralized Fox’s H-function, which can be efficiently evaluated via the algorithm developed in ([36] Table two), hence
provides a fast and reliable way to evaluate the average SER of the system.
In order to get more insights into how the system parameters such as number of antennasNt andNr, interference, and

correlation coefficient ρ affect the average SER of the system, we now present simple expressions of the average SER in
the high SIR regime, from which the diversity order and coding gain of the system can be easily analyzed. Similar to the
outage analysis part, we consider two asymptotic SER cases depending on the value of ρ.

Corollary 3. With only CCI, i.e., ρ = 1, the asymptotic SER of interference-limited dual-hop multiple antenna CSI-
assisted AF relaying systems is given by

P∞
e ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�(k+1/2 )

2bk
√

π

NI1∑
i=1

ηik
(Nt
k
) k−1∑
n=0

(−1)n+k+1(k−1
n
)
βk−1γ k

3i

(
1
γ 1

)k
, k < Nr

a�(L+1/2 )

2bL
√

π

NI1∑
i=1

ηi

NI2∑
j=1

ζj

[(
γ 4j
μ

)L − L
(Nt
L
) L−1∑
n=0

(−1)n+L(L−1
n
)
βL−1γ L

3i

](
1
γ 1

)L
, k = Nr = L

a�(Nr+1/2 )

2bNr
√

π

NI2∑
j=1

ζj
(

γ 4j
μ

)Nr( 1
γ 1

)Nr
, k > Nr

. (29)

Proof. Substituting the asymptotic CDF expression presented in (22) into (26) and utilizing [31] eq.(3.351.3), the
desired result can be obtained after some algebraic manipulations.

Corollary 4. With both the CCI and feedback delay, i.e., ρ < 1, the asymptotic average SER of the interference-limited
dual-hop multiple antenna CSI-assisted AF relaying systems is given by

P∞
e ≈

⎧⎪⎪⎪⎨⎪⎪⎪⎩
a
4b

NI1∑
i=1

ηi

NI2∑
j=1

ζj

[
γ 4j
μ

+ k
(Nt
k
) k−1∑
n=0

(−1)n+k(k−1
n
)αγ 3i

β

]
1
γ 1
,Nr = 1

a
4b

NI1∑
i=1

ηik
(Nt
k
) k−1∑
n=0

(−1)n
(k−1

n
)αγ 3i

β
1
γ 1
, Nr > 1

. (30)

Proof. Substituting the asymptotic CDF expression presented in (23) into (26) and utilizing [31] eq.(3.351.3), the
desired result can be obtained after some algebraic manipulations.
It is noted from the above two corollaries that the diversity order achieved by the system with no feedback delay is

min {k,Nr}. However, the diversity order reduces to one when there is feedback delay. Moreover, the results suggest that
the CCI only degrades the performance of the system by affecting the coding gain of the system and does not reduce the
achievable diversity order.
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3.4 Ergodic capacity
In this section, we study the ergodic capacity of
interference-limited dual-hop multiple antenna CSI-
assisted AF relaying systems with feedback delay. Math-
ematically, the ergodic capacity of the system can be
expressed as

C = 1
2
E
[
log2 (1 + γ )

] = 1
2

∫ ∞

0
log2 (1 + x) fγ (x) dx,

(31)

where fγ (x) denotes the PDF of the end-to-end SIR γ .
It is worth pointing out that unlike the outage probabil-

ity and SER metrics which have been widely studied for
various dual-hop relaying systems in the presence of CCI,
few works have investigated the ergodic capacity of dual-
hop relaying systems with CCI due to the fact that it is
extremely difficult to obtain tractable expressions for the
ergodic capacity. Indeed, two key challenges encountered
in the analysis of ergodic capacity include obtaining the
exact PDF of the end-to-end SIR and taking expectation of
the nonlinear log (·) function. To circumvent these chal-
lenges, we hereafter seek upper and lower bounds of the
ergodic capacity of interference-limited dual-hopmultiple
antenna CSI-assisted AF relaying systems with feedback
delay. We start by presenting the following ergodic capac-
ity upper bound.

Theorem 3. The ergodic capacity of interference-limited
dual-hop multiple antenna CSI-assisted AF relaying sys-
tems with feedback delay is upper bounded by

Cu= k
2 ln 2

(
Nt
k

) k−1∑
n=0

(−1)n

β

(
k−1
n

)NI1∑
i=1

ηi2F1
(
1, 1; 2; 1 − α

γ 3i
γ 1

)
,

+ 1
2 ln 2

NI2∑
j=1

ζj

[
1
Nr

2F1

(
1,Nr;Nr + 1; 1 − γ 2

γ 4j

)
− ln γ 4j

]

+ 1
2 ln 2

{
ψ (Nr) + ln γ 2 + C − ln

(
1 + e�1 + e�2

)}
,

(32)

where 2F1 (·, ·; ·; ·) is the Gauss hypergeometric function
([31], eq.(9.100)), ψ (·) is the Euler psi function ([31],
eq.(8.360)), C is the Euler constant ([31], eq.(8.367.1)), and

�1 = k
(
Nt
k

) k−1∑
n=0

(−1)n+1
(
k − 1
n

) ln
(
α
/
γ 1
)

β
−

NI1∑
i=1

ηi ln γ 3i,

(33)

�2 = ψ (Nr) + ln γ 2 + C −
NI2∑
j=1

ζj ln γ 4j. (34)

Proof. See Appendix 3.

Theorem 3 provides a general expression of the capac-
ity upper bound, which is valid for arbitrary number of
antenna, CCI and feedback delay. Now, we turn our atten-
tion to the ergodic capacity lower bound, and we have the
following key result:

Theorem 4. The ergodic capacity of interference-limited
dual-hop multiple antenna CSI-assisted AF relaying sys-
tems with feedback delay is lower bounded by

Cl = k
2 ln 2

(
Nt
k

) k−1∑
n=0

(−1)n

Nt − k + n + 1

(
k − 1
n

)

×
NI1∑
i=1

ηi

[
ln γ 3i + 2F1

(
1, 1; 2; 1 − αγ 3i

γ 1

)]

+ 1
2 ln 2

⎡⎣NI2∑
j=1

ζj

Nr
2F1

(
1,Nr;Nr + 1; 1 − γ 2

γ 4j

)

+ψ (Nr) + ln γ 2 − C − ln (B1 + B2 + B3)

⎤⎦ ,

(35)

where

B1 = k
(
Nt
k

) k−1∑
n=0

(−1)n

β

(
k − 1
n

)
γ 1
α

NI2∑
j=1

ζjγ 4j, (36)

B2 = Nrγ 2

NI1∑
i=1

ηiγ 3i, (37)

B3 =
NI1∑
i=1

ηiγ 3i

NI2∑
j=1

ζjγ 4j. (38)

Proof. See Appendix 4.

It is worth highlighting that the upper and lower bounds
on the ergodic capacity presented in the previous theo-
rems involve only standard functions, hence can be very
fast and efficiently evaluated in popular softwares such
as Matlab or Mathematica. More importantly, the derived
bounds remain very tight across the entire range of SIRs
as will be demonstrated in Section 5.

4 Optimum power allocation
In this section, we propose optimum power allocation
schemes minimizing the asymptotic outage probability
with/without feedback delay. Specifically, we consider the
scenario that the total transmit power between the source
S and the relay R is fixed, i.e., Ps + Pr = Pt .
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As can be readily observed from (22), more power
should be allocated to the source S to suppress the inter-
ference at the relay when k < Nr. In contrast, the relay
node should be allocated more power to alleviate the
detrimental effect of the interference at the destination
when k > Nr. On the other hand, the case k = Nr = L
requires much more careful consideration. The optimal
power allocation problem can be formulated as

ε∗
1 = argmin

ε1
P∞
out (ε1,Pt)

s.t. Ps + Pr = Pt , Ps = ε1Pt , Pr = (1 − ε1)Pt ,
and 0 < ε1 < 1,

(39)

where

P∞
out (ε1,Pt) =

⎡⎣NI2∑
j=1

ζj

(
γ 4j

λrd (1 − ε1)

)L
−

NI1∑
i=1

ηiL
(
Nt
L

)
L−1∑
n=0

(−1)n+L

β

(
L − 1
n

)(
βγ 3i
λsrε1

)L
](




Pt

)L
.

(40)

To this end, taking the second derivative of
P∞
out (ε1,Pt) with respect to ε1, it can be shown that

∂2P∞
out (ε1,Pt)

/
∂ε21 is strictly positive in the interval

(0, 1), which implies that the objective function is a
strictly convex function of ε1 in the interval (0, 1). There-
fore, taking the first-order derivative of P∞

out (ε1,Pt) with
respect to ε1 and setting it to zero, the optimal ε1 can
be obtained. After some straightforward yet tedious
algebraic manipulations, we get

ε∗
1 =

√
L + 1A1

/
A2

1 + √
L + 1A1

/
A2

, (41)

where

A1 = L
(
Nt
L

) L−1∑
n=0

(−1)n+L+1

β

(
L − 1
n

) NI1∑
i=1

ηi

(
βγ 3i
λsr

)L
and

A2 =
NI2∑
j=1

ζj

(
γ 4j

λrd

)L
.

(42)

Similarly, for the case ρ < 1, more power should be allo-
cated to the source node when the destination node has
more than a single antenna. On the other hand, when the
destination is equipped with a single antenna, the optimal
power allocation problem can be formulated as

ε∗
2 = argmin

ε2
P∞
out (ε2,Pt)

s.t. Ps + Pr = Pt , Ps = ε2Pt , Pr = (1 − ε2)Pt ,
and 0 < ε2 < 1,

(43)

where

P∞
out (ε2,Pt) =

⎡⎣NI2∑
j=1

ζjγ 4j

λrd (1 − ε2)
+

NI1∑
i=1

ηik
(
Nt
k

)
k−1∑
n=0

(−1)n

β

(
k − 1
n

)
αγ 3i
λsrε2

⎤⎦ 


Pt
.

(44)

After some algebraic manipulations, it can be proven
that the second derivative of P∞

out (ε2,Pt)with respect to ε2
is strictly positive, which implies that the objective func-
tion is a strictly convex function of ε2. Setting the first
derivative of the objective function with respect to ε2 to
zero, the optimal power allocation factor can be derived as

ε∗
2 =

√
B1 /B2

1 + √
B1 /B2

, (45)

where

B1 = k
(
Nt
k

) k−1∑
n=0

(−1)n
α

β

(
k − 1
n

) NI1∑
i=1

ηi
γ 3i
λsr

and

B2 =
NI2∑
j=1

ζj
γ 4j

λrd
.

(46)

5 Numerical results
In this section, we perform extensive numerical simula-
tions to validate analytical results developed in the previ-
ous sections and to investigate the impact of number of
antennas, CCI, and feedback delay on the performance
of interference-limited dual-hop multiple antenna CSI-
assisted AF relaying systems with feedback delay. In all
simulations, unless otherwise specified, we use the follow-
ing set of parameters: Pr = Ps, λsr = 1, and λrd = 1. The
rate threshold R is set 5W, and the BPSK modulation, i.e.,
a = 1 and b = 1, is used.
Figure 2 plots the outage probability of interference-

limited dual-hop multiple antenna CSI-assisted AF relay-
ing systems with different ρ. As shown in the figure,
the analytical results, i.e., the outage lower bounds, are
sufficiently tight across the entire SIR range of interest,
while the high SIR approximations work quite well even
at moderate SIRs (i.e., γ 1 = 20W). We also observe that
the outage performance is degraded when the feedback
delay becomes large, i.e., ρ gets smaller. Moreover, the full
diversity order can be achieved without feedback delay,
i.e., ρ = 1. However, only unity diversity order is achieved
for the case of feedback delay, and increasing k improves
the outage probability by affecting the coding gain. On the
other hand, Figure 3 illustrates the impact of number of
interference on the outage performance under two cases:
NI1 = NI2 = 2 and NI1 = NI2 = 4, respectively. It is worth
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Figure 2 Outage probability versus the transmit power Ps when
Nt = Nr = 2, Pir = 5W, Pjd = 0W, andNI1 = NI2 = 3.

noting that increasing the number of interferers results in
a higher outage probability.
Figure 4 examines the average SER of interference-

limited dual-hop multiple antenna CSI-assisted AF relay-
ing systems with different ρ. As can be clearly seen from
the figure, the analytical results are in close agreement
with the Monte Carlo simulations at the entire SIR region,
while high SIR curves are also compatible with the simula-
tions. Specifically, when the SIR is in the high regime, the
theoretical lines agree with the simulations, which verifies
the correctness of the upper bound on the SIR. Further-
more, in the case of perfect feedback (no feedback delay),
the diversity order of the select order k is achieved. How-
ever, due to the feedback delay in selecting the antenna,
the diversity order is degraded to one regardless of the
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Figure 3 Outage probability versus the transmit power Ps under
different interference when Pir = 5W, Pjd = 0W,Nt = Nr = 2,
and k = 2.
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Figure 4 Symbol error rate versus the transmit power Ps when
Nt = Nr = 2, Pir = 5W, Pjd = 0W, andNI1 = NI2 = 3.

number of antennas. Further, we can see that when ρ

increases, the average SER is improved. This can be clearly
noticed in the two curves of ρ = 0 and 0.8 in the figure.
Besides, Figure 5 shows the relation between the aver-
age SER and the number of interference, and we adopt
the same setting parameters as Figure 3. From the figure,
more interference significantly degrades the average SER
performance due to the increasing interference power.
Figure 6 plots the proposed upper and lower bounds

for ergodic capacity of interference-limited dual-hop mul-
tiple antenna CSI-assisted AF relaying systems with dif-
ferent ρ. As can be readily seen, the derived upper and
lower bounds keep tight across the entire SIR range. We
also observe the intuitive result that the ergodic capac-
ity becomes less as ρ gets smaller (i.e., the feedback delay
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Figure 5 Symbol error rate versus the transmit power Ps under
different interference when Pir = 5W, Pjd = 0W,Nt = Nr = 2,
and k = 2.
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Figure 6 Ergodic capacity versus the transmit power Ps when
Nt = Nr = 3, k = 3, Pir = 5W, Pjd = 0W, andNI1 = NI2 = 3.

becomes large). Furthermore, we characterize the number
of interference on the ergodic capacity in Figure 7. It is
shown that more interference results in the lower ergodic
capacity under different cases.
Figure 8 provides the outage performance compari-

son between the optimal power allocation scheme and
the equal power allocation scheme with/without feedback
delay, respectively. We can see that the outage probability
of the optimal power allocation scheme outperforms that
of the equal power allocation scheme. This is due to the
fact that more power will be allocated to the link which
is subjected to more interference power to overcome the
interference. Furthermore, it is worth noting that the opti-
mal power allocation scheme can further bring the coding
gain compared with the equal power allocation scheme to
the underlying system.
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Figure 7 Ergodic capacity versus the transmit power Ps under
different interference whenNt = Nr = 3, k = 3, Pir = 5W,
and Pjd = 0W.
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Figure 8Outage probability comparison of two power allocation
schemes when Pir = 5W, Pjd = 0W, andNI1 = NI2 = 3.

6 Conclusions
In this paper, we have investigated the impact of number
of antennas, CCI, and feedback delay on the performance
of interference-limited dual-hop multiple antenna CSI-
assisted AF relaying networks with arbitrary TAS/MRC.
Specifically, based on a tight upper bound for the effec-
tive end-to-end SIR, the closed-form approximate expres-
sions for the outage probability and the average SER
were derived, which provided a fast and efficient tool for
evaluating the impact of the key parameters on the sys-
tem performance. Simulation results illustrated that the
derived approximations for the outage probability and
the average SER achieved a good match with the exact
results. Furthermore, simple and high informative expres-
sions were also provided to obtain the diversity order
and the coding gain of the system with perfect feedback
and delayed feedback. The finding of the paper suggested
that the full diversity order of min {k,Nr} was achieved
under perfect feedback, whereas the diversity order was
degraded to one underdelayed feedback. More impor-
tantly, some new analytical upper and lower bounds were
first derived for the ergodic capacity of the considered
system, which demonstrated that the proposed bounds
worked quite well under different cases. In addition, the
optimal power allocation between the source and the relay
was proposed to minimize the asymptotic outage prob-
ability. A profound reduction in the outage probability
was attained using the optimal power allocation compared
to the equal power allocation due to additional coding
gain.

Endnote
aThe reason for using the kth worst antenna selection

rather than the best antenna selection has been explained
in [37,38].
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Appendices
Appendix 1
Utilizing the McLaurin series expansion for the exponen-
tial function in (11) and performing some mathematical
manipulations, the asymptotic CDF of γ̃1(k)

/
γI1 can be

derived as

Fγ̃1(k)
/
γI1

(x)
γ 1→∞≈

NI1∑
i=1

ηik
(
Nt
k

) k−1∑
n=0

(−1)n+k+1

×
(
k − 1
n

)
βk−1

(
xγ 3i
γ 1

)k
,

(47)

where β = Nt − k + n + 1.
In order to get the asymptotic CDF of γ2

/
γI2 , we first

express the incomplete Gamma function using the series
expansion as ([31], eq.(8.354.1))

γ (m, θx) = (θx)m
∞∑
n=0

(−1)n (θx)n

n! (m + n)

x→0≈ (θx)m

m
. (48)

Then, substituting (48) into (20) and carrying out the inte-
gration with the help of [31] eq.(3.351.3), the asymptotic
CDF of γ2

/
γI2 can be computed as

Fγ2
/
γI2

(x)
γ 2→∞≈

NI2∑
j=1

ζj

(xγ 4j

γ 2

)Nr

. (49)

Finally, substituting (47) and (49) into (14) and simplifying
them, the asymptotic outage probability is derived as

P∞
out (z) ≈ 1 −

NI1∑
i=1

ηi

⎡⎣1 + k
(
Nt
k

) k−1∑
n=0

(−1)n+k

×
(
k − 1
n

)
βk−1(γ 3iz

)k⎤⎦

×
NI2∑
j=1

ζj

[
1 −

(
γ 4j

μ
z
)Nr

]
.

(50)

To this end, the desired result can be obtained after some
mathematical manipulations.

Appendix 2
Substituting (13) into (26), the average SER can be
expressed as

Pe ≈ a
2

√
b
π

∫ ∞

0

e−bx
√
x
dx︸ ︷︷ ︸

I1

−a
2

√
b
π
k
(
Nt
k

)

×
k−1∑
n=0

(−1)n

Nt − k + n + 1

(
k − 1
n

) NI1∑
i=1

ηiγ 1

×

⎡⎢⎢⎢⎢⎣
∫ ∞

0

e−bxx−1/2

αγ 3i
(
x + γ 1

/
αγ 3i

)dx︸ ︷︷ ︸
I2

−
NI2∑
i=1

ζj

γ 1

(
γ 4j

γ 2

)Nr

×
∫ ∞

0
e−bxxNr− 1

2

(
1 + αγ 3ix

γ 1

)−1(
1 + γ 4jx

γ 2

)−Nr

dx︸ ︷︷ ︸
I3

⎤⎥⎥⎥⎦ .

(51)

With the help of [31] eq.(3.361.2), the integral I1 can be
computed as

I1 =
√

π

b
. (52)

Also, utilizing [31] eq.(3.383.10), the integral I2 can be
evaluated as

I2 =
√

π

αγ 3iγ 1
e

bγ 1
αγ 3i �

(
1
2
,
bγ 1
αγ 3i

)
, (53)

where � (·, ·) is the upper incomplete Gamma function
[28] eq.(8.350.2). To evaluate the integral I3, we first
exploit the equalities ([39], eq.(8.4.23.3)) as follows:(

1 + αγ 3i
γ 1

x
)−1

= H1,1
1,1

[
αγ 3i
γ 1

x
∣∣∣∣(0,1)
(0,1)

]
, (54)

(
1 + γ 4j

γ 2
x
)−Nr

= H1,1
1,1

[
γ 4j

γ 2
x
∣∣∣∣(1−Nr,1)

(0,1)

]/
(Nr − 1) ! ,

(55)

where Ha,b
c,d [·] is the Fox’s H-function ([39], eq.(8.3.1.1)).

To this end, with the help of [35] eq.(2.6.2), I3 can be
derived as

I3 = 1
bNr+1/2 � (Nr)

H1,1,1,1,1
1,[1:1],0,[1:1]

×
[

γ 4j

bγ 2
,
αγ 3i
bγ 1

∣∣∣∣ (Nr + 1 /2 , 1) ; (1 − Nr, 1) ; (0, 1)
−−; (0, 1) ; (0, 1)

]
,

(56)

where H1,1,1,1,1
1,[1:1],0,[1:1] [·] is the generalized Fox’s H-function

([35], eq.(2.2.1)). Finally, substituting the integrals I1, I2,
and I3 into (51) yields the final result given in (27).
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Appendix 3
Capitalizing on the techniques proposed in recent works
[40,41], we get the following upper bound for the ergodic
capacity of the system.

Cu = 1
2
E
[
log2

(
1 + γ̃1(k)

γI1

)]
+ 1

2
E
[
log2

(
1 + γ2

γI2

)]
− 1

2
log2

{
1 + eE

[
ln
(
γ̃1(k)

/
γI1
)]

+ eE
[
ln
(
γ2
/
γI2
)]}

.

(57)

We start with the first term in (57). Noticing that the
random variables γ̃1(k) and γI1 are statistically indepen-
dent, E

[
log2

(
1 + γ̃1(k)

γI1

)]
can be expanded as

E
[
log2

(
1 + γ̃1(k)

γI1

)]
= 1

ln 2

∫ ∞

0

∫ ∞

0
ln (x + y) fγ̃1(k) (x) dxfγI1 (y) dy︸ ︷︷ ︸

I4

− 1
ln 2

∫ ∞

0
ln yfγI1 (y) dy︸ ︷︷ ︸

I5

.

(58)

Substituting (10) and (15) into (58), the integral I4 can be
simplified as

I4 = k
(
Nt
k

) k−1∑
n=0

(−1)n

γ 1

(
k − 1
n

)
α

Nt − k + n + 1

×
NI1∑
i=1

ηi
γ 3i

∫ ∞

0

∫ ∞

0
ln (x + y) e−

α
γ 1

xdxe−
y

γ 3i dy.

(59)

To this end, utilizing [31] eq.(4.337.1) and [31]
eq.(6.228.2), we get

I4 = k
(
Nt
k

) k−1∑
n=0

(−1)n

Nt − k + n + 1

(
k − 1
n

)

×
NI1∑
i=1

ηi

[
ln γ 3i + 2F1

(
1, 1; 2; 1 − α

γ 3i
γ 1

)
− C

]
,

(60)

where 2F1 (·, ·; ·; ·) is the Gauss hypergeometric func-
tion ([31], eq.(9.100)), and C is the Euler constant ([31],
eq.(8.367.1)).
On the other hand, by using the PDF of γI1 and with

the help of [31] eq.(4.331.1), the integral I5 can be easily
computed as

I5 =
NI1∑
i=1

ηi
(
ln γ 3i − C

)
. (61)

Similarly, due to the independence of γ2 and γI2 , the sec-
ond term E

[
log2

(
1 + γ2

γI2

)]
in (57) can be expressed as

E
[
log2

(
1 + γ2

γI2

)]
= 1

ln 2

∫ ∞

0

∫ ∞

0
ln (x + y) fγ2 (x) dxfγI2 (y) dy︸ ︷︷ ︸

I6

− 1
ln 2

∫ ∞

0
ln yfγI2 (y) dy︸ ︷︷ ︸

I7

.

(62)

Utilizing the PDF of fγ2 (x) and fγI2 (y), and exploiting [31]
eq.(4.337.1), we have

I6 = 1
(Nr − 1) ! γNr

2

NI2∑
j=1

ζj

⎡⎢⎢⎢⎣
∫ ∞

0
xNr−1e−

x
γ 2 ln xdx︸ ︷︷ ︸

I8

−
∫ ∞

0
xNr−1Ei

(
− x

γ 4j

)
e
−x
(

1
γ 2

− 1
γ 4j

)

︸ ︷︷ ︸
I9

dx

⎤⎥⎥⎥⎥⎦ ,

(63)

where Ei (·) is the exponential integral function ([31],
eq.(8.211.1)). Now, I8 can be evaluated with the help of
[31] eq.(4.352.1) as

I8 = γ
Nr
2 (Nr − 1) !

[
ψ (Nr) + ln γ 2

]
, (64)

where ψ (·) is the Euler psi function ([31], eq.(8.360)),
while I9 can be computed with the help of [31] eq.(6.228.2)
as

I9 = −γ
Nr
2 (Nr − 1) !

Nr
2F1

(
1,Nr;Nr + 1; 1 − γ 2

γ 4j

)
.

(65)

On the other hand, the integral I7 can be computed via
([31], eq.(4.331.1))

I7 =
NI2∑
j=1

ζj
(
ln γ 4j − C

)
. (66)

Now, we turn our attention to compute E
[
ln
(
γ̃1(k)

/
γI1
)]

and E
[
ln
(
γ2
/
γI2
)]
. Using the PDFs of γ̃1(k) and γI1 , the
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first term can be evaluated after some simple manipula-
tions with the aid of [31] eq.(4.331.1) as

E
[
ln
(
γ̃1(k)

/
γI1
)] = k

(
Nt
k

) k−1∑
n=0

(−1)n+1
(
k − 1
n

)

× ln
(
α
/
γ 1
)

Nt − k + n + 1
−

NI1∑
i=1

ηi ln γ 3i.

(67)

Performing the required integration with the help of [31]
eqs.(4.352.1) and (4.331.1), the second term can be evalu-
ated as

E
[
ln
(
γ2
/
γI2
)] = ψ (Nr) + ln γ 2 + C −

NI2∑
j=1

ζj ln γ 4j.

(68)

To this end, pulling everything together, we obtain the
desired result.

Appendix 4
Substituting (4) into (31) and performing some simple
algebraic manipulations, the ergodic capacity can be writ-
ten as

C = 1
2
E
[
log2

(
γ̃1(k) + γI1

)]+ 1
2
E
[
log2

(
γ2 + γI2

)]
− 1

2
E
[
log2

(
γ̃1(k)γI2 + γ2γI2 + γI1γI2

)]
.

(69)

Applying Jensen’s inequality on the third term, we obtain
the following capacity lower bound:

Cl = 1
2
E
[
log2

(
γ̃1(k) + γI1

)]+ 1
2
E
[
log2

(
γ2 + γI2

)]
− 1

2
log2

[
E
(
γ̃1(k)γI2

)+ E
(
γ2γI2

)+ E
(
γI1γI2

)]
.

(70)

From I4 and I6, the first two terms of (70) can be computed
in closed-form as

E
[
log2

(
γ̃1(k) + γI1

)]
= k

ln 2

(
Nt
k

) k−1∑
n=0

(−1)n

Nt − k + n + 1

(
k − 1
n

) NI1∑
i=1

ηi ln γ 3i

+ k
ln 2

(
Nt
k

) k−1∑
n=0

(−1)n

N − k + n + 1

(
k − 1
n

)

×
NI1∑
i=1

ηi2F1
(
1, 1; 2; 1 − αγ 3i

γ 1

)
− C

ln 2
,

(71)

E
[
log2

(
γ2 + γI2

)] = 1
ln 2

NI2∑
j=1

ζj

Nr
2F1

(
1,Nr;Nr + 1; 1 − γ 2

γ 4j

)

+ ψ (Nr) + ln γ 2
ln 2

.

(72)

Now, we look at the third term. Since the other two
expectations have the same integral forms as the expec-
tation E

(
γ̃1(k)γI2

)
, we focus on analyzing the expectation

E
(
γ̃1(k)γI2

)
. Due to the independence of γ̃1(k) and γI2 , the

first expectation simplifies to

E
(
γ̃1(k)γI2

)=k
(
Nt
k

)k−1∑
n=0

(−1)n

Nt − k + n + 1

(
k − 1
n

)
γ 1
α

NI2∑
j=1

ζjγ 4j,

(73)

where we have used [31] eq.(3.351.3) to solve the corre-
sponding integral.
Similarly, the other two expectations can be derived as

E
(
γ2γI1

) = Nrγ 2

NI1∑
i=1

ηiγ 3i, (74)

E
(
γI1γI2

) =
NI1∑
i=1

ηiγ 3i

NI2∑
j=1

ζjγ 4j. (75)

To this end, pulling everything together yields the desired
result.
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