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Abstract

Synthetic aperture radar (SAR) automatic target recognition (ATR) is playing a very important role in military and civil
field. Much work has been done to improve the performance of SAR ATR systems. It is well-known that ensemble
methods can be used for improving prediction performance. Thus recognition using multiple classifiers fusion (MCF)
has become a research hotspot in SAR ATR. Most current researchers focus on the fusion methods by parallel
structure. However, such parallel structure has some disadvantages, such as large time consumption, features
attribution conflict and low capability on confuser recognition. A hierarchical propelled strategy for multi-classifier
fusion (HPSMCF) is proposed in this paper. The proposed HPSMCF has the characters both of series and parallel
structure. Features can be used more effective and the recognition efficiency can be improved by extracting features
and fusing the probabilistic outputs in a hierarchical propelled way. Meanwhile, the confuser recognition can be
achieved by setting thresholds for the confidence in each level. Experiments on MSTAR public data demonstrate that
the proposed HPSMCF is robust for variant recognition conditions. Compared with the parallel structure, HPSMCF
has better performance both on time consumption and recognition rate.
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1. Introduction

SAR is playing an important role both in national
defense and civil applications, because SAR can work in
all weather and day/night conditions. For better taking
advantage of SAR data, the problem of target recogni-
tion should be overcome. In 1997-2000, L.M. Novak
publishes a number of articles on SAR ATR [1-3]. After
that many researchers have done lots of work to improve
the performance of SAR ATR systems.

It is well-known that ensemble methods can be used
for improving prediction performance [4]. The main idea
behind the ensemble methodology is to combine several
individual classifiers in order to obtain a classifier that
outperforms every one of them. In 1998, J. Kittler .etc.
develop a common theoretical framework for combining
classifiers [5]. In 2010, Lior Rokach proposes an ensem-
ble system which is composed of several independent
base-level models [4]. These base-level classifiers are re-
spectively constructed using different techniques and
methods. With the development of MCF technology,
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MCEF has been extensively applied in many areas, such
as character recognition [6], multi-sensor data classifica-
tion [7] and SAR ATR [8,9].

It can be seen that MCF has become a research
hotspot. Thus many new theories in pattern recogni-
tion are gradually introduced to MCE. For example,
Jorge Sanchez and Javier Redolfi propose a novel ap-
proach for the combination of classifiers based on a
graph defined in the space of concepts and a Markov
chain defined on that graph [10]. Some researchers
consider the contributions of various types of feature
sets and classifiers, so weights are given to features
or classifiers [11-13]. It is believed that confidence-
weighted learning is more consistent with human’s
prediction model. In [14], authors use clustering en-
semble for classifiers combination, because the use of
cluster analysis techniques in supervised classification
tasks has shown that they can enhance the quality of
the classification results.

All the methods above belong to parallel structure of
MCF (PSMCF) [5]. The flow of PSMCF is shown in
Figure 1. PSMCF can indeed improve the decision ac-
curacy by complementing the disadvantages between
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Figure 1 The common flow of multiple classifiers fusion.
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different classifiers. However, such parallel structure has
some disadvantages. Firstly, if the decision-making strat-
egy is not suitable, the accuracy will be reduced. Sec-
ondly, all the features should be extracted in a parallel
structure, so large time-consuming is needed. Thirdly,
the parallel structure can only make a decision on the
final fusion result, so it has low capability on confuser
recognition.

In order to overcome such disadvantages of the
PSMCE a hierarchical propelled strategy for multi-
classifier fusion (HPSMCF) is proposed in this paper.
HPSMCEF has the characters both of series and parallel
structure. Features can be used more effective and the
recognition efficiency can be improved by extracting
features and fusing the probabilistic outputs in a hier-
archical propelled way. Determining whether to go to
the next level depends on the comparison between con-
fidence and empirical threshold, so HPSMCF can reduce
the time consumption without lower the recognition
rate. Also the confuser recognition can be achieved by
setting thresholds for making decisions in each level.
Experiments on MSTAR public data demonstrate that
the proposed HPSMCF gets better performance than
PSMCEF when applied to SAR ATR.

The rest of the paper is organized as follows. Section 2
introduces the flow of the proposed fusion strategy, the
definition of classification confidence and classification
weight in each level. In section 3, the detail description
of three levels HPSMCF is given. Then Section 4
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presents experimental results and analysis on MSTAR
database. Finally in section 5 the conclusion and future
work are stated.

2. Hierarchical propelled fusion strategy
If there are L levels, the basic framework of HPSMCEF is
shown in Figure 2.

If there are c classes samples, the classifier in level
[ (1 <1 < L) can get posterior probability output of
each class shown by P = {p1, P2 oo Pe}-

1) Classification confidence
The classification confidence can be defined as:

F(P) = max (pi) — max{Pl \ max (pi)}
max (pi) (1)

s.t. Zpl' =1

i=1

{Pl\rréax (pi)} means the set P’ except max (pi). If

conf (P) is greater than a determined value, it means
that the class represented by max (p;) is acceptable.
C

In HPSMCE, if the confidence in each level is bigger
than the empirical threshold T, the process is ended and
the system can output the predicted class of the un-
known image. If not, the process will go to the next
level. A new feature is extracted and fed to another clas-
sifier. It is worth to remind that the confidences in each
level are different because different features are used. All
the thresholds can be written as:

T — {Tl, (Tz, T;),....(Tb TL*)}

In level [ (I > 1), there are two thresholds (7}, T)). T}
indicates the threshold in level / before fusion, and 77 is
used for the fusion result.

feature
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Figure 2 The basic flow chart of hierarchical propelled fusion strategy.
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2) Weights of 4

If in level /, the confidence of the probability output is
less than the empirical threshold, it means that this clas-
sification result is probably wrong. So in this level, the
classification is not given and the process will go to next
level. However, the probability output in level / P will be
fused in the following levels with a weight. The weight
of P can be expressed as:

wy (1<I<L,2<j<L, <))

Where j indicates the level in which P is fused. Weights
used for fusion in each level are shown in Table 1.
The weight wy; has a character as follows:

1 [=j
= L2
Yy {ﬂwzun I<j @)

where 0 < ¢ < 1. It means that if the probability output
P cannot give enough evidence to get the classification
result in level j-1, the weight of P’ should be reduced
when P is used in level j and the reduced coefficient is .

3) Basic flow
The detailed process at each level is described as follows:

In level 1, extracting the first feature, and feeding the
feature to classifier. Computing the confidence of P’. If
conf(Pl) > Ty, output the classification result; otherwise
the flow goes to level 2;

In level 2, extracting the second feature, and feeding
the feature to classifier. Computing the confidence of P>,
If conflP*) > T, output the classification result; other-
wise fusion w;,P" and w,,P*. Computing the confidence
of the fusion result. If conf(fusion(qul, wynP?) > T,
output the classification result; else go to next level;

The processes in the following levels are the same as
level 2, except in level L. The last level L makes the final
decision. If in level L, the classification result cannot be
got, all the process will be ended, and output ‘cannot
recognition’.

It can be seen that if the threshold 7" is set to 0 and
all of the other thresholds are set to 1, our HPSMCEF is
simplified as PSMCEF; if the fusion processes are can-
celled, HPSMCEF is simplified as series structure.

Table 1 The confused matrix of weights

Fusionin P'in  Level2 Level3 Level4 Levelj Levell
Level 1 wi2 wi3 wi4 wilj wil
Level 2 w22 w23 w24 w2j w2l
Level 3 X w33 w4 w3 waL
Level 4 X X wa4 waj walL
Levell X X wij Wil
Level L X X X WL

Page 3 of 8

3. Application of the proposed three-tier HPSMCF
to SAR ATR

In order to verify the feasibility of the strategy proposed
in this study, three-tier HPSMCF is applied to SAR
images automatic target recognition. This work includes
three important parts: Feature Extracting, Classification,
and Decision Fusion.

1) Feature extracting

In our current research, three projection features are
used. They are Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and Non-negative
Matrix Factor (NMF).

A. PCA
PCA is a common feature extraction method in pattern
recognition, which has been widely used for target clas-
sification in SAR images. PCA is based on the assump-
tion that high information corresponds to high variance.
If X = {x1, x5, .ooty}, X € R7 is the original data, the
mean of Xis:
1 n

ni=

X=1%"x 3)

The covariance matrix of X:

Q= - %) @

Eigenvalues and eigenvectors of Q:
[V, D] = EIG(Q) (5)

Function EIG can get all the eigenvalues and eigenvectors
of Q. It is proved that the first few principal components
account for most of the variation. They can be used to de-
scribe the data, leading to a reduced-dimension representa-
tion. Choose the eigenvectors correspond to the k largest
positive eigenvalues to form the transformation matrix.
Then the PCA feature of X is extracted by multiplying the
transformation matrix. The detailed information about
PCA is introduced in reference [15,16].

B. LDA

LDA uses the discrimination information between differ-
ent classes, so the class information of samples should
be known [15,17]. Denote N sampled images as X = {xy,
X9, .eXn), the within-class scatter matrix is defined as:

Sw:i%("é_ﬂj)(xé_ﬂJT (6)
=1 i=1

Where «/ is the ith sample of class j, #;j is the mean of
class j, c is the number of classes, and N; is the number
of samples in class j.
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The between-class scatter matrix is defined as:

¢ T
S=> (/4, - /4) (u,« - ﬂ) (7)
=1
where y represents the mean of all classes.

The goal of LDA is to maximize the between-class
measure while minimizing the within-class measure.
One way to do it is to maximize the ratio det |S,|/ det
|Sw|- If S, is a nonsingular matrix, when the column
vectors of the projection matrix W = PCA(S,,'S,), the
ratio is maximized. It should be noted that the number
of eigenvectors of W is at most c-1.

C. NMF
NMF has been successfully used for matrix decompos-
ition and dimensionality reduction. The non-negativity
constraint leads to a part-based representation because
it allows only additive, not subtractive, combinations of
the original data [18,19].

Assume matrix D € R is decomposed into two
matrices W € R and H € R™™, so that:

D~WH D;;,W;,,H,;>0 (8)

withO<i<n-1,0<j<m-landO<pu<r-1
Define cost function based on the Square Euclidian
Distance:

arg min ||D — WH||*> =
gm | | >

0<i<n,0sj<m

<le1’ - (WH);'./)Z

(©)
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Table 2 Part of MSTAR public database

Target Target type Depression angle
number 17° 15°
1 BMP2 sn-c9563 233 195
sn-c9566 232 196

sn-c21 233 196

2 BTR70 233 196

3 172 sn-132 232 196
sn-812 231 195

sn-s7 228 191

4 251 299 274

5 D7 299 274

6 ZIL131 299 274

7 Z5U23-4 299 274

The Square Eculidian Distance measure in (9) is non-
increasing under the following iterative update rules:

oy WD),
Mo ),
(DHT)ia
(WHHT),,

(10)
Wia—Wia

forO0<a<nrn0<pu<mandO <i< n Appropriate W, H
can be found by iteration.

D. Feature ordering
In our current research, the principle of feature orde-
ring is the computational complexity for extracting

and ZSU23-4. (¢)-(d) Corresponding SAR images for 7 targets.

Figure 3 Some samples with both optical images and SAR images in MSTAR. (a)-(b) Optical images for BMP2, BTR70, T72, 251, D7, ZIL131
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Table 3 The confusion matrix of HPSMCF performance

Testing data BMP2 BTR70 T72 Can't Recognition
recognition rate
BMP2 sn-9563 181 4 7 3 85.5%
BMP2 sn-9566 153 15 24 4
BMP2 sn-c21 168 14 8 6
BTR70 sn-c71 1 192 3 0 98%
T72 sn-132 8 1 187 0 91.2%
T72 sn-812 15 3 176 1
T72 sn-s7 15 6 168 2

each feature. The computational complexity of PCA is
the smallest, and the computational complexity of NMF
is the largest. So in the three-tier HPSMCE, PCA is
used in level 1, LDA is used in level 2 and NMF is used
in level 3.

2) Classifier

In order to make the metric of probability output same
in each level, Support Vector Machine (SVM) is used in
all levels. SVM classification method has extraordinary
potential capacity. Using kernel function, SVM can well
solve the non-linear classification problem [6,20].

SVM discriminates two classes by fitting an optimal lin-
ear separating hyperplane (OSH). The optimization prin-
ciple is based on structural risk minimization (SRM). SRM
aims to maximize the margins between the OSH and
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the closest training samples. These closest training samples
are called support vectors. The details of solving the
optimization problem in SVM are introduced in [21].

For a test sample, SVM can get the probability output
in the following form:

P={p1,p2,.. -Pis---Pc}

where 0 < j < ¢, cis the number of class. P; is the prob-
ability that the test sample belongs to class j.

The kernel of SVM used in this paper is radial basis
function (RBF):

k(x,y) = exp(=y|x =)
and the parameters of C and y are set to C = 32, y = 1/32.

3) Fusion theory

Dempster-Shafer Evidence Theory is close to human de-
cision principle and has been widely used in information
fusion and classifier fusion [22,23].

Assuming © is a mutually exclusive and exhaustive fi-
nite set, which is called frame of discernment. The map-
ping m : 2% — [0, 1] called Basic Probability Assignment
Function (BPAF) is defined as:

m(®) =0
{Zm(A) =1 (11)

AcO

If A C ®and m(A) > 0, A is called a Focal Element.

BTR70

BTR70
T72

=

=]

a
T

T72

S
=
I
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065
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Figure 4 Recognition performance of different methods: PCA+SVM, LDA+SVM, NMF+SVM, PSMCF and HPSMCF.
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If ® has n Focal Elements: A = {4, Ay, .. .A; ...A},
Dempster’s rule of combination is described as follows:

m(®) =0
Z Hl’}’ll<A,) Z HWIL(A,)
Wl(A) _ NA;=A z:ln _ r‘LA,:Alz:_l p
1-— Z HWIL(A,)
NA;=0 i=1

(12)

where k is a measure of conflict between #n evidences
and can be got by

K= >

I’I’ll(Al)'le(Az) . I’}’Zn(An)

A1N..NA,=zD (13)
=1— > m(A)m(A)... m(A,)
AiN..NA,=0

In level [, there are [ evidences need to be fused. So in
the second and third level of our three-tier HPSMCE,
the value of n in (13) is 2 and 3, respectively.

4. Experiment analysis

The Moving and Stationary Target Acquisition and Rec-
ognition (MSTAR) program was initiated by the U.S.
Defense Advanced Research Projects Agency (DARPA)
and the U.S. Air Force Research Laboratory (AFRL) in
the summer of 1995. The SAR images used in our
experiments are taken from MSTAR public release data-
base. The database consists of X-band SAR images with
1 ft. x ft. resolution for multiple targets. The SAR target
images were captured at two different depression angles
15° and 17° over 360° aspect angles [24]. Figure 3 shows
some sample images with both optical images and SAR
images. The statistics of the MSTAR public database is
summarized in Table 2.

The format of the data is RAW including amplitude
and phase information. In the following experiments,
only amplitude information is used. All the images are
cropped by extracting 64x64 patches from the center of
the image but without any other preprocessing.

(1) 3-Class recognition and confuser recognition

1) 3-Class recognition

In this experiment, 3 classes targets (BMP2, BTR70, T72)
are used. BMP2 and T72 have three series as shown in
Table 2. Only the images of BMP2 sn-c9563, BTR70 and
T72 sn-132 at depression 17° are used for training data. All
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Table 5 New division of 3-class data

Set serial Type Depression angle  Size

training set set 1 BMP2-c21 17° 233
BTR70-c71 17° 233

T72-132 17° 232

testing set set 2 BMP2-c21 15° 196
BTR70-c71 15° 196

T72-132 15° 196

set 3 BMP2-9563 17° 233

BMP2-9566 17° 232

T72-812 17° 232

set 4 BMP2-9563 15° 195

BMP2-9566 15° 196

T172-812 15° 195

Set 2 vs. set 1: Same configuration but different depression angles.
Set 3 vs. set 1: Different configurations but same depression angle.
Se t4 vs. set 1: Different configurations and different depression angles.

of the images of these three classes at depression 15° are
used as the testing data.

Table 3 is the confusion matrix of the classification
results by HPSMCE. The overall recognition rate (RR),
especially the BMP2, is not as high as the state-of-the-art
recognition rate. This is caused by the images without
any preprocessing. Figure 4 shows the comparison be-
tween PCA+SVM, LDA+SVM, NMF+SVM, PSMCF and
HPSMCE. It can be clearly seen that our HPSMCF has the
best performance on this 3-class classification problem.

2) Confuser recognition

In this experiment four nontarget vehicles (2S1, D7,
ZIL131, and ZSU23-4), are added to the testing set in
Table 3 as confusers.

The rejection rates are listed in Table 4. Our HPSMCF
gets the average rejection rate 70.2% while PSMCF rejects
52.4% of confusers. It can be seen that no matter 3-class
recognition or confuser recognition, our HPSMCF has bet-
ter performance.

(2) Depression angle and configuration variance

In order to test our designed method’s robustness of
processing different condition data, the data in 3-class
problem is divided into one training set and three testing
sets. The images of BMP2-c21, BTR70-c71, and T72-132

Table 6 Recognition results on new division

Methods Set 2 Set 3 Set 4 Average
PCA+SVM 94.22% 79.02% 73.72% 82.14%
Table 4 Confuser rejection rate LDA+SVM 92.52% 80.03% 77.47% 83.16%
Methods 251 D7 ZIL131 Z5U23-4 Average NMF+SVM 97.79% 88.07% 82.76% 89.47%
PSMCF 46.6% 57.6% 53.8% 51.4% 52.4% PSMCF 98.30% 86.49% 84.47% 89.57%
HPSMCF 61.9% 75.6% 71% 72.4% 70.2% HPSMCF 99.32% 90.52% 87.54% 92.35%
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in depression angles of 17° are employed as training set.
The other images are used for testing sets. The detail of
the data sets is shown in Table 5. This new mode of par-
tition the data sets can get variance in depression angle
and configuration.

The recognition results of five methods on three
testing sets are presented in Table 6 and Figure 5. They
clearly show that tests on set 2 have the highest recogni-
tion rate and tests on set 4 have the lowest recognition
rate. The recognition rate of set 4 is the lowest, which
means both target type and depression angle can have
effect on the recognition performance. However, the rec-
ognition rate of set 2 is higher than set 3, which means
the variance of target configuration in set 2 has more ef-
fect on recognition than the variance of depression angle
in set 3.

Meanwhile, Table 6 and Figure 5 also show that the
PSMCEF indeed outperforms the method which uses
single feature, but the proposed hierarchy framework
HPSMCE in this paper has the best results.

Table 7 The hierarchy depth of three testing sets

The number of levels which a process reaches is called
hierarchy depth. The hierarchy depth of three testing sets
is presented in Table 7. For most samples of set 2, only the
first level is used for recognition. Just a few recognition
processes can reach the third hierarchy. However, the
number of recognition processes which use all three levels
has obvious growth when recognizing the samples of set 3
and set 4, which means that set 3 and set 4 have more diffi-
cult recognition condition than set 2. Therefore our system
can choose different hierarchy depth according to the com-
plexity of recognition processes.

The comparison on average recognition rate and time
consumption with PSMCF when testing set 2~set 4 is
shown in Table 8. It proves that the proposed method
outperforms PSMCF both on recognition rate and time
consumption.

5. Conclusion and future work

In order to overcome the disadvantages of the common
fusion method by parallel structure, a hierarchical pro-
pelled strategy of multiple classifiers fusion (HPSMCE)
is proposed in this paper. The recognition efficiency can

Hierarchy depth Set 2 (588) Set 3 (696) Set 4 (586)
Level 1 522 357 288 Table 8 Comparison with on average RR and used time
Level 2 21 90 91 Methods Average RR Time
Level 3 44 244 201 PSMCF 89.57% 502s
Cannot recognition 1 5 6 HPSMCF 92.35% 395
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be improved by extracting features and fusing the prob-
abilistic outputs in the hierarchical propelled way. Also
the confuser recognition can be achieved by computing
confidence and making decisions in each level. Expe-
riments on MSTAR public data set demonstrate the
effectiveness of the proposed hierarchical propelled fu-
sion strategy. Compared to the single classifier based
recognition processes, HPSMCF has higher recognition
rate. Meanwhile, the proposed method outperforms the
traditional parallel structure on both time consumption
and recognition rate.

The next step in our research work will consist in

selecting the threshold T adaptively and using more
features and more classifiers to evaluate the feasibility of
this system. On these bases, our goal is to build a recog-
nition framework based on human cognition theory.
Meanwhile, the proposed strategy can also be considered
for the multiple sensors fusion, etc.
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