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Abstract

The combination of MIMO–OFDM is a very attractive solution for broadband wireless services. Thus, the two
prominent fourth-generation (4G) cellular systems, WiMAX and LTE-advanced, have both adopted MIMO–OFDM
transmission at the physical layer. OFDM signal however suffers from nonlinear distortions when passed through
high-power amplifier (HPA) at the RF stage. This nonlinear distortion introduces out-of-band spectral broadening
and in-band distortions on the transmitted signals. 4G cellular standards have placed strict limits on the allowable
spectral broadening in their spectrum mask specifications, to insure that data transmission on a given channel is
not interfering significantly with an adjacent channel user. In this article, we characterize the out-of-band spectral
broadening introduced by HPA when MIMO–OFDM signals are transmitted over multiple relaying channels.
Expressions for the power spectral density of MIMO–OFDM signals are derived over multiple relay channels, and the
cumulative effects of HPA on the spectrum of the transmitted signals are estimated. It is shown that depending on
the number of relays and the relaying configuration employed, it may happen that a transmitted MIMO–OFDM
signal with the transmit spectrum mask initially within the allowable set limit at the source node arrives at the
destination violating this limit due to the cumulative effects of the multiple HPA’s in a multihop relaying channel.
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Introduction
Fourth-generation (4G) broadband communication sys-
tems need to provide ultra-high data rate services in
order to meet the requirements of future high-
bandwidth multimedia applications over cellular systems
such as the digital TV distributions and interactive vid-
eos planned in the WiMAX and LTE-advanced. Among
the candidate physical layer technologies that can be
deployed to achieve these goals, MIMO–OFDM is the
most potent solution that can provide such high data
rate at high spectral efficiencies. Compared to the
single-carrier systems however, OFDM has a large peak-
to-average-power ratio [1,2] which makes it very sensi-
tive to high-power amplifier (HPA) nonlinearities at the
RF stage of the transmission chain [3]. There are two
important effects of the HPA nonlinearities introduced
in the transmitted OFDM signals: in-band and out-of-
band distortions. The in-band distortion degrades bit
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error rate (BER) performance and capacity of the cellular
operator [4-10], whereas the out-of-band distortion aris-
ing from the spectral broadening effect of the HPA
affects other users operating in the adjacent frequency
bands [11-15]. While the BER and capacity analysis of
OFDM relay links in the presence of HPA nonlinearity
are fairly well understood [5 and references there in], the
effects of HPA on out-of-band emissions for OFDM
relay link are not yet studied to the best of the authors’
knowledge. Out-of-band emissions are strictly monitored
by the cellular regulators using the concept of transmit
spectrum mask. Transmit spectrum mask is the power
contained in a specified frequency bandwidth at certain
offsets, relative to the total carrier power. In the 4G sys-
tem such as WiMAX and LTE-advanced, strict limits
have been specified for the spectrum masks. Figure 1
displays the spectrum mask of the IEEE 802.16 signal
specified in the WiMAX standard [16], where about
25-dB attenuation is required between the reference car-
rier power and all unwanted spurious emissions at cer-
tain frequency offsets from the operating bandwidth.
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Figure 1 Spectrum mask of IEEE 802.16 WiMAX signal [16,
Section 8.5.2, pp. 1126]. where A denotes the operating
bandwidth. and B is the maximum spectral broadening allowed.
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Banelli and Cacopardi [11] derived analytical expressions
for the correlation function of the output of nonlinear
HPA when the input to the amplifier is an OFDM signal.
The power spectral density (PSD) of the signal is then
calculated using the Fourier transform of the correlation
function. Grad et al. [12] studied spectral re-growth due
to HPA nonlinearity in code-division multiple access
(CDMA) systems. They obtained analytical expressions for
the power spectrum of the CDMA signal at the output of
the HPA, using a complex power-series model for the HPA
characteristics. The out-of-band emission for the time div-
ision synchronous CDMA system is presented in [13], in
terms of third-order intercept point (IP3). Cottais et al.
[14] derived expressions for the PSD of a general
multicarrier signal at the output of a memoryless HPA.
They also obtained a closed-form expression for the PSD
of the special case of single-carrier signals. Helaly et al. [15]
examined the effects of the characteristics of the input
CDMA signal on the resulting out-of-band spectral re-
growth at the output of the HPA. They pointed out that, in
addition to the HPA saturation level, the input signal’s
threshold crossing rate and the variance of the clipped sig-
nal also contribute to the spectral re-growth. It is import-
ant to note that OFDM signals share some similarities with
CDMA signals in this regard. Recently also, Gregorio et al.
[17] proposed a MIMO-predistortion (MIMO-PD) system
that tries to compensate crosstalk and IQ imbalance in
single-hop MIMO–OFDM communication systems, where
they have shown that some reduction in the spectral re-
growth can be achieved using the proposed MIMO-PD
system. The effectiveness of such a compensation scheme
in a multihop environment is however not yet known.
All the above-cited studies, and several others in the
literature however, focused on the spectral re-growth
due to HPA nonlinearity in a single-hop communication
system. Recently, the two prominent 4G cellular
systems, WiMAX and LTE-advanced, have defined
relaying as an integral part of the network design
[18,19]. Thus, MIMO–OFDM signals transmitted in the
4G systems will frequently pass through one or more
relay hops from source node to the destination node. In-
vestigating the level of adherence to set limits on spec-
tral broadening in cellular systems employing relaying
technologies is therefore a deployment imperative. To
the best of the authors’ knowledge, no work has
presented a detailed study of the broadening effects of
HPA nonlinearity on the spectrum of MIMO–OFDM
signals in multihop relaying channels.
In this article, we characterize for the first time in the

literature, the cumulative spectral broadening effects of
multiple HPAs when MIMO–OFDM signals are trans-
mitted over multihop relaying channels. Expressions for
the PSD of a MIMO–OFDM signal are presented over
multihop relay channels, each equipped with nonlinear
HPA’s. It is shown that due to the cumulative effect of
the multiple HPA’s in a MIMO link, and the cascade ef-
fect of many relaying channels in a multihop relay link,
significant broadening effect occur which is much more
than what would be observed in a single-hop transmis-
sion such as those characterized in [11-15]. We also
show that for the amplify-and-forward (AF) and
demodulate-and-forward (DemF) relaying options, the
resulting cumulative re-growth may lead to spectral
mask violations after a few relaying hops is traversed by
the transmitted OFDM signal, even though the set limits
were initially met at the source node [at the base station
(BS) for downlink transmission, or at the mobile station
(MS) for uplink transmission]. For the decode-and-for-
ward (DF) relaying option, it is observed that less severe
spectral broadening are observed. However, due to the
latency problems associated with the DF relaying option
which degrades quality of broadband signals, AF or
DemF are the preferred candidates for broadband
transmissions over relaying channels and therefore the
spectral broadening issues observed here must be given
considerable attentions in the design of broadband
multihop relaying systems.

HPA nonlinearity model for MIMO–OFDM relaying
channel
Consider a MIMO–OFDM relaying system employing n
subcarriers per OFDM symbol, M transmitting and L re-
ceiving antennas at each hop in the transmission chain.
We assume that all the transmitting antennas at each
node simultaneously transmit different symbols (MIMO-
multiplexing system), and that all L receiving antennas
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at each receiving node are expended in separating each
of the M transmitted streams. For simplicity, we con-
sider the case of N transmitting and N receiving anten-
nas (where N ≤ M, L). Thus, in the ensuing analysis we
focus on the N × N MIMO–OFDM multiplexing
relaying system. We consider that the transmitted signal
from a source node passes through a single-hop
MIMO channel H0, and R multihop MIMO relaying
channels H1,. . .,HR, associated with R fixed or mobile
relaying nodes, to the destination node as shown in
Figure 2.
The MIMO channel matrix for each ith hop transmis-

sion Hi, i = 0, 1,. . ., R, is an nN × nN block diagonal
matrix, with the kth block diagonal entries H[K]i
corresponding to the fading on the kth OFDM sub-
carrier, k = 0, 1,. . ., n − 1, modeled as independent and
identically distributed (iid) random variables taken from
zero mean complex Gaussian distribution, with unit
variance. We assume that the set of random matrices
{H0,. . ., HR} are independent, and that AF, DemF, or DF
relaying options could be employed at the relay nodes
[5,20]. We also assume that the BS and all the relay
stations (RS’s) employ similar nonlinear HPA’s which
introduce similar nonlinear distortions per hop, in the
transmitted signal. A consequence of this assumption is
that if the BS or any of the RS employ a nonlinear HPA
with nonlinearity level more or less than the other
devices, then the contribution of that device to the over-
all spectral broadening will be more or less than
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Figure 2 HPA nonlinearity model for MIMO–OFDM relaying channel.
estimated in this analysis. We can express the transmit-
ted symbol in polar coordinate as

x tð Þ ¼ r tð Þejθ tð Þ ð1Þ

where r(t) is the amplitude and θ(t) is the phase of the
input signal into the HPA. The signal at the output of
the HPA can then be expressed as

x̂ tð Þ ¼ g r tð Þ½ �ejθ tð Þ ð2Þ

where g[r(t)] is a complex nonlinear distortion function,
which only depends on the envelope of the transmitted
symbols. The nonlinear distortion function can be
expressed as

g r tð Þ½ � ¼ gA r tð Þ½ �ejgP r tð Þ½ � ð3Þ

where gA[r(t)] is the amplitude-to-amplitude (AM–AM)
and gP[r(t)] is the amplitude-to-phase (AM–PM)
conversions of the HPA. The AM–AM conversions for
different memoryless HPA models [Saleh model, Solid-
State Power Amplifier (SSPA) model, and soft envelop
limiter (SEL) model] used in communication systems are
plotted in Figure 3.
 Communication Channel  
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Figure 3 AM–AM conversions for different amplifier models.
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It is easily observed from this figure that Saleh model
depicts the severest nonlinear distortions followed by
the SSPA model. The SEL model on the other hand
depicts more closely the current state-of-the-art in HPA
designs for cellular systems where approximately linear
behavior is obtained in the small signal conditions,
followed by clipping (soft envelope limiting) at satur-
ation. We focus on the SEL HPA model in this article.
For the SEL model, the AM–AM and AM–PM
conversions are given by [21]

gA r tð Þ½ � ¼ αAr tð Þ; 0 ≤ r tð Þ ≤ Ais

Ais; r tð Þ > Ais
gp r tð Þ½ � ¼ 0

�
ð4Þ

where αA is the small-signal gain, and Ais is the input
saturation voltage of the HPA. Let x(t) denote the input
signal into the HPA, and we assume that x(t) is Gaussian
distributed. Therefore, according to the Bussgang’s the-
orem, the output of the HPA when the input is a Gauss-
ian process is given as [22,23]

x̂ tð Þ ¼ kx tð Þ þ w tð Þ ð5Þ

where k (i.e., 0 ≤ k ≤ 1) is an attenuation factor for the
linear part which represents the in-band distortion, and
w(t) is a nonlinear additive noise which represents the
out-of-band distortion. w(t) is a zero-mean complex
Gaussian random variable (r.v), with the in-phase and
quadrature components mutually iid, and with variance
σw
2 . The in-band and out-of-band distortion terms can be
calculated as [24]

k ¼ E x tð Þx̂� tð Þf g
E x tð Þx� tð Þf g ¼ 1

Pavg

Z1
0

rx̂∗ rð Þf rð Þdr
0
@

1
A

∗

ð6Þ

σ2w ¼ Efjx̂� rð Þ 2j g � jkj2
Efjx 2j g ¼ 1

Pavg

 Z1
0

��x̂� rð Þ 2f rð Þdr��� ��k��2
!

ð7Þ
where ‘*’ denotes complex conjugation, Pavg = E[|x|2] is
the average input energy per symbol, and f (r) is the prob-
ability density function (PDF) of the envelope of the input
signal into the HPA (i.e., r = |x|). The PDF of ‘r’ is Rayleigh
distribution (since x(t) is assumed Gaussian). The closed-
form expressions for the in-band and out-of-band distor-
tion parameters for the SEL HPA model are calculated by
substituting f (r) into Equations (6) and (7) to obtain

kj ¼ 1� e�γ2j þ 1
2

ffiffiffi
π

p
γ jerfc γ j

� �
ð8Þ

σ2wj
¼ Pj 1� e�γ2j � k2j

� �
ð9Þ

γ j ¼
ffiffiffiffiffiffiffiffiffi
IBOj

p ¼ Ais;jffiffiffiffi
Pj

p ð10Þ

where j = 0, 1, . . ., R denotes the number of relay hops, γj
represents the clipping ratio (CR), Ais,j represents the input
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saturation voltage of each and every HPA employed at the
jth relay hop, and Pj represents the average input power
into the HPA’s at the jth hop. The frequency domain (FD)
expression of the signal above is then obtained by taking
its discrete Fourier Transform (DFT).

Effect of HPA nonlinearity on the spectrum of
MIMO–OFDM relaying system
PSD of the nonlinearly amplified OFDM signal at the BS
OFDM signal is well approximated by zero-mean com-
plex Gaussian signals for the large number of subcarriers
[3]. Using the Bussgang theorem, the output of the HPA
at the MIMO–OFDM BS transmitter is given by

^x tð Þ ¼ Κ0x tð Þ þ w0 tð Þ ð11Þ

where the vector ^x tð Þ ¼ x̂1 tð Þ; . . . ; x̂N tð Þ� �
and x̂j tð Þ are

the output of the HPA at the jth transmitting antenna of
the BS when the input to the amplifier is xj(t). Κ0 is an
N × N diagonal matrix, where k0

j represents the scaling
factor of the linear part (in-band distortion) at the jth
transmit antenna of the BS. w0(t) = [w0

1(t), . . ., w0
N(t)],

and w0
j (t) is the nonlinear distortions noise (out-of-band

distortion) due to HPA at the jth transmitting antenna
of the BS. The PSD of a signal is commonly estimated
by computing the autocorrelation function of the signal
followed by a Fourier transform, using the well-known
Wiener–Khintchin theorem [25]. The PSD of the OFDM
signal at the output of the nonlinear HPA at the jth trans-
mit antenna of a MIMO–OFDM transmitter is given by

Pj
x̂jx̂ j fð Þ ¼

Zþ1

�1
Φ j

x̂ j x̂ j τð Þe�j2πf τdτ ð12Þ

where Px̂j x̂ j
j fð Þ and Φx̂ j x̂ j

j τð Þ represent the PSD and auto-

correlation function of the OFDM signal at the output of
the HPA at the jth transmitting antenna. The autocorrel-
ation function for the output of the HPA at the jth trans-
mitting antenna can be computed as

Φx̂ j x̂
j τð Þ¼ lim

T→1
1
2T

ZT
�T

x̂j tð Þ x̂j t þ τð Þ� �∗
dt

¼ E x̂j tð Þ x̂j t þ τð Þ� ��n o
¼ E k j

0x
j tð Þ þ wj

0 tð Þ
h i

k j
0x

j t þ τð Þ þ wj
0 t þ τð Þ

h i∗� 	

¼ jk j
0j2E xj tð Þ xj t þ τð Þ� �∗n o

þ E wj
0 tð Þ wj

0 t þ τð Þ
h i∗� 	

¼ kj0
2Φxjxj τð Þ þΦw j

0w
j
0
τð Þ

������

ð13Þ

where k0
j is the attenuation factor of the in-band part,

Φxjxj τð Þ represents the autocorrelation function of the
OFDM signal at the input of the HPA, i.e., xj(t), and
Φw j
0w

j
0
τð Þ represents the autocorrelation function of the

out-of-band nonlinear noise (i.e., wj(t)), contributed by the
HPA at the jth transmitting antenna of the source node
(BS or MS). Using Equations (12) and (13), the PSD of the
OFDM signal at the output of the HPA at the jth transmit-
ting antenna of the source node can be written as

Pj
x̂jx̂ j fð Þ ¼ jkj0j2Pj

xjxj fð Þ þ Pj

wj
0w

j
0

fð Þ ð14Þ

From Equation (14), it is easily observed that the PSD
of the OFDM signal at the output of the HPA at the BS
is attenuated by a factor of |k0

j|2, since 0 ≤ ki
j ≤ 1. It is

also observed from this equation that the PSD of the
OFDM signal at the output of the HPA is broadened,
compared to the PSD at the HPA input, by a factor of

P j

wj
0w

j
0

fð Þ . This spectral broadening term contributed by

the jth transmit antenna, P j

wj
0w

j
0

fð Þ, is related to the corres-

ponding nonlinear noise variance σ j

w j
0

2 as

σ j
wj
0

2 ¼
Zþ1

�1
Pj

wj
0w

j
0

fð Þdf ð15Þ

Using the result from [26, Equation (16)], Equation

(15) can be approximated as σ j

w j
0

2 ≈ Pj

wj
0w

j
0

fð ÞB , where B

denotes the bandwidth of the signal. This approximation
is valid if the spectrum of w0

j is flat across the bandwidth,
which is true for the subcarrier-based analysis considered
here. As the variance of the nonlinear noise due to HPA
increases, the spectral re-growth of the transmitted
OFDM signal increases as can be observed from Equation
(15). Since the analysis above gives estimate of the spectral
re-growth due to HPA per transmitting antenna, then for
MIMO–OFDM system with N transmitting antennas, the
overall spectral re-growth that occur due to HPA

nonlinearity is given by PMIMO
w0w0

¼
XN
j¼1

Pj

w j
0w

j
0

fð Þ.

PSD of the nonlinearly amplified OFDM signals at RS’s
Next we calculate the PSD of the nonlinearly amplified
OFDM signals at RS’s. For this analysis, we consider two
cases. In the first case, we consider that each RS has
ability to perform MIMO signal processing on the
received signal before amplifying and forwarding it onto
the next hop, and thus we could examine the spectrum
of the OFDM symbols obtained at each receiving anten-
nas of the RS. This case corresponds to the DemF
relaying option. In the second case, we consider that the
RS does not have ability to perform MIMO signal
processing on the received signal before forwarding onto
the next hop. The RS simply AF the received OFDM
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signals at the RF stage without demodulating the OFDM
signal. This case corresponds to the AF relaying option.
AF has the best latency performance, and is attractive
for broadband transmissions over relaying channels. The
case of DF relaying option where RS actually decode
data transmitted on each OFDM subcarriers before re-
encoding/forwarding it is not analyzed here because the
existing single-hop analyses in [27] and other references
are valid for that case using hop-by-hop analysis. How-
ever, we later include the DF case in the simulation
results as a reference.

Case I: DemF relaying system
In DemF relaying system, the received signal at the first
RS for the lth subcarrier is given by

YR1 l½ � ¼ H0 l½ �X̂ l½ � þ N0 l½ �
¼ K0H0 l½ �X l½ � þ H0 l½ �W0 l½ � þ N0 l½ �

ð16Þ

where X[l] = [X1[l]X2[l] ⋯ XN[l]]T is an N × 1 input
OFDM signal in FD at the BS, and Xj[l] is the input into
the HPA at the jth transmitting antenna on the lth sub-
carrier. Ki = diag {ki

j}j=1
N , i = 0, . . ., R is an N × N diagonal

matrix, where ki
j represents the scaling factor of the linear

part (in-band distortion) at the jth transmit antenna in the
ith hop. W[l] = [Wi

1[l]Wi
2[l] ⋯ Wi

N[l]]T is an N × 1
nonlinear distortion noise vector (out-of-band distortion)
due to HPA and it is obtained by taking the DFT of
w(t). Wi

j[l] represents the nonlinear distortion noise
on the jth transmit antenna in the ith hop for the lth
subcarrier. N[l] = [Ni

1[l]Ni
2[l] ⋯ Ni

N[l]]T is an N × 1
complex additive noise vector and Ni

j[l] represents the
iid zero-mean complex AWGN noise on the jth
transmit antenna in the ith hop for the lth subcarrier.

YR1 l½ � ¼ Y 1
R1

l½ �Y 2
R1

l½ � . . .YN
R1

l½ �
h iT

is an N × 1 received

OFDM symbol vector in FD at the first RS and Y j
R1

l½ � ¼XN

m¼1
H0

jm l½ �X̂m l½ � þ Nj
0 l½ � is the received OFDM symbol

at the jth received antenna of the first RS for the lth sub-
carrier. We assume that the channel between the BS and
the RS is known at the RS. Thus, we can employ MIMO
Zero-Forcing or MIMO minimum mean square error
technique for the MIMO signal processing at the RS for
the DemF relaying option as

YR1;DemF l½ � ¼ G0 l½ �YR1 l½ � ð17Þ
where

G0 l½ �¼ HH
0 l½ �H0 l½ �


 ��1
HH

0 l½ �
HH

0 l½ �H0 l½ � þQ0 l½ �I

 ��1

HH
0 l½ �

: ZF
: MMSE

(
ð18Þ

and Q0[l] = E[(H0[l]W0[l] + N0[l])(H0[l]W0[l] + N0[l])
H].

Here, we used the ZF technique for simplicity. The
received symbol at the input of the first RS’s HPA can then
be expressed as

YR1;DemF l½ � ¼ K0X l½ � þW0 l½ � þ GZF l½ �N0 l½ �

¼ K0X l½ � þW0 l½ � þ N 0
0 l½ �

ð19Þ

where YR1;DemF l½ � ¼ Y 1
R1;DemF l½ �Y 2

R1;DemF l½ � . . .YN
R1;DemF l½ �

h iT
is an

N × 1 received OFDM symbol vector in FD at the input of

the RS’s HPA, and Y j
R1;DemF l½ �; l = 1, 2, . . ., n is the input

symbol at the lth subcarrier and jth received antenna of
the RS. Also, we use N 0

0[l] = GZF[l]N0[l] for notational
convenience. The received OFDM signals are then ampli-
fied (normalized) separately on each subcarrier with an
amplification factor α, where α is an nN × nN block diag-
onal matrix whose diagonal entries for the lth subcarrier
and ith hop transmission is given by diag{αi

1[l], αi
2[l], . . .,

αi
N[l]}, l = 1, . . ., n. There are many choices for the selec-

tion of the amplification parameter α in relaying systems
[5,20]. Sulyman et al. [20] amplify all the subcarriers in an
OFDM symbol with the same parameter α without decod-
ing the symbols. Riihonen et al. [5] demodulate the
OFDM symbols at the RS to amplify each subcarrier sep-
arately with the amplification parameter α. The amplifica-
tion factor for the kth subcarrier is selected to satisfy the
transmit power constraint at the RS as

αjl k½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PR

E y j

Rl ;DemF k½ �
��� ���2� 


vuuut ð20Þ

where PR is the total transmit power available at the RS.
Before transmitting onto the next hop, the OFDM
symbols are passed through the HPA at the RS as shown
in Figure 2. The output of the HPA at the jth trans-
mit antenna of the first RS (R1) in time domain (TD)
is given by

y^
j
R1;DemF tð Þ ¼ α j

1k
j
0k

j
1x

j tð Þ þ αj1k
j
1w

j
0 tð Þ

þ αj1k
j
1n

0
0
j tð Þ þ wj

1 tð Þ

ð21Þ

where n00
j(t) and w0

j(t) are, respectively, the thermal
noise and the nonlinear noise of the HPA, propagated
from the first hop transmission. w1

j(t) and k1
j are the

HPA distortion terms introduced by the first RS. To
calculate the PSD of the output of the HPA at the jth
transmit antenna of the first RS, we calculate the
autocorrelation function of the output of the HPA at
the jth transmit antenna of the RS as



Φj
R1R1

τð Þ ¼ E ŷ jR1;DemF tð Þ ŷ jR1;DemF t þ τð Þ
h iH� 	

¼ E
αj
1k

j
0k

j
1x

j tð Þ þ αj
1k

j
1w

j
0 tð Þ þ α j

1k
j
1n′0 tð Þ þ w j

1 tð Þ
h i

� α j
1k

j
0k

j
1x

j t þ τð Þ þ α j
1k

j
1w

j
0 t þ τð Þ þ α j

1k
j
1n′0 t þ τð Þ þ w j

1 t þ τð Þ
h iH

8><
>:

9>=
>;

¼ α j
1

� �2
k j
0

��� ���2 k j
1

��� ���2Φxjx j τð Þ þ α j
1

� �2
k j
1

��� ���2Φw j
0w

j
0
τð Þ þ

α j
1

� �2
k j
1

��� ���2Φnj
0n

j
0
τð Þ

N
þΦw j

1w
j
1
τð Þ

ð22Þ
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where

E GiGH
i

� � ¼ E HH
i Hi


 ��1
HH

i

h i
HH

i Hi

 ��1

HH
i

h iH� 	
¼ E HH

i Hi
� ��1
n o

¼ 1
N
IN

Thus, the PSD of the OFDM signal at the jth antenna of
the RS is computed from the autocorrelation function
using Wiener–Khintchin theorem and is given as

Pj
R1R1 ;DemF fð Þ ¼ α j

1

� �2
k j
0

��� ���2 k j
1

��� ���2Pxjx j fð Þ
þ α j

1

� �2
k j
1

��� ���2Pw j
0w

j
0
fð Þ

þ
α j
1

� �2
k j
1

��� ���2Pnj
0n

j
0
fð Þ

N
þ Pw j

1w
j
1
fð Þ ð23Þ

In general, for R relay hops, we can repeat the steps in
Equations (17)–(23) to obtain the spectrum of the trans-
mitted OFDM signal at the jth transmit antenna of the
Rth RS as

Pj
RR;DemF fð Þ¼ α j

1

� �2
⋯ α j

R

� �2� 	YR
l¼0

jk j
l j2 Px j

x
j fð Þ

þ α j
1

� �2
⋯ α j

R

� �2� 	XR�1

m¼0

YR�m

n¼1

jk j
Rþ1�nj2 Pw

j
mw

j
m
fð Þ

þ α j
1

� �2
⋯ α j

R

� �2� 	
1
N

XR�1

p¼0

YR�p

q¼1

jk j
Rþ1�qj2 Pn j

pn
j
p
fð Þ

þ Pw j
Rw

j
R
fð Þ

ð24Þ

From the above expression, it can be seen that the
spectral re-growth at the RS depends both on the
nonlinear distortion noise due to HPA and on the
thermal AWGN noise. For the case when we assume the
same HPA characteristic at the BS and R RS, then K0 =
K1 =⋅⋅⋅⋅= KR = K, and if we assume the same amplifica-
tion factor at all R RS so that α1 = α2 =⋅⋅⋅=
αR = α, then Equation (24) can be expressed as

Pj
RR;DemF fð Þ ¼ αjð Þ2R kjj jð Þ2 Rþ1ð ÞPxjxj fð Þ

þ αjð Þ2R
XR�1

m¼0

kj jð Þ2 R�mð ÞPw j
mw

j
m
fð Þ

ð25Þ

þ 1
N

αj

 �2RXR�1

p¼0

kj jð Þ2 R�pð ÞPn j
pn

j
p
fð Þ

þ P
w

j
Rw

j
R
fð Þ

Case II: AF relaying system
In AF relaying system, the received symbol at the input
of the HPA of the first RS (R1) in FD is given by

YR1 l½ � ¼ H0 l½ �X̂ l½ � þ N0 l½ �
¼ K0H0 l½ �X l½ � þH0 l½ �W0 l½ � þ N0 l½ �

ð26Þ

where YR1 l½ � ¼ Y 1
R1

l½ �Y 2
R1

l½ � . . .YN
R1

l½ �
h iT

is an N × 1

received OFDM symbol vector, and Y j
R1

l½ � is the received
OFDM symbol at the jth received antenna of R1 for the
jth subcarrier and is given by

Y j
R1

l½ � ¼
XN
m¼1

H0
j;m l½ �X̂m

m½ � þ Nj
0 l½ �

¼
XN
m¼1

km0 H
0
j;m l½ �X m½ �

þ
XN
m¼1

H0
j;m l½ �Wm l½ � þ Nj

0 l½ � ð27Þ

The received OFDM signal at the jth receive an-
tenna of R1 is then amplified with an amplification
factor α1

j as shown in Figure 2b. The amplification



Table 1 1024-FFT/IFFT parameters in 20 MHz bandwidth

Parameter Value

Channel bandwidth 20 MHz

Modulation 4-QAM

Number of DC subcarriers 1

Number of guard subcarriers, left 80

Number of guard subcarriers, right 79

Number of data subcarriers 864

Subcarrier frequency spacing, Δf 19.53125 KHz (= 20 MHz/1024)

IFFT/FFT period, TFFT 51.2 μs

Cyclic prefix duration, TCP 6.4 μs (TFFT/8)

Total OFDM symbol duration, TS 57.6 μs
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parameter αj1 l½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PR1
E½jY j

R1
l½ � 2�j

r
for the jth antenna on the

lth subcarrier is again selected such that the total
transmitted power at R1 is PR1 . Before transmitting
the OFDM signal onto the next hop, it is passed
through the HPA at the RS. In general, the transmit-
ted OFDM signal at the mth RS (Rm) in TD is given
by

ŷRm;AF tð Þ ¼ αmKmHm�1ŷRm�1;AF tð Þ
þ αmKmnm�1 tð Þ þ wm tð Þ

ð28Þ

where ŷRm�1;AF tð Þ; m ¼ 1; . . . ;R is the transmitted
OFDM symbol at the (m − 1)th RS, and the transmit-
ted OFDM symbol at the output of the HPA at the
jth transmit antenna of the mth RS is given by

ŷ jRm;AF
tð Þ ¼ αjmk

j
m ∑

N

l¼1
hm−1
jl ŷ jRm�1;AF

tð Þ
þ αjmk

j
mn

j
m−1 tð Þ þ wj

m tð Þ ð29Þ
For the case of m = 1, i.e., one RS, Equation (29) can
be written as

ŷRm;AF
j tð Þ ¼ αj1k

j
1 ∑
N

l¼1
kl0h

0
jlx

l tð Þ þ αj1k
j
1 ∑
N

l¼1
hljlw

l
0 tð Þ

þ αj1k
j
1n

j
0 tð Þ þ wj

1 tð Þ ð30Þ
Then the PSD of the transmitted OFDM symbol at the

output of the HPA at the jth transmit antenna for the
case m = 1 is given as

Pj
R1R1 ;AF

fð Þ ¼ α j
1

� �2j k j
1j2
XN
l¼1

jkl0j2Pxlx l fð Þ

þ α j
1

� �2
jk j

1j2
XN
l¼1

Pwl
0w

l
0
fð Þ

þ α j
1

� �2
jk j

1j2Pnj
0n

j
0
fð Þ þ Pwl

1w
l
1
fð Þ

ð31Þ

Similarly, the general expression for the PSD of the
transmitted OFDM symbol at the output of the HPA at
the jth transmitting antenna of the Pth RS is derived for
AF relaying system as

Pj
RPRP ;AF

fð Þ ¼ α j
P

� �2
jk j

Pj2
XN
l¼1

jklP�1j2PRl
P�1R

l
P�1

fð Þ

þ α j
P

� �2
jk j

Pj2
XN
l¼1

Pwl
P�1w

l
P�1

fð Þ

þ α j
P

� �2
jk j

Pj2Pnj
P�1n

j
P�1

fð Þ þ Pwl
Pw

l
P
fð Þ
ð32Þ

where PRl
P�1R

l
P�1

fð Þ is the PSD of the transmitted OFDM

symbol at the output of the HPA at the lth transmitting
antenna of the (P − 1)th RS.
Simulation results and discussions
In our simulation setup, we consider multihop MIMO–
OFDM system for n = 1024 subcarriers and different
number of transmit and receive antennas. We adopt
1024-FFT downlink sub-carrier allocation scheme
defined in the WiMAX standard [16], as shown in
Table 1. The HPA model employed in the simulation
studies is the SEL model.
Figure 4 presents the time samples of the OFDM

symbol we passed through the HPA in our simulation
studies. It is evident from this figure that the OFDM sig-
nal has high amplitude variations (or high PAPR), thus
some part of the signal will fall into the nonlinear regime
of the HPA characteristics except if conservatively large
back-off is used, which results in severe power penalty.
A popular approach is to clip the high peaks in the
OFDM signal to enable linear amplifications [27]. How-
ever, clipping operation itself is a nonlinear process and
it results in in-band and out-of-band distortions. The
SEL model employed in our simulation captures this
HPA model. Figure 5 depicts the output of the HPA
when the OFDM signal in Figure 4 is passed through
HPA for different values of the CR. It is easy to observe
from this figure that as the CR increases, the severity of
the nonlinearity decreases and the time waveform of the
output signal from the HPA approaches the input signal
into the HPA. However, large clipping ratio incurs severe
power penalties; therefore, there is a trade-off between
HPA power efficiency and nonlinearities introduced.
Figure 6 shows the effect of HPA nonlinearity on the

spectrum of OFDM signal for different CRs. For this
simulation, we used the Welch’s modified periodogram
method for the estimation of the PSDs with the
following parameters: 50% overlap between the segments
and Hamming window. Welch function take into ac-
count the abrupt changes of the phase between the two
successive symbols. It is observed from this figure that
there is an in-band amplitude attenuation and an out-
of-band spectral re-growth observed in the spectrum of
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Figure 4 4-QAM, 1024 OFDM signal at the input of the HPA before clipping.
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the output signal from the HPA, compared to its input.
This confirms our earlier observations from the analysis.
It is also observed from the figure that as we back-off the
amplifier from the saturation region by increasing the CR,
the out-of-band distortion decreases; however, the in-band
amplitude attenuation increases resulting in more in-band
signal power attenuation. This results in significant power
penalty, making the use of large CR as a means of avoiding
HPA nonlinearity unaffordable in practice in the cellular
systems due to the need to transmit certain power levels
in order to meet signal quality requirements at cell edges.
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Figure 5 4-QAM, 1024 OFDM signal at the output of the HPA after cli
In [27], it is shown that at CR = 1.4 dB, the distortion
introduced by the HPA when transmitting OFDM signals
through it compares favorably with the distortions
encountered in a single-carrier QPSK signal using raised-
cosine pulse shaping and a roll-off factor of 0.5. This level
of distortion is typically tolerable in many cellular systems,
and hence CR = 1.4 is practically reasonable. We have thus
used CR = 1.4 as a major reference in our simulation
results presented next.
Figure 7 presents the spectrum of the OFDM signal

obtained by simulation versus the spectrum obtained
50 60 70 80 90 100
ime

CR = 0dB

CR = 6dB

pping with CR of 0 and 6 dB.
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Figure 6 Effect of HPA nonlinearity on the spectrum of OFDM signals for different CRs at the BS.
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from Equations (14) and (25). From Figure 7, it can be
observed that both the analytical and simulation results
agree very well as expected, and that both results indi-
cate that significant spectral re-growth occur when the
OFDM symbol is nonlinearly amplified at the BS and
the RS. It is also observed that for CR = 1.4 dB, the gap
between the main transmitted signal power and the out-
of-band spectral re-growth at 1.4 MHz offset is roughly
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Figure 7 Comparison between analytical and simulation results for th
and at the RS, SNR = 10 dB at RS.
(25–10) = 15 dB at the RS and (33–10) = 23 dB at the
BS. This implies that while the WiMAX spectral mask is
fairly satisfied at the output of HPA with CR = 1.4 dB at
the BS, it is significantly violated at the RS, even for the
2-hop transmission shown in this figure.
Figure 8 presents the spectrum of the nonlinearly

amplified OFDM signal at RSs, for different number of
relay hops, using DemF relaying option and CR = 1.4
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dB. It is observed from these results that the out-of-band
distortion (i.e., spectrum re-growth in adjacent band)
increases as the OFDM signal is relayed across multiple
RSs, as observed earlier from the analytical results in
Equation (25). Thus, the WiMAX spectral mask
displayed in Figure 1 would easily be violated when large
numbers of relay hops are involved. Figure 9 compares
the effect of HPA nonlinearity on the spectrum of the
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Figure 9 Effect of HPA nonlinearity on the spectrum of OFDM signals fo
relayed OFDM signals using AF and DemF relaying
configurations. The spectrum of the relayed OFDM
signals using DF relaying option is also included in the
figure for reference. As expected, it can be observed
from this figure that there is a higher spectral re-growth
in AF relay option than in the DemF relay option. Also
comparison between the spectral re-growth in DF relay
option with DemF and AF relay options, for different
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values of SNR at the RS, shows that less severe spectral
broadening is observed for the DF relaying option than
the other two. It should be noted that these results were
evaluated from the analytical expressions derived above,
which hold for any CR. Therefore, the relative perform-
ance of DF, DemF, and AF relay options depicted in this
figure hold also for other values of CR.
Next we present results for the case when we window

the OFDM signal using linear-phase finite-impulse-re-
sponse (FIR) digital filter before passing it through the
nonlinear HPA, similar to the set up used for the works
in [15,28-30]. Since the analysis did not model the effect
of filtering, this part of the study is conducted solely by
simulations. We use band-pass equi-ripple FIR filter
with 110 coefficients and pass-band 0.2 ≤ ω ≤ 0.6, where
ω = 1 corresponds to the Nyquist frequency, for our
simulation. Figure 10 shows the effect of HPA
nonlinearity on the spectrum of filtered OFDM signal
for different values of CR. It is observed that because of
the attenuation of the filter in this case, the spectral re-
growth decreases in filtered MIMO–OFDM system
compared to the unfiltered case in Figure 6. However,
the cumulative remnant re-growth is still significant
considering the fact that the results in Figure 10 show
what happens per MIMO antenna of the transmitting
station, and there are total of N antennas per node. The
spectrum of the nonlinear OFDM signal for different
number of relaying hops for DemF relaying is presented
in Figure 11. It is observed from these results that the
out-of-band distortion (i.e., spectrum re-growth in adja-
cent band) increases as the OFDM signal is relayed
across multiple RSs. For example, for N × N MIMO–
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Figure 10 Effect of HPA nonlinearity on the spectrum of filtered OFD
OFDM system with 2-hop relaying, the observed spec-
tral re-growth from Figure 11 will be

PMIMO
w2w2

¼ 10 log10 Nð Þ þ 32� 10ð Þ dB
� � ð33Þ

which can result in significant spectral mask violation as
the number of relay hops increases. The result in this
figure suggests that the WiMAX spectral mask will be
violated once the transmitted signal is relayed beyond
two hops since according to Equation (33), PMIMO

w2w2
¼

10log10 2ð Þ þ 32� 10ð Þ dB� �
> 25 dB, which means that

a 25-dB gap between the main carrier power and the un-
wanted spectral re-growth cannot be achieved once the
number of relay hops involved are more than two.
Hence, we can draw a conclusion that even though the
general mobile multihop relaying (MMR) system where
data could traverse any number of relay hops from
source to destination has widely been studied theoretic-
ally [20,31,32], only the 2-hop version such as those
proposed by the IEEE 802.16j group [18] may be advised
for any practical deployments in MIMO–OFDM
transmissions because of the potentials for spectral mask
violations when going beyond 2-hop transmissions as
shown in these results. In Figure 12, the effect of HPA
nonlinearity on DF-relayed OFDM signal is presented. It
can be observed from this figure that less severe spectral
broadening is observed for the DF relaying option. How-
ever, due to the latency problems associated with the DF
relaying option which degrades quality of broadband
signals, AF or DemF are the preferred candidates for
broadband transmissions over relaying channels and
therefore the spectral broadening issues observed here
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utput Spectrum(CR=1.4dB)
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must be given considerable attentions in the design of
broadband multihop-relaying systems.

Conclusions
This article presents new insights on the out-of-band
spectral re-growth due to HPA nonlinearities when
MIMO–OFDM signals are transmitted over multiple
relay channels. Expressions for the PSD of a MIMO–
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Figure 12 Effects of HPA nonlinearity on the spectrum of filtered OFD
each RS), DF relaying at RSs.
OFDM signal are presented when it is transmitted from
a BS to the MS via multiple RSs, all equipped with
nonlinear HPAs. It is shown that significant spectral re-
growth occurs for the AF and DemF relaying options as
the OFDM signal traverse one or more relay hops. For
MIMO–OFDM systems with large number of relay hops
and MIMO antennas, the cumulative effects of this re-
growth can result in significant spectral broadening
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exceeding specified limits on the spectral masks. Hence,
it is concluded from our results that even though the
general MMR system where data could traverse any
number of relay hops from source to destination have
widely been studied theoretically, only the 2-hop version
proposed by the IEEE 802.16j group [18] may be advised
for any practical deployments in MIMO–OFDM trans-
missions because of the potentials for spectral mask
violations when going beyond 2-hop transmissions.
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