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Abstract

In this paper, a single point-to-point wireless link operating under queueing constraints in the form of limitations on
the buffer violation probabilities is considered. The achievable throughput under such constraints is captured by the
effective capacity formulation. It is assumed that finite blocklength codes are employed for transmission. Under this
assumption, a recent result on the channel coding rate in the finite blocklength regime is incorporated into the
analysis, and the throughput achieved with such codes in the presence of queueing constraints and decoding errors
is identified. The performance of different transmission strategies (e.g., variable-rate, variable-power, and fixed-rate
transmissions) is studied. Interactions and tradeoffs between the throughput, queueing constraints, coding
blocklength, decoding error probabilities, and signal-to-noise ratio are investigated, and several conclusions with
important practical implications are drawn.
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1 Introduction
Providing quality of service (QoS) guarantees in the form
of limitations on the queueing delays or buffer violation
probabilities is essential in many delay-sensitive wireless
systems, e.g., voice over IP (VoIP), and wireless interactive
and streaming video applications. Due to the importance
of such QoS considerations, it is of significant interest
to conduct an analysis and provide predictions for the
performance levels of practical systems. In [1], effective
capacity is proposed as a metric that can be employed
to measure the performance in the presence of statisti-
cal QoS limitations. Effective capacity formulation uses
the large deviations theory and incorporates the statis-
tical QoS constraints by capturing the rate of decay of
the buffer occupancy probability for large queue lengths.
Hence, effective capacity can be regarded as themaximum
throughput of a system operating under limitations on the
buffer violation probability.
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Recently, there has been much interest in the analysis of
the effective capacity of fading channels (see, e.g., [2-9])
in order to identify the performance of wireless systems
operating under statistical queueing constraints. How-
ever, in almost all prior studies, the service rates of the
queueing model (or equivalently the instantaneous trans-
mission rates over the wireless channel) are assumed to be
equal to the instantaneous capacity values, although chan-
nel coding is performed using a finite block of symbols.
Moreover, transmissions are assumed to be reliable with
no decoding errors. However, it is important to note that
error-free communication at the rate of channel capac-
ity is generally attained as the codeword length increases
without bound. Therefore, when finite blocklength codes
are employed, transmission is necessarily performed in
the presence of decoding errors and possibly at rates less
than the channel capacity in order to have high reliability
or equivalently low error probability.
In [10] and [11], Negi and Goel addressed these con-

siderations. They studied queueing and coding jointly and
took explicitly into account decoding errors by consider-
ing the random coding exponents of error probabilities
for rates less than the instantaneous channel capacity. For
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instance, in [10], they analyzed the maximization of the
joint exponent of the decoding error and delay violation
probability through the appropriate choice of the trans-
mission rate for a given delay bound and constant arrival
rate.
In this paper, we also depart from the idealistic assump-

tions of communicating arbitrarily reliably at channel
capacity but follow an approach different from that of [10]
and [11]. We consider channel coding rates achievable
with finite blocklength codes and incorporate the decod-
ing error probabilities and possible retransmission scenar-
ios into the effective capacity formulation. This analysis
is facilitated mainly by the recent results of Polyanskiy
et al. [12], where the authors identified an approximate
maximal achievable rate expression for a given error prob-
ability in the finite blocklength regime. This expression
can be regarded as a second-order asymptotic approx-
imation of the channel coding rate at large but finite
blocklength values. We note that [13] and [14] also stud-
ied channel coding and achievable error probabilities at
finite blocklengths by analyzing the mutual information
density and its statistics. In [14], an outage analysis is
performed by using the distribution of the mutual infor-
mation density. In [15], a similar outage formulation is
used to determine the optimal physical-layer reliability
and to identify the maximum Automatic Repeat reQuest
(ARQ) throughput. On the other hand, neither of the
above-mentioned papers have investigated the through-
put in the finite blocklength regime when the systems
operate under buffer constraints.
Our contributions in this paper can be summarized as

follows. We determine the throughput achieved by dif-
ferent transmission strategies in the finite blocklength
regime under constraints on the buffer violation probabil-
ity. Initially, we consider a scenario in which the transmis-
sion rate is varied with the fading realizations while the
error probability is kept fixed. The optimal error probabil-
ity that maximizes the throughput is shown to be unique.
We analyze the impact of the power adaptations. Then,
we investigate the case in which the transmission rate
is fixed and error probability varies over different trans-
mission blocks. Through numerical results, we analyze
the interactions between the throughput, queueing con-
straints, error probabilities, blocklength, signal-to-noise
ratio, and different transmission strategies.
The remainder of the paper is organized as fol-

lows. Section 2 describes the fading channel model. In
Section 3, we provide preliminaries on the effective capac-
ity as a measure of the throughput under statistical QoS
constraints. In Section 4, we provide our results on the
effective throughput in the finite blocklength regimewhen
the transmitter sends the data at a variable rate with fixed
power. In Section 5, we investigate the throughput in sce-
narios in which power control is employed, or data is

transmitted at fixed rate, or independent messages are
sent over two parallel channels. We conclude in Section 6.
Several proofs are relegated to the Appendix.

2 Channel model
We consider a frequency-flat channel model and assume
that the fading coefficients stay fixed for a block of m
symbols and then change independently for the follow-
ing block. Under this block-fading assumption, the chan-
nel input-output relation in one coherence block can be
expressed as

y = hx + n (1)

where x and y are the m-dimensional, complex, channel
input and output vectors, respectively. The input is sub-
ject to an average power constraint, i.e., E{‖x‖2} ≤ mP.
h is the complex-valued fading coefficient with finite sec-
ond moment, i.e., E{|h|2} < ∞. We assume that both
the receiver and transmitter have perfect channel side
information (CSI) and hence perfectly know the instanta-
neous realizations of the fading coefficients. However, the
assumption of perfect CSI at the transmitter is relaxed in
Section 5.2. Finally, n represents the Gaussian noise vector
whose components are independent and identically dis-
tributed (i.i.d.), complex, circularly symmetric, Gaussian
random variables with mean zero and variance N0, i.e.,
n ∼ CN (0,N0Im), where Im denotes the m × m identity
matrix. We define the transmitted signal-to-noise ratio as

SNR = E{‖x‖2}
E{‖n‖2} = mP

mN0
= P

N0
. (2)

Note that the received instantaneous signal-to-noise
ratio for a given fading coefficient h is |h|2SNR.

3 Throughput under statistical queueing
constraints

In [1], Wu and Negi defined the effective capacity as the
maximum constant arrival rate that a given service pro-
cess can support in order to guarantee a statistical QoS
requirement specified by the QoS exponent θa. If we
defineQ as the stationary queue length, then θ is the decay
rate of the tail of the distribution of the queue length Q:

lim
q→∞

logP(Q ≥ q)
q

= −θ . (3)

Therefore, for large qmax, we have the following approx-
imation for the buffer violation probability:

P(Q ≥ qmax) ≈ e−θqmax .

Hence, while larger θ corresponds to more strict QoS
constraints, smaller θ implies looser QoS guarantees. Sim-
ilarly, if D denotes the steady state delay experienced in
the buffer, then P(D ≥ dmax) ≈ e−θδdmax for large dmax,
where δ is determined by the arrival and service processes
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[4]. Therefore, effective capacity formulation provides the
maximum constant arrival rates that can be supported by
the time-varying wireless channel under the queue length
constraint P(Q ≥ qmax) ≤ e−θqmax for large qmax or the
delay constraint P(D ≥ dmax) ≤ e−θδdmax for large dmax.
Since the average arrival rate is equal to the average depar-
ture rate when the queue is in steady state [16], effective
capacity can also be seen as the maximum throughput in
the presence of such constraints.
The effective capacity is given by ([1,17,18])

RE = − lim
t→∞

1
θ t

loge E{e−θS[t]}, (4)

where S[t]= ∑t
i=1 Ri is the time-accumulated service

process and {Ri, i = 1, 2, . . .} denotes the discrete-time
stationary and ergodic stochastic service process. We
would like to note that in the remainder of the paper, we
will refer to RE as the effective rate rather than the effective
capacity since RE in our setup is the throughput when the
service rates are equal to the approximate channel coding
rates in the finite blocklength regime.

4 Effective throughput with finite blocklength
codes

4.1 Throughput in fading channels under QoS constraints
In [12], the authors have studied the channel coding rate in
the finite blocklength regime. For general classes of chan-
nels, they have obtained new achievability and converse
bounds on the coding rate for a given finite blocklength
and error probability. In particular, for the real, additive
white Gaussian noise (AWGN) channel, the transmission
rate (in bits perm channel uses) with error probability 0 <

ε < 1, signal-to-noise ratio (SNR), and coding blocklength
m is shown to have the following asymptotic expression
([12], Theorem 54):

r = m
2
log2(1 + SNR) −

√
m
2

(
1 − 1

(SNR + 1)2

)
× Q−1(ε) log2 e + O(logm), (5)

where Q(x) = ∫∞
x

1√
2π e−t2/2 dt is the Gaussian Q-

function. Denoting the rate in bits per channel use by r̄,
we can write

r̄ = r
m

= 1
2
log2(1 + SNR) −

√
1
2m

(
1 − 1

(SNR + 1)2

)

× Q−1(ε) log2 e + O(logm)

m
(6)

≈ 1
2
log2(1 + SNR)

−
√

1
2m

(
1 − 1

(SNR + 1)2

)
Q−1(ε) log2 e, (7)

where the approximation is accurate for sufficiently large
m. Note that the above results are for the AWGN channel
with real input and real output.
In this paper, we consider a fading Gaussian chan-

nel model with complex-valued input and output, and
assume that channel coding is performed in each coher-
ence interval of m symbols, during which the fading
stays fixed. Under these assumptions, coding over a fad-
ing Gaussian channel can be seen as coding over a real
Gaussian channel (with a certain channel gain) using a
coding blocklength of 2m. The following arguments pro-
vide a detailed description of this approach. Knowing the
channel fading coefficient h, the receiver can multiply the
received signal with e−jθh , where θh is the phase of h and
obtainb

ỹ = ỹr + jỹi = ye−jθh = |h|x + ñ
= |h|xr + ñr + j(|h|xi + ñi), (8)

where ỹr , xr , ñr , and ỹi, xi, ñi denote the real and imag-
inary components, respectively, of the output vector ỹ,
input vector x, and noise vector ñ. It can be easily veri-
fied that ñ = ne−jθh has the same statistics as n and hence
ñ ∼ CN (0,N0Im). Now, the above channel input-output
relation can also be written as[

ỹr ỹi
] = |h| [xr xi] + [ñr ñi] , (9)

where
[
ỹr ỹi

]
denotes the vector formed by concatenating

ỹr and ỹi. Since the real and imaginary components are
m-dimensional vectors, the above channel model is a real
Gaussian channel with 2m dimensional input and output
and with channel gain |h|. Note that the real and imagi-
nary noise components ñr and ñi are independent due to
the assumption of the circular symmetry of the additive
complex Gaussian noise. For this channel, the coding rate
(in bits perm channel uses) in the ith block achieved with
block error probability ε is

ri = m log2
(
1 + SNR|hi|2

)−
√
m
(
1 − 1

(SNR|hi|2 + 1)2

)
× Q−1(ε) log2 e + O(log 2m), (10)

where hi denotes the fading coefficient in the ith block.
Note that the expression in (10) is obtained from that in
(5) by replacing m with 2m, and the signal-to-noise ratio
with SNR|hi|2 = P

N0
|hi|2, which is the received signal-to-

noise ratio in the ith block. Now, the normalized rate in
bits per channel use is approximately

r̄i = ri
m

= log2(1 + SNR|hi|2)

−
√

1
m

(
1 − 1

(SNR|hi|2 + 1)2

)
Q−1(ε) log2 e (11)
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for large enoughm for which O(log 2m)

m is negligible. Hence-
forth, we assume that the instantaneous transmission rate
in each coherence block of the fading channel is given by
the expression in (11). Since the block error rate is ε, this
rate is attained with probability 1 − ε. We assume that
the receiver reliably detects the errors, employs a simple
ARQ mechanism, and sends a negative acknowledgement
requesting the retransmission of the message in case of
an erroneous reception. Therefore, the data rate is effec-
tively zero when error occurs. Under this assumption, the
service rate (in bits perm channel uses) in each block is

Ri =
{
0 with prob. ε
mr̄i with prob. (1 − ε)

. (12)

With the above service rate characterization, we can
express the effective rate (in bits per channel use) at a
given SNR, error probability ε, blocklength m, and QoS
exponent θ as

RE(θ) = − 1
mθ

loge E|h|2
{
ε + (1 − ε)e−θmr̄

}
bits/channel use,

(13)

where r̄ is given in (11), and the expectation is with
respect to |h|2. The effective rate expression in (13) is eas-
ily derived from (4) by noting that the service rate {Ri} is
an i.i.d. process due to the facts that the fading process is
i.i.d. in different blocks, and the noise is an i.i.d. process
leading to the independence of error events in different
blocks.
Note that the effective rate is a function of the QoS

exponent θ , blocklength m, SNR, and error probability ε.
Since we assume that coding is performed in each coher-
ence interval, the blocklength m is determined by the
statistics of the fading process. The value of θ is dictated
by the application requirements, and SNR depends on
the power budget. Given the values of these parameters,
the remaining parameter ε can be optimized to maximize
the throughput.

Proposition 1. Assume that the values of m, θ > 0, and
SNR > 0 are fixed. Then, the function

�(ε) = E|h|2
{
ε + (1 − ε)e−θmr̄

}
(14)

is strictly convex in ε, and therefore, the optimal value of ε
that minimizes this function or equivalently maximizes the
effective rate in (13) is unique. Moreover, the effective rate
RE in (13) is a quasiconcave function of ε.

Proof. See Appendix 1.

Remark 1. Note that the strict convexity result indi-
cates that the optimal error probability ε∗ is unique and
can be easily found using standard convex optimization

methods. The analysis and the resulting ε∗ provide guide-
lines on the design of the channel codes and what their
strength and protection level should be. Note that large
ε implies that the transmitter attempts to transmit the
data at a high rate but at the risk of more frequent errors
and hence retransmissions. On the other hand, if ε is
small, the reliability of the transmissions is high but the
instantaneous transmission rate is low. In either of these
extreme regimes, the resulting throughput is low, which is
not favorable in a buffer/delay limited system. The above
result shows that a balance is struck at a unique value of
the error probability, and this point can be identified with-
out much difficulty for given buffer constraints specified
by θ . Indeed, as will be seen in the numerical results, ε∗ is
not vanishingly small, indicating that some relatively small
but nonzero error probability and hence some retrans-
missions are allowed to improve the throughput of the
system.

The above result is shown for the case in which θ > 0.
If there are no QoS constraints and hence θ = 0, then the
effective rate becomes

RE(0) = lim
θ→0

RE(θ) = (1 − ε)E|h|2{r̄}, (15)

where r̄ is given in (11). Note that RE(0) is the average
transmission rate averaged over the fading states. Below,
we show that RE(0) is a strictly concave function of ε.

Proposition 2. Assume that the values of m and SNR >

0 are fixed. Then, the function

RE(0) = (1 − ε)E|h|2{r̄} (16)

is strictly concave in ε, and therefore the optimal value of ε
that maximizes this effective rate is unique.

Proof. See Appendix 2.

4.2 Numerical results
Next, we provide numerical examples to illustrate the
results. Although the preceding analysis is applicable to
any fading distribution with finite power, we consider a
Rayleigh fading channel in the numerical analysis and
assume that the fading power z = |h|2 is exponentially dis-
tributed with unit mean (i.e., has the probability density
function fz(z) = e−z).
In Figure 1, we plot �(ε) = E|h|2

{
ε + (1 − ε)e−θmr̄}

as a function of the error probability ε in the Rayleigh
fading channel. In the figure, SNR = 0 dB, and the block-
length m = 1, 000. We provide curves for different values
of the QoS exponent θ > 0. In all cases, we immediately
observe the strict convexity of the curves, confirming the
result in Proposition 1. Indeed, the optimal error prob-
abilities that minimize �(ε) are unique and are equal
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Figure 1 The function�(ε) vs. the error probability ε in the
Rayleigh fading channel. SNR = 0 dB and the blocklength is
m = 1, 000.

to ε∗ = 0.0127, 0.0061, 0.0084 for θ = 0.001, 0.01, 0.1,
respectively. It is also interesting to see that the opti-
mal error probabilities are not vanishingly small and are
around 0.01.
In Figure 2, we plot the effective rate in (13) as a

function of the error probability ε. The other param-
eters are the same as in Figure 1. Notice that we
have also included in this figure the throughput curve
for the case in which θ = 0. Note that if θ = 0, the
system does not have any queueing constraints. In
Proposition 2, we have shown that RE(0) is a strictly
concave function of ε, and the optimal ε∗ that maxi-
mizes RE(0) is unique. The strict concavity is observed
in Figure 2. The optimal value of the error probability in
the case of θ = 0 is ε∗ = 0.0171. For θ > 0, the effective
rate curves are not necessarily concave. In Figure 2, we
observe that these curves are quasiconcave as predicted by
Proposition 1, and they are maximized at a unique ε∗. The
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Figure 2 Effective rate RE vs. the error probability ε in the
Rayleigh fading channel. SNR = 0 dB and the blocklength is
m = 1, 000.

optimal error probabilities for the cases in which θ > 0 are
equal to the same ones obtained in Figure 1. At the optimal
error probabilities, the maximum effective rate values are
RE = 0.7750, 0.6256, 0.2246, 0.0329 bits/channel use for
θ = 0, 0.001, 0.01, 0.1, respectively. Note that increasing θ

leads to more stringent QoS constraints, and we observe
that the effective rate and hence the effective throughput
diminish as θ increases. This trend is also clearly seen in
Figure 3, where we plot the maximum effective rate values
(i.e., effective rate at the optimal error probability ε∗) as a
function of θ .
Another interesting analysis is the behavior of ε∗ as

a function of θ . This is depicted in Figure 4. Here,
we observe that as θ increases and therefore the QoS
limitations become more stringent, the value of ε∗ ini-
tially decreases sharply. Hence, the transmitter opts for
more reliable but low-rate transmissions. On the other
hand, as θ increases beyond approximately 0.028, the
trend reverses and ε∗ starts to increase. The transmitter
increases the transmission rate at the cost of increased ε∗
and hence more retransmissions. When θ exceeds 0.298,
ε∗ starts decreasing again. Note that for high values of
θ , the effective rate is small. This small effective rate can
be supported by low-rate transmissions. Hence, when θ is
high beyond a threshold, the transmitter chooses to trans-
mit at low rates and keep the error probability and the
number of retransmissions low as well.
In Figure 5, we plot the effective rate as a function of the

blocklength m for θ = 0 and θ = 0.001. The solid-lined
curves correspond to the effective rate in (13) optimized
over ε. The dashed curves correspond to the effective rate
of the ideal model in which the service rate is equal to the
instantaneous capacity, i.e.,

r̄ = log2
(
1 + SNR|h|2) , (17)
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Figure 3 The optimal effective rate RE vs. QoS exponent θ in the
Rayleigh fading channel. SNR = 0 dB and the blocklength is
m = 1, 000.
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Figure 4 The optimal error probability ε∗ vs. QoS exponent θ in
the Rayleigh fading channel. SNR = 0 dB and the blocklength is
m = 1, 000.

and the error probability is assumed to be zero, i.e.,
ε = 0. Here, we have interesting observations. When
θ = 0 and the ideal model is considered, then the effec-
tive rate is RE(0) = E|h|2{log2(1 + SNR|h|2)}, which is
the ergodic capacity of the fading channel and is clearly
independent of the blocklength. On the other hand, if
the service rate is given by r̄ in (11), the effective rate
RE(0) = (1 − ε) E|h|2{r̄} increases with blocklength m
as seen in Figure 5. In the presence of QoS constraints,
i.e., when θ > 0, we have stark differences. Under the
idealistic assumption of transmitting at the instantaneous
capacity with no errors, we see from the behavior of the
dashed curve for θ = 0.001 that effective rate decreases
with increasing m. The reason is that since m is the
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Figure 5 The optimal effective rate RE vs. the blocklengthm in
the Rayleigh fading channel. SNR = 0 dB and the QoS exponent is
θ = 0.001. Dashed curves correspond to the effective rate of the ideal
model in which the service rate is equal to the instantaneous channel
capacity and error probability is zero.

coherence duration over which the fading state remains
fixed, larger m corresponds to slower fading, and slow
fading is detrimental for buffer-constrained systems. In a
slow-fading scenario, deep fading can be persistent, caus-
ing long durations of low rate transmissions, leading to
buffer overflows. In the finite blocklength regime, as seen
in the behavior of the solid-lined curve of the case of
θ = 0.001, there is a certain tradeoff. Initially, increasing
m improves the performance as this allows the system to
perform transmissions with longer codewords and to have
higher transmission rates. However, ifm increases beyond
a threshold, slowness of the fading starts to degrade the
performance.
In all cases in Figure 5, the gap between the dashed and

solid-lined curves diminishes asm increases since the ide-
alistic model becomes more accurate. On the other hand,
for moderate values ofm (e.g., whenm < 2, 000), the ide-
alistic assumptions lead to significant overestimations of
the performance.
Finally, we provide numerical results for the optimal

effective rate and optimal error probability as a func-
tion of SNR in Figures 6 and 7, respectively, for θ =
0, 0.001, and 0.01. We see that for fixed θ , increas-
ing the SNR improves the throughput and also the
reliability of the transmissions by lowering the error
probabilities.

5 The impact of different transmission strategies
Heretofore, we have considered the scenario where the
transmitter knows the fading coefficients {hi} and per-
forms variable-rate transmission with the same average
power P in each coherence block of m channel uses.
Next, we investigate the throughput achieved with other
transmission strategies such as employing power control,
transmitting data at fixed rates, and sending independent
messages over two parallel channels.
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Figure 6 The optimal effective rate RE vs. SNR in the Rayleigh
fading channel. The blocklength ism = 1, 000.
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Figure 7 The optimal error probability ε∗ vs. SNR. The blocklength
ism = 1, 000.

5.1 Power control
In this subsection, we investigate the gains achieved by
varying the transmission power as well with respect to
fading. Let us denote the power adaptation normalized by
the noise power by μ(SNR, θ , |h|2). With this adaptation
policy, the transmission rate is

r̄ = log2
(
1 + μ

(
SNR, θ , |h|2) |h|2)

−
√√√√1
m

(
1 − 1(

μ
(
SNR, θ , |h|2) |h|2 + 1

)2
)
Q−1(ε) log2 e

(18)

which is obtained by replacing SNR with μ(SNR, θ , |h|2)
in (11). Finding the optimal power adaptation policy
that maximizes r̄ or the effective rate RE(θ) = − 1

mθ

loge E|h|2
{
ε + (1 − ε)e−θmr̄} is in general a difficult task

due to the facts that both the first and second terms on
the right-hand side of (18) are concave functions. Hence,
r̄ is neither concave nor convex. For this reason, we resort
to suboptimal strategies. One viable policy, μ∗, is the one
that maximizes the effective rate when the service pro-
cess is assumed to be equal to the instantaneous capacity
log(1+μ(SNR, θ , |h|2)|h|2)with zero error probability, i.e.,

μ∗ (SNR, θ , |h|2)} = arg max
E|h|2 {μ(SNR,θ ,|h|2)}≤SNR

− 1
mθ

× loge E|h|2
{
e−θm log2(1+μ(SNR,θ ,|h|2)|h|2)

}
.

(19)

μ∗ is derived in [2] and is given by

μ∗ (SNR, θ , |h|2)} =
{ 1

α
1

β+1 (|h|2)
β

β+1
− 1

|h|2 |h|2 ≥ α

0 |h|2 < α,
(20)

where β = θm
loge 2

, and α is chosen such that the
average long-term signal-to-noise ratio constraint,
E|h|2{μ(SNR, θ , |h|2)} ≤ SNR, is satisfied with equal-
ity. Note that this policy is close to the optimal one
when the blocklength is large, and hence, r̄ is close to
log(1 + μ(SNR, θ , |h|2)|h|2), and ε is close to zero.
In Figure 8, the optimal effective rate is plotted as a

function of θ for both fixed- and variable-power cases.
In the fixed-power case, SNR = 0 dB in each coherence
block. When power adaptation is employed, signal-to-
noise ratio μ(SNR, θ , |h|2) varies in each block while satis-
fying E|h|2{μ(SNR, θ , |h|2)} ≤ SNR = 0 dB. The improved
performance with power control is observed in the
figure.

5.2 Fixed-rate transmissions
The analysis so far has assumed that the transmitter
has perfect knowledge of the fading coefficients and
can perform variable-rate and/or variable-power trans-
missions in each coherence block. On the other hand,
it is practically interesting to consider cases in which
the transmitter does not know the channel and send
the information at a fixed rate. Additionally, the trans-
mitter may prefer fixed-rate transmissions, even when
it knows the channel, due to complexities in varying
the transmission rate for each block. Motivated by these
considerations, we assume in this section that the trans-
mitter sends the information at the fixed rate r̄f . Under
this assumption, error probability ε varies with the fad-
ing realizations. The analysis in the previous sections
have, on the other hand, considered the scenarios in
which the error probability is fixed for all channel
states.
From (11), which provides the fundamental tradeoff

between the rate and error probability in the finite block-
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Figure 8 Optimal effective rate RE vs. QoS exponent θ in
Rayleigh fading with/without power control. SNR = 0 dB, and the
blocklength ism = 1, 000.
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length regime, we can easily see that the error probability
for fixed r̄f is

ε = Q

⎛
⎜⎜⎝ log2(1 + SNR|h|2) − r̄f√

1
m

(
1 − 1

(SNR|h|2+1)2

)
log2 e

⎞
⎟⎟⎠ . (21)

Note that ε is a function of the fading magnitude |h|,
signal-to-noise ratio SNR, and blocklengthm. The service
rate (in bits perm channel uses) is now

Ri =

⎧⎪⎪⎨
⎪⎪⎩
0 with prob. ε = Q

⎛
⎝ log2(1+SNR|h|2)−r̄f√

1
m

(
1− 1

(SNR|h|2+1)2

)
log2 e

⎞
⎠

mr̄f with prob. (1 − ε)

.

(22)
It can also be immediately seen that for given SNR,

blocklength m, QoS exponent θ , and fixed-rate rf , the
effective rate in bits per channel use is

RE(θ) = − 1
mθ

loge E|h|2
{
ε + (1 − ε)e−θmr̄f

}
(23)

which is essentially the same as in (13). The only difference
is that we now have the rate fixed and error probability
varying. Similarly, when θ = 0, we have

RE(0) = E|h|2 {(1 − ε)r̄f } = (1 − E|h|2{ε})r̄f

=

⎛
⎜⎜⎝1 − E|h|2

⎧⎪⎪⎨
⎪⎪⎩Q

⎛
⎜⎜⎝ log2(1 + SNR|h|2) − r̄f√

1
m

(
1 − 1

(SNR|h|2+1)2

)
log2 e

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭
⎞
⎟⎟⎠ r̄f .

(24)

It is instructive to investigate what is obtained as m →
∞. We immediately see that

lim
m→∞Q

⎛
⎜⎜⎝ log2(1 + SNR|h|2) − r̄f√

1
m

(
1 − 1

(SNR|h|2+1)2

)
log2 e

⎞
⎟⎟⎠

=
{
0 if r̄f < log2(1 + SNR|h|2)
1 if r̄f > log2(1 + SNR|h|2) (25)

leading toc

lim
m→∞E|h|2

⎧⎪⎪⎨
⎪⎪⎩Q

⎛
⎜⎜⎝ log2(1 + SNR|h|2) − r̄f√

1
m

(
1 − 1

(SNR|h|2+1)2

)
log2 e

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

= P
(
r̄f > log2(1 + SNR|h|2)) � Pout. (26)

Therefore, in the limit asm → ∞,

RE(0) → (1 − Pout)r̄f (27)

which is defined as the capacity with outage ([19], Section
4.2.3). Therefore, RE(0) in (24) can be seen as the outage
capacity in the finite blocklength regime. Furthermore,

RE(θ) in (23) can be regarded as the generalization of
such a throughput measure to the scenario with QoS
limitations.
In Figures 9, 10, and 11, we illustrate the numerical

results. In Figure 9, the effective rate is given as a func-
tion of the fixed transmission rate r̄f . We observe that the
effective rate curves are quasiconcave; moreover, they are
maximized at a unique value of r̄f . We also observe that
the maximum value of the effective rate diminishes with
increasing θ . This is more clearly seen in Figure 10, where
the optimal effective rates (optimized over r̄f ) are plot-
ted as a function of θ . In this figure, we have curves for
both fixed-rate and variable-rate transmissions. The effec-
tive rate for the variable-rate transmission is computed by
maximizing (13) over ε. It is interesting to observe that the
fixed-rate transmissions perform worse than variable-rate
transmissions for small values of θ . However, for θ > 0.13,
the fixed-rate transmissions start outperforming. Hence,
for high enough values of θ , fixing the transmission rate
and having the error probability vary in each block provide
better performance than requiring the error probability
to be fixed by varying the rate. Additionally, though not
treated in this paper, another strategy in which both the
error probability and transmission rate adapt and vary
with the fading can bring forth improvements in the per-
formance. Finally, in Figure 11, we note that as θ increases,
the optimal fixed rate r̄f , which maximizes RE(θ) in (23),
diminishes.

5.3 Sending independent messages over two parallel
channels

Up until now, we have assumed that the transmitter sends
a single codeword x = [xr xi] of length 2m in m chan-
nel uses. Another approach is to transmit two indepen-
dent messages using codewords xr and xi selected from

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

rf

E
ffe

ct
iv

e 
ra

te
 R

E
 (

bi
ts

/c
ha

nn
el

 u
se

) 

θ = 0.001

θ = 0

θ = 0.01

θ = 0.1

Figure 9 Effective rate RE vs. the fixed transmission rate r̄f in the
Rayleigh fading channel. SNR = 0 dB, and the blocklength is
m = 1, 000.
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Figure 10 Optimal effective rate RE vs. θ in Rayleigh fading for
variable-rate and fixed-rate transmissions. SNR = 0 dB, and the
blocklength ism = 1, 000.

two independent codebooks. Note that, now, the code-
word length is m. These two independent codewords
can be seen to be sent through two independent parallel
channels:

ỹ = ỹr + jỹi = ye−jθh = |h|x + ñ = |h|xr + ñr︸ ︷︷ ︸
channel 1

+ j(|h|xi + ñi︸ ︷︷ ︸
channel 2

).

(28)

Since the blocklength ism for each codeword, the trans-
mitter sends the information through each channel in the
ith block duration at the following rate with block error
probability ε:

r̄i,p = 1
2
log2(1 + SNR|hi|2)

−
√

1
2m

(
1 − 1

(SNR|hi|2 + 1)2

)
Q−1(ε) log2 e,

(29)

where the subscript p is introduced to differentiate this
rate from that in (11). Since errors occur independently in
each channel, the service rate (in bits perm channel uses)
in each block duration ofm channel uses is

Ri =

⎧⎪⎪⎨
⎪⎪⎩
0 with prob. ε2

mr̄i,p with prob. 2ε(1 − ε)

2mr̄i,p with prob. (1 − ε)2

. (30)

When the transmitter sends two independent messages
over the independent real and imaginary channels, the
effective rate in bits per channel use at a given SNR,
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Figure 11 The optimal fixed transmission rate r̄f vs. QoS
exponent θ in the Rayleigh fading channel. SNR = 0 dB, and the
blocklength ism = 1, 000.

error probability ε, blocklength m, and QoS exponent
θ is

RE(θ) = − 1
mθ

loge E|h|2
{
ε2 + 2ε(1 − ε)e−θmr̄p

+(1 − ε)2e−2θmr̄p)
}

(31)

= − 1
mθ

loge E|h|2
{(

ε + (1 − ε)e−θmr̄p
)2}

(32)

where rp is given in (29).
In this case, it can again be easily shown that the error

probability ε that maximizes the effective rate in (32) is
unique. The following is a corollary to Proposition 1.

Corollary 1. Assume that the values of m, θ > 0, and
SNR > 0 are fixed. Then, the function

�p(ε) = E|h|2
{
(ε + (1 − ε)e−θmr̄p)2

}
(33)

is strictly convex in ε, and therefore, the optimal value of
ε that minimizes this function or equivalently maximizes
the effective rate in (32) is unique. Moreover, RE in (32) is a
quasiconcave function of ε.

Proof. See Appendix 3.

In the absence of QoS constraints, the effective rate
becomes

RE(0) = (1 − ε)E|h|2
{
2r̄p
}

(34)

= (1 − ε)E|h|2
{
log2(1 + SNR|hi|2)

−
√

2
m

(
1 − 1

(SNR|hi|2 + 1)2

)
Q−1(ε) log2 e

}
,

(35)
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which can immediately be seen to be smaller than the
effective rate in (15). Hence, when θ = 0, using two code-
words, each of length m provides lower throughput than
using a single codeword of length 2m. On the other hand,
as we observe in Figure 12, the throughput achieved by
sending two codewords is higher if θ increases beyond a
threshold. Therefore, under strict QoS constraints, send-
ing in each coherence block multiple codewords with
shorter lengths may be preferable.

6 Conclusion
We have analyzed the performance of buffer-constrained
wireless systems in the practical scenario in which trans-
missions are performed using finite blocklength codes
with possible decoding errors at the receiver. Employing
a recent result on coding rate in the finite blocklength
regime, we have determined the effective rate expression
as a function of the QoS exponent, coding blocklength,
decoding error probability, and signal-to-noise ratio, and
characterized the throughput under statistical QoS con-
straints. We have discussed different transmission strate-
gies. In the case in which the transmission rate is varied
and the error probability is kept fixed across different
fading realizations, we have shown that the effective rate
is maximized at a unique error probability. This opti-
mal decoding error probability gives us insight on the
required reliability of the channel codes. Through numer-
ical results, we have investigated how the optimal effective
rate and optimal error probability vary with the QoS expo-
nent θ . We have also had interesting observations on the
performance as a function of the blocklength. We have
analyzed the throughput improvements through power
adaptation. We have studied the practical scenario in
which the transmitter sends the information at a fixed
transmission rate. We have seen that while variable-rate
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Figure 12 The optimal effective rate RE vs. θ in the Rayleigh
fading channel. SNR = 0 dB, and the blocklength ism = 1, 000. The
dashed curve is the effective rate in (13) maximized over ε , and the
solid curve is the effective rate in (32) maximized over ε .

schemes provide higher effective rate at low values of
θ , fixed-rate transmissions start performing better as θ

increases. Finally, we have noted that sending multiple
codewords with shorter blocklengths in each coherence
interval can become a favorable strategy under stringent
QoS constraints.

Endnotes
aFor time-varying arrival rates, effective capacity

specifies the effective bandwidth of the arrival process
that can be supported by the channel.

bNote that multiplication of the channel output with
e−jθh just rotates the output, is a reversible operation, and
hence does not lead to any loss of information.

cThe interchange of the limit and the integral (or
equivalently the expectation) can be easily justified by
noting the boundedness of the Q-function, i.e.,
|Q(·)| ≤ 1, and invoking the dominated convergence
theorem. Additionally, we implicitly assume that the
random variable log2(1 + SNR|h|2) does not have a mass
at r̄f ; hence, r̄f = log2(1 + SNR|h|2) is a zero-probability
event, and this event does not affect the expectation.

Appendices
Appendix 1: Proof of Proposition 1
We first prove the following Lemma.

Lemma 1. For fixed m, SNR > 0, and |h|2 > 0,

f (ε) = (1 − ε)e−θmr̄ (36)

is a strictly convex function of ε.

Proof. We first express

−θmr̄ = aQ−1(ε) + b (37)

where, from (11),

a = θ

√
m
(
1 − 1

(SNR|h|2 + 1)2

)
log e and

b = −θm log2(1 + SNR|h|2). (38)

Note that since SNR > 0, |h|2 > 0, and θ > 0, we have
a > 0. With the above definitions, we can write

f (ε) = (1 − ε)eaQ
−1(ε)+b. (39)

The first and second derivatives of f (ε) with respect to
ε can easily be found as follows:

ḟ (ε) = [a(1 − ε)Q̇−1(ε) − 1
]
eaQ

−1(ε)+b (40)
f̈ (ε) = [a(1 − ε)(Q̇−1(ε))2 − 2Q̇−1(ε)

+(1 − ε)Q̈−1(ε)
]
aeaQ

−1(ε)+b, (41)

where Q̇−1(ε) and Q̈−1(ε) denote the first and second
derivatives, respectively, ofQ−1(ε)with respect to ε. Next,
we employ several techniques used in ([15], Appendix 1)
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to prove the lemma. Note that for an invertible and dif-
ferentiable function g, we have g(g−1(x)) = x. Taking
derivative of both sides of this equality leads us to

ġ−1(x) = 1
ġ(g−1(x))

, (42)

where ġ−1(x) denotes the derivative of g−1 with respect to
x, and ġ(g−1(x)) is the derivative of g evaluated at g−1(x).
Following this approach and noting that

Q(x) =
∫ ∞

x

1√
2π

e−t2/2 dt, and

Q̇(x) = − 1√
2π

e−x2/2, (43)

we can easily find the following expression:

Q̇−1(ε) = −√
2πe

(Q−1(ε))2
2 . (44)

Note that Q̇−1(ε) < 0 for any 0 ≤ ε ≤ 1. Differentiating
Q̇−1(ε) with respect to ε, we obtain the second derivative
as follows:

Q̈−1(ε) = 2πQ−1(ε) e(Q
−1(ε))2 . (45)

Next, we consider two cases:

(1) ε < 1/2. First, we assume that ε < 1/2. Under this
assumption, we have Q−1(ε) > 0 and hence
Q̈−1(ε) > 0. Together with the fact that Q̇−1(ε) < 0,
we immediately see that

f̈ (ε) > 0 for ε < 1/2. (46)

(2) ε > 1/2. Next, we analyze the case in which ε > 1/2
and therefore Q−1(ε) < 0. We concentrate on the
term inside the square parentheses in (41). Using (44)
and (45), and defining x = Q−1(ε) or equivalently
Q(x) = ε, we can write

a(1 − ε)(Q̇−1(ε))2 − 2Q̇−1(ε) + (1 − ε)Q̈−1(ε)
(47)

= a(1 − ε)2πe(Q
−1(ε))2 + 2

√
2πe(Q

−1(ε))2/2

+ (1 − ε)2πQ−1(ε)e(Q
−1(ε))2 (48)

= a(1 − Q(x))2πex
2 + 2

√
2πex

2/2

+ (1 − Q(x))2πxex
2

(49)

= ex
2/2
(
2π(1 − Q(x))(x + a)ex

2/2 + 2
√
2π
)
(50)

≥ ex
2/2
(
2π(1 − Q(x))xex

2/2 + 2
√
2π
)

(51)

≥ ex
2/2
(
2π

1√
2π(−x)

e−x2/2xex
2/2 + 2

√
2π
)
(52)

≥ ex
2/2
(
−√

2π + 2
√
2π
)

(53)

≥ ex
2/2
(√

2π
)

> 0. (54)

Above, (51) follows from the fact that a > 0 and hence
x + a > x. (52) is obtained by using the upper bound,

1 − Q(x) = Q(−x) <
1√

2π(−x)
e−x2/2 for x < 0, (55)

and recognizing that by our assumption x = Q−1(ε) <

0, and (1 − Q(x)) is multiplied above by x < 0, enabling
us to find a lower bound. From the above discussion, we
conclude that

f̈ (ε) > 0 for ε > 1/2. (56)

Finally, note that when ε = 1/2 and hence Q−1(ε) =
Q−1(1/2) = 0, we have

a(1 − ε)(Q̇−1(ε))2 − 2Q̇−1(ε) + (1 − ε)Q̈−1(ε) (57)

= a(1 − ε)2πe(Q
−1(ε))2

+ 2
√
2πe(Q

−1(ε))2/2 + (1 − ε)2πQ−1(ε)e(Q
−1(ε))2

(58)

= aπ + 2
√
2π > 0, (59)

and therefore f̈ (1/2) > 0. Since f̈ (ε) > 0 for all ε ∈ [0, 1],
f (ε) is a strictly convex function of ε.
We now define

ψ(ε) = ε + f (ε) = ε + (1 − ε)e−θmr̄ (60)

which is also strictly convex as it can be immediately seen
that ψ̈(ε) = f̈ (e) > 0 for SNR > 0 and |h|2 > 0.
Note that if either SNR = 0 or |h|2 = 0, the coding rate
becomes r̄ = 0, leading to ψ(ε) = 1. Since the nonnega-
tive weighted sum (including infinite sums and integrals)
of strictly convex functions is strictly convex ([20], Section
3.2.1) and since the addition of a constant (in the case of
|h|2 = 0) does not have an impact on the strict convexity,
we immediately conclude that

�(ε) = E|h|2 {ψ(ε)} = E|h|2
{
ε + (1 − ε)e−θmr̄

}
(61)

is strictly convex in ε, proving the first part of
Proposition 1.
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Finally, we address the quasiconcavity of the effective
rate

RE(θ , ε) = − 1
mθ

loge E|h|2
{
ε + (1 − ε)e−θmr̄

}
= − 1

mθ
loge �(ε) (62)

with respect to ε. A function f is quasiconvex if and only
if f (δx + (1 − δ)y) ≤ max{f (x), f (y)} for any δ ∈ [0, 1],
and the negative of a quasiconvex function is quasiconcave
[20]. Now, we can easily show for any ε1, ε2 ∈ (0, 1) and
δ ∈ [0, 1] that

−RE(θ , δε1 + (1 − δ)ε2) = 1
mθ

loge �(δε1 + (1 − δ)ε2)

≤ 1
mθ

loge
(
δ�(ε1)+(1−δ)�(ε2)

)
(63)

≤ 1
mθ

loge
(
max{�(ε1),�(ε2)}

)
(64)

= max
{

1
mθ

loge �(ε1),

× 1
mθ

loge �(ε2)

}
(65)

= max {−RE(θ , ε1),−RE(θ , ε2)}
(66)

where the inequality in (63) is obtained from the facts that
� is a convex function and hence �(δε1 + (1 − δ)ε2) ≤
δ�(ε1) + (1 − δ)�(ε2), and logarithm is a monotoni-
cally increasing function; (64) follows from the inequality
δ�(ε1) + (1 − δ)�(ε2) ≤ max{�(ε1),�(ε2)}; and (65) is
again due to themonotonicity of the logarithm. Therefore,
−RE is quasiconvex and RE is a quasiconcave function
of ε.

Appendix 2: Proof of Proposition 2
Proof. The proof is similar to that of Proposition 1 in

Appendix 1 and will be kept brief. Let us first consider the
function

φ(ε) = (1 − ε)r̄ = (1 − ε)
(
c1 − c2Q−1(ε)

)
, (67)

where we define c1 = log2(1 + SNR|h|2) and c2 =√
1
m

(
1 − 1

(SNR|h|2+1)2

)
log e. Note that if either SNR = 0

or |h|2 = 0, then c1 = c2 = 0 and φ(ε) = 0 for all ε. Next,
we consider the case in which SNR > 0 and |h|2 > 0, and
therefore c1 > 0 and c2 > 0d. The second derivative of
φ(ε) with respect to ε is

φ̈(ε) = 2c2Q̇−1(ε) + c2(ε − 1)Q̈−1(ε). (68)

Using similar arguments as in Appendix 1, we can easily
see that for ε < 1/2, φ̈(ε) < 0. For ε > 1/2, we can show,
employing the steps similar to those in (47) to (54), that

φ̈(ε) < −c2
√
2πex

2/2 < 0, (69)

where x = Q−1(ε). When ε = 1/2, we have φ̈(ε) =
−2

√
2πc2 < 0. Since φ̈(ε) < 0 for all ε, φ(ε) is a strictly

concave function of ε when |h|2 > 0 and SNR > 0.
As argued similarly in Appendix 1, since the nonnega-
tive weighted sum of strictly concave functions is strictly
concave [20], and since the addition of a constant (in the
case of |h|2 = 0) does not have an impact on the strict
concavity, we conclude that

RE(0) = (1 − ε)E|h|2{r̄} = (1 − ε)E|h|2{
(
c1 − c2Q−1(ε)

)}
= E|h|2{φ(ε)} (70)

is a strictly concave function of ε.

Appendix 3: Proof of Corollary 1
Proof. From the proof of Proposition 1 in Appendix 1,

it immediately follows that ε + (1 − ε)e−θmr̄p is a strictly
convex function of ε. Then, (ε + (1− ε)e−θmr̄p)2 is strictly
convex due to the facts that f (x) = x2 is a strictly convex
and increasing function of x and the composition f (g(x))
is strictly convex function when g(x) is a strictly convex
function ([20], Section 3.2.4). Then, the strict convexity
of E|h|2

{
(ε + (1 − ε)e−θmr̄p)2

}
and quasiconcavity of the

effective rate follow from the arguments employed at the
end of Appendix 1.
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