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Abstract

The optimum sampling in the one- and two-dimensional (1-D and 2-D) wireless sensor networks (WSNs) with
spatial-temporally correlated data is studied in this article. The impacts of the node density in the space domain, the
sampling rate in the time domain, and the space-time data correlation on the network performance are investigated
asymptotically by considering a large network with infinite area but finite node density and finite temporal sampling
rate, under the constraint of fixed power per unit area. The impact of space-time sampling on network performances is
investigated in two cases. The first case studies the estimations of the space-time samples collected by the sensors, and
the samples are discrete in both the space and time domains. The second case estimates an arbitrary data point on the
space-time hyperplane by interpolating the discrete samples collected by the sensors. Optimum space-time sampling
is obtained by minimizing the mean square error distortion at the network fusion center. The interactions among the
various network parameters, such as spatial node density, temporal sampling rate, measurement noise, channel fading,
and their impacts on the system performance are quantitatively identified with analytical and numerical studies.
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1 Introduction
Data collected by a wireless sensor network (WSN) often
contain redundancy due to the spatial and temporal cor-
relation inherent in the monitored object(s). The spatial-
temporal data correlations can be found in a wide range
of practical applications, such as environment monitor-
ing with temperature and humidity correlated in the
space and time domains, soil and water quality moni-
toring with the chemical compositions correlated in the
space and time domains, and structure health monitoring
with spatial-temporally correlated vibration information
of the civil structure [1], etc. The space-time redun-
dancy/correlation is important to the performance and
design of practical WSNs, which attempt to reconstruct a
spatial-temporally correlated signal field by collecting the
data samples from the sensors. Given a fixed transmis-
sion power per unit area, a higher spatial node density
or temporal sampling rate means less transmission energy
per sample, which usually degrades performance due to a
lower signal-to-noise ratio (SNR) at the receiver. On the
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other hand, the system performance might benefit from
more data samples per unit area per unit time by exploit-
ing the space-time redundancy. Therefore, it is critical to
identify the optimum space-time sampling, i.e., the opti-
mum spatial node density and temporal sampling rate, in
a WSN with spatial-temporally correlated data.
There have been considerable works in the literature

studying the impacts of spatial node density on the net-
work performance [2-6]. In [2], the optimum node density
of a many-to-one linear network is analyzed by using
the detection probability of a binary event as the perfor-
mance metric. In [3], a Wiener process is used to model
the spatial correlation of an one-dimensional (1-D) field.
It is demonstrated that, due to the spatial data correla-
tion, distortion-free communication can be achieved even
if the per node throughput tends to 0 as N → ∞. The
optimum node densities in both 1-D and two-dimensional
(2-D) networks are obtained by minimizing the mean
square error (MSE) between the recovered informa-
tion and the original information under a distortion-
tolerant communication framework [5,6]. Most existing
studies focus only on the spatial data correlation, and
they do not consider the variation of the data in the
time domain. In reality, the physical phenomenon under
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monitoring changes with respect to time, and the consec-
utive observations of a sensor node are often correlated
temporally [7].
There are limited works on the study of WSNs with

spatial-temporally correlated data [8-12]. In [8], an arbi-
trary point on a continuous measurement field is esti-
mated by performing space-time interpolation over the
samples collected by the spatially discrete sensors, and
there is a finite optimum node density to minimize the
estimationMSE over themeasurement field. Themodel in
[8] is extended in [9] by considering realistic transmission
schemes, such as a limited transmission range and prac-
tical network/routing parameters. In [8,9], the temporal
data correlation is only utilized to perform time domain
interpolation, and they do not consider the effects of opti-
mum time domain sampling. The effects of both space
and time domain sampling are studied in [10] by using
the network energy as a performance metric, through the
study of a collision free network protocols. All of the
aforementioned studies consider an error-free communi-
cation channel between the transmitter and the receiver.
The impacts of additive white Gaussian noise (AWGN)
are considered in [11], which obtains a lower bound on
the distortion as a function of the number of sensors
and spatial-temporal communication bandwidth. How-
ever, the analysis is only applicable to a measurement field
with finite degree-of-freedom and is discrete in the time
domain. In addition, it does not consider the optimum
sampling rate in the time domain. The optimum space-
time sampling of continuous data in an 1-D network with
AWGN channel is studied in [12].
In this article, we investigate the optimum space-time

sampling for both 1-D and 2-D WSNs with spatial-
temporally correlated data. The 1-D network can be used
to model practical WSNs designed for highways and tun-
nels. The 2-D network models WSNs that cover a large
area, such as a farmland. There is no limitation on the sta-
tistical properties of the field, other than that it forms a
continuous random process that is wide sense stationary
(WSS) in both the space and time domains. Each sensor
node collects samples of the field, and forwards the infor-
mation to a data fusion center (FC) through an one-hop
AWGNor fading channel. Similar one-hop network struc-
tures are used in [2,5,6,12-15]. The FC attempts to recon-
struct the time-varying and spatially continuous data field
from the discrete sensor samples by exploiting the data
correlation in both the space and time domains with
the minimum mean square error (MMSE) receiver. The
impacts of the spatial node density, the temporal sampling
rate, and the space-time data correlation on the recon-
struction MSE are investigated asymptotically in a large
network with infinite area, infinite time period, but finite
node density and finite temporal sampling rate, under the
constraint of fixed transmission power per unit area.

Compared to existing studies in the literature, this arti-
cle has the following main contributions. First, to the
best of our knowledge, this article is the first that explic-
itly quantifies the interactions between the performance
of networks with spatial-temporally correlated data and
various system parameters, such as spatial node density,
temporal sampling rate, measurement noise, and chan-
nel distortions, for both 1-D and 2-D networks. Second,
the optimum spatial-temporal sampling for two types
of networks, one needs to recover only the discrete
space-time samples collected by the sensors through their
noisy observations, and one needs to recover an arbi-
trary data point on the space-time hyperplane, are iden-
tified through the asymptotic analysis. Third, the impacts
of various practical factors, such as measurement noise,
channel fading, and random network topology, on the
performance of networks with spatial-temporally corre-
lated data are studied through numerical analysis and
simulations.
The remainder of this article is organized as follows.

Section 2 introduces the system model and a two-step
MMSE estimation method. Sections 3 and 4 studies the
impacts of spatial-temporal sampling on 1-D and 2-D
networks, respectively, by following the two-step MMSE
method. In these two sections, the optimum spatial-
temporal samplings in various networks are identified
with asymptotic analysis and simulations. Both analytical
and numerical results are presented in Sections 3 and 4
to demonstrate the interactions among the various system
parameters. Section 5 concludes the article.

2 Problem formulation
2.1 Systemmodel
Consider a WSN with Ns sensor nodes uniformly placed
over a measurement field. Data collected by the sensors
are spatially correlated, and they change with respect to
time. We first study a network with a deterministic topol-
ogy, where the sensors are placed over an equal-distance
grid as shown in Figure 1, with the distance between two
adjacent nodes being d. Such a deterministic topology can
be used to model networks that can be carefully planned
beforehand and has no limitation on sensor locations. The
performance of networks with deterministic topology will
be compared to those with randomly distributed nodes.
Networks with random topology can be used to model ad
hoc networks or networks with mobile nodes. The results
obtained for these two types of networks can serve as per-
formance bounds for practical networks, which usually
use a combination of these two topologies.
Each sensor node collects data samples with a sampling

rate of θ = 1
Ts

Hz. In the space domain, define the spa-
tial node density, δ, as the number of nodes in a unit area.
The spatial node densities are δ = 1

d and δ = 1
d2 for

the grid-based 1-D and 2-D networks, respectively. Let
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Figure 1 The spatial-temporally correlated sensor networks. (a) The 1-D sensor network with 2-D space-time samples. (b) The 2-D sensor
network with 3-D space-time samples.

η =[ cT , t]T represent the coordinate in the space-time
hyperplane, where AT denotes matrix transpose, c is the
coordinate vector in the space domain, and t is the time
variable.
Each sensor node will measure a spatial-temporally

dependent physical quantity, x(ηn), such as the tempera-
ture, humidity, or the vibration density of a bridge, etc. It is
assumed that the physical quantities to be measured form
a random process that is WSS in both the space and time
domains. Due to the spatial-temporal redundancy of the
measurement field, the spatial-temporal correlation func-
tion between any two arbitrary data samples is assumed
as

E
[
x(η1)x(η2)

] = ρ‖c1−c2‖
s · ρ|t1−t2|

t (1)

where ηn =[ cTn , tn]T , ρs ∈[ 0, 1] and ρt ∈[ 0, 1] are
defined as the spatial correlation coefficient and the tem-
poral correlation coefficient, respectively, and E(·) rep-
resents mathematical expectation. In (1), the l2 norm
‖c1 − c2‖ measures the Euclidean distance between the
two points with the coordinates c1 and c2 in the space
domain.
It is assumed that sensors deliver the measured data

to the FC through an orthogonal media access con-
trol (MAC) scheme, such as the deterministic fre-
quency division multiple access (FDMA), or the random
exponentially-interval MAC (EI-MAC) [16], such that
collision-free communication is achieved at the FC. The
signal observed by the FC from the nth data sample is

yn =
√

En
1 + σ 2

w
· h(ηn) · [x(ηn) + wn

] + zn, (2)

where En is the average transmission energy per sam-
ple, h(ηn) represents the quasi-static fading coefficient,
wn is the measurement noise with variance σw2, and zn

is the AWGN with variance σz
2. It is assumed that the

total power per unit area is fixed at P0. Given a network
with a node density δ and a sample rate θ , the transmis-
sion energy per sample can be calculated as En = P0

θδ
.

It is assumed here that the sensor-FC distance is much
larger than the sensor-sensor distance, such that all the
sensors have approximately the same distance to the FC.
Therefore, signals from all the sensors experience similar
pathloss, such that they can employ the same transmission
energy.

2.2 OptimumMMSE detection
The FC will obtain an estimate of the spatial-temporally
continuous quantity, x(η), ∀η ∈ �η , by using N = NsNt
discrete space-time samples received at the FC, where Ns
is the number of the sensor nodes and Nt is the number of
time-domain samples collected by each node. Define the
space-time data sample vector as xst =[ xT1 , . . . , xTNs

]T ∈
RN×1, where xi =[ xi1, . . . , xiNt ] T ∈ RNt×1 is the time
domain sample vector collected by the ith sensor node,
and R is the set of real numbers. The corresponding
signal observed by the FC can then be represented as
y =[ yT1 , . . . , yTNs

]T ∈ RN×1, with yi =[ yi1, . . . , yiNt ]T ∈
RNt×1.
The MSE for x(η) is

σ 2
η = E

[
x̂(η) − x(η)

]2 , η ∈ �η (3)

where x̂(η) is the estimate of x(η) based on y at the FC.
The optimum linear receiver that minimizes σ 2

η is the
MMSE receiver described as follows [17]

x̂(η) =
√

En
1 + σ 2

w
rHη HH

×
[

En
1 + σ 2

w
HRxxHH + Enσ 2

w
1 + σ 2

w
HHH + σ 2

z IN
]−1

y,

(4)
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where rη = E [x(η)xst] ∈ RN×1, Rxx = E
[xstxHst ] ∈

RN×N with the element defined in (1), and AH denotes
the matrix Hermitian operation. The channel coefficient
matrix,H ∈ CN×N , is a diagonal matrix with the diagonal
elements being h =[ hT1 , . . . , hTNs

]T ∈ CN×1, where hi =
hiINt ∈ CNt×1 with hi corresponding to the fading coef-
ficient between the ith node and the FC, INt is a size-Nt
identity matrix, and C is the set of complex numbers.
With the optimumMMSE receiver given in (4), theMSE

σ 2
η can be calculated as

σ 2
η =EH

{
1 − rHη

[
Rxx + σ 2

w

+(1 + σ 2
w)

θ0δ

γ0
(HHH)−1

]−1
rη

}
,

(5)

where γ0 = P0
σ 2
z
is the signal-to-noise ratio (SNR) per unit

area with AWGN, and the expectation operation is per-
formed with respect to H. The MSE σ 2

η given in (5) is a
function of the space-time coordinate η, the SNR γ0, the
measurement noise variance σ 2

w, the spatial correlation
coefficient ρs, the temporal correlation coefficient ρt , the
spatial node density δ, the temporal sampling rate θ , and
the fading coefficient H.
Given a fixed transmission power per unit area, the

spatial-temporal sampling rate, δ and θ , play a critical role
on the MSE σ 2

η . A smaller node density and/or temporal
sampling rate means more transmission energy per sam-
ple, thus a better SNR per sample, which can benefit the
system performance. On the other hand, a smaller node
density and/or sampling rate means less samples per unit
area per unit time, thus a smaller correlation among the
data collected by the nodes, and this might degrade the
estimation performance.
In order to distinguish the opposite impacts of the

spatial-temporal sampling rates, we use an equivalent
two-step MMSE method [6].

Lemma 1. The optimum MMSE given in (4) is equiva-
lent to the two-step MMSE described as follows.

1) The FC first obtains an estimate of the N discrete
space-time samples, xst , with a linear MMSE receiver
as

x̂st = Wx
Hy, (6)

where x̂st ∈ RN×1 is the MMSE estimate of xst . The
MMSE matrixWx ∈ RN×N is designed to minimize
the average MSE per sample:

σ 2
st,N = 1

N
E

[‖x̂st − xst‖2
]
. (7)

2) The FC obtains an estimate of the data at an arbitrary
location, x̂(η), ∀η ∈ �η , by interpolating x̂st with the
MMSE criterion,

x̂(η) = wH
sl x̂st , (8)

where the vector, wsl ∈ RN×1, is designed to
minimize the MSE σ 2

η = E
[
x̂(η) − x(η)

]2.
Decomposing the optimum MMSE of (4) into the two-

step MMSE allows us to study the two opposite effects of
spatial-temporal sampling on the MSE separately. In the
following two sections, we will investigate, respectively,
the impacts of the node density on 1-D and 2-D networks
by following the two-step MMSE.

3 Optimum space-time sampling in
one-dimensional networks

In this section, we study the optimum space-time sam-
pling in an 1-D network, where the Ns sensor nodes are
evenly distributed over a length-L linear section as shown
in Figure 1a. In this WSN, the space-time coordinate of
the jth data sample collected by the ith sensor can then be
represented as [ (i − 1)d, (j − 1)Ts]. The spatial-temporal
correlation matrix, Rxx = E

[xstxHst ] ∈ RN×N , can be
expressed as

Rxx = Rs ⊗ Rt (9)

where ⊗ denotes the Kronecker product, and Rs ∈
RNs×Ns and Rt ∈ RNt×Nt are the correlation matrices
in the space domain and time domain, respectively. The
space domain correlation matrix, Rs, has the form of a
symmetric Toeplitz matrix with the first row and first col-

umn being rs =
[
1, ρd

s , . . . , ρ
(Ns−1)d
s

]T
. Similarly, the time

domain correlation matrix, Rt , is a symmetric Toeplitz
matrix with the first row and first column being rt =[
1, ρTs

t , . . . , ρ(Nt−1)Ts
t

]T
. The matrix, Rxx, has the form of

a Toeplitz-block-Toeplitz (TBT) matrix [18], i.e., Rxx is
a block Toeplitz matrix, and each sub-matrix is also a
Toeplitz matrix.

3.1 MMSE estimation of the discrete samples
For the MMSE estimation described in (6), the optimum
Wx that minimizes the MSE, σ 2

st,N , can be found through
the orthogonal principal,E

[
(x̂st − xst)yH

] = 0. The result
is

WH
x =

√
En

1 + σ 2
w
RxxHH

×
[

En
1 + σ 2

w
HRxxHH + Enσ 2

w
1 + σ 2

w
HHH + σ 2

z IN
]−1

,

(10)
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The conditional error correlation matrix, R(x)
ee|H =

E
[eseHs |H]

, with es = x̂st − xst , can then be calculated as

R(x)
ee|H = Rxx − RxxHH

×
[
HRxxHH + σ 2

wHHH + (1 + σ 2
w)

θδ

γ0
IN

]−1
HRxx

=
[
R−1
xx + HHH

σ 2
wHHH + (1 + σ 2

w) θδ
γ0
IN

]−1

,

(11)

where the orthogonal principal is used in the first equality,
and the second equality is based on the identity D−1 +
D−1C(A−BD−1C)−1BD−1 = (D−CA−1B)−1. TheMSE
can then be calculated as

σ 2
st,N = 1

N
EH

[
trace

(
R(x)
ee|H

)]
(12)

where trace (A) returns the trace of the matrix A.
In Equations (11) and (12), the calculation of the MSE

involves matrix inversion, the trace operation, and the
expectation operation. The value of theMSE can be evalu-
ated numerically. In order to explicitly identify the impacts
of the node density and sampling rate on the MSE, we
will first focus on the analysis of system operating in the
AWGN channel, and this will allow us to express the
MSE as a closed form expression of the node density
and sampling rate. The MSE obtained under the AWGN
channel will be compared to the MSE under the fading
environment later in this section.

Proposition 1. When Ns → ∞ and Nt → ∞ while
keeping bothNt → ∞ and θ finite, theMSE of the estima-
tion of the discrete samples collected by the sensors and
transmitted in an AWGN channel is

σ 2
st = lim

N→∞ σ 2
st,N =

√
2

π
√

β
· K

(√
α

β

)
(13)

where K(·) is the complete elliptic integral of the first kind
([19], Equation (8.112.1)), and

α = 8
σ 2
w + (1 + σ 2

w) θδ
γ0

· ρ
1
δ
s

1 − ρ
2
δ
s

· ρ
1
θ
t

1 − ρ
2
θ
t

, (14a)

β =1
2

+ 1
σ 2
w + (1 + σ 2

w) θδ
γ0

·
⎛
⎝1 + 2ρ

2
δ
s

1 − ρ
2
δ
s

⎞
⎠

⎛
⎝1 + 2ρ

2
θ
t

1 − ρ
2
θ
t

⎞
⎠

+ 1
2

[
1

σ 2
w + (1 + σ 2

w) θδ
γ0

]2

+ α

2
. (14b)

Proof. The proof is given in Appendix 1.

In Proposition 1, the spatial-temporal sampling affects
the MSE in the form of the following functions, f1(ρs, δ) =

ρ
2
δ
s

1−ρ
2
δ
s

, g1(ρs, δ) = ρ
1
δ
s

1−ρ
2
δ
s

, f1(ρt , θ) = ρ
2
θ
t

1−ρ
2
θ
t

, g1(ρt , θ) =

ρ
1
θ
t

1−ρ
2
θ
t

, and f2(δ, θ) = 1
σ 2
w+(1+σ 2

w) θδ
γ0
. Among them, f1(ρs, δ)

and g1(ρs, δ) are related to the spatial correlation, and they
are increasing functions of δ. f1(ρt , θ) and g1(ρt , θ) are
related to the temporal correlation, and they are increas-
ing functions of θ . The function f2(δ, θ) is a decreasing
function of both δ and θ .
In Proposition 1, if we assume that the data is spatially

correlated but temporally uncorrelated, then the MSE of
the spatial samples can be simplified as follows.

Corollary 1. If ρt = 0, the asymptotic MSE of the
estimation for the spatially correlated samples is

σ 2
s =

⎡
⎣(

1 + 1
σ 2
w + (1 + σ 2

w) θδ
γ0

)2

+ 4ρ
2
δ
s(

σ 2
w + (1 + σ 2

w) θδ
γ0

)(
1 − ρ

2
δ
s

)
⎤
⎥⎥⎦

− 1
2

.

(15)

Proof. Setting ρt = 0 leads to α = 0 and β =
0.5+[ 1+2f1(ρs, δ)] f2(δ, θ)+0.5f2(δ, θ)2. Equation (15) can
be obtained by substituting β into (13).

When σ 2
w = 0, the result in Corollary 1 coincides with

([5], [Equation (12)]), where only the spatial samples are
considered. It was shown in [5] analytically that σ 2

s is an
increasing function in δ.
Similarly, based on the symmetry between the space and

time domains, we can get theMSE of the estimation of the
temporal samples for a given node, by exchanging ρs with
ρt , and δ with θ in (15).
Figure 2 shows the asymptotic MSE as a function of

the spatial node density, δ, under various values of the
correlation coefficients, ρt and ρs, in an AWGN channel
with SNR γ0 = 10 dB. Define γw = P0

σ 2
w

as the mea-
surement SNR per unit area. The temporal sampling rate
is θ = 10 sample/sec. Data samples are assumed to be
a zero-mean Gaussian process with the auto-correlation
function given in (1). The simulation results are obtained
by using Ns = Nt = 60 samples to approximate infinite
number of samples. Excellent match is observed between
the simulation results with finite number of samples and
the asymptotic results with infinite number of samples. As
expected, theMSE performance improves as γw increases.
When γw = 10 dB, there is only a slight difference between
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Figure 2 The asymptotic MSE of the estimated discrete data samples in the 1-D network under various values of measurement SNR γw
(AWGN, γ0 = 10 dB, θ = 10Hz).

the system with and without measurement noise. In addi-
tion, theMSE is an increasing function in the node density
for all configurations. This indicates that the MSE for the
discrete data samples can benefit from a smaller spatial
node density. Therefore, if we only want to obtain the data
at some discrete locations, we should use a node density
that is as small as allowed by the application, i.e., placing
exactly one sensor at each desired measurement location
will obtain the optimum performance. Due to the symme-
try between the space and time domain, the above analysis
is also true for the relationship between σ 2

st and θ . In addi-
tion, theMSE approaches a constant as δ → ∞. The result
is corroborated by the following corollary.

Corollary 2. For the estimation of the discrete samples
collected by the sensors and transmitted in AWGN chan-
nels, given a sampling rate θ , when δ → ∞, the asymptotic
MSE approaches a constant as

lim
δ→∞ σ 2

st = 2
π

⎡
⎣1 − 2γ0

(1 + σ 2
w)θ log(ρs)

· 1 + ρ
1
θ
t

1 − ρ
1
θ
t

⎤
⎦

− 1
2

·K(�δ),

(16)

with �δ =
[

8γ0ρ
1
θ
t

2γ0(1+ρ
1
θ
t )2−(1+σ 2

w)θ log(ρs)(1−ρ
2
θ
t )

] 1
2

.

Proof. The proof is in Appendix 2.

Corollary 3. For the estimation of the discrete sam-
ples collected by the sensors and transmitted in AWGN
channels, when both θ → ∞ and δ → ∞, we have

lim
δ→∞,θ→∞ σ 2

st = 2
π

(
1 + 4

�

)− 1
2 ·K

(√
4

4 + �

)
, (17)

where � = log(ρs) log(ρt)(1+σ 2
w)

γ0
.

Proof. Equation (17) can be directly proved by substitut-

ing limθ→∞ θ

(
1 − ρ

1
θ
t

)
= − log(ρt) into (45).

In (17), when both θ and δ tend infinity, the limit
depends on the correlation coefficients and the SNR. The
relationship between the limit and ρs, ρt , γ0 is given by the
following corollary.

Corollary 4. The limit in Corollary 3 is proportional to
ρs and ρt , and inversely proportional to the SNR γ0.

Proof. The proof is in Appendix 3.

We next compare in Figure 3 the MSE for systems oper-
ating in AWGN channels and fading channels, respec-
tively. The MSE in fading channels is obtained with a
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Figure 3 Impacts of fading on the asymptoticMSE of the estimated discrete data samples in 1-D networks (γ0 = 10 dB, θ = 10Hz, σ 2
w = 0).

hybrid analytical and simulation method, i.e., given H,
the conditional MSE can be calculated by performing the
trace operation over (11), and the unconditional MSE can
then be obtained by averaging over a large number of
independent implementations of H. The parameters, γ0
and θ , are the same as those in Figure 2, and the vari-
ance of the measurement noise is σ 2

w = 0. The fading
MSE is lower bounded by its AWGN counterpart. The
difference between the MSE of these two types of net-
works gradually diminishes as ρs and ρt increases. When
ρs = ρt = 0.9, there is only a slight difference between
the two, especially when the node density is high. In
addition, both of the two networks have the same per-
formance trend, i.e., the MSE is an increasing function in
δ. Therefore, the analytical result in AWGN channel can
provide a rough guideline on the design of systems with
fading.

3.2 MMSE spatial-temporal interpolation
This section discusses the distortion performance of
space-time interpolation, i.e., the estimation of any arbi-
trary point on the space-time plane by interpolating theN
discrete space-time samples.
Since we are interested in the reconstruction fidelity

of the entire space-time hyperplane, the worst case sce-
nario is considered by estimating the data located in the
middle of the square formed by four neighboring sam-
ples, as shown in Figure 4a, with the data points to be
estimated being x′

ij = x[ (i − 1
2 )d, (j − 1

2 )Ts], for i =
1, . . . ,Ns and j = 1, . . . ,Nt . Define the interpolation data

vector as xdt =
[
x′T
1 , . . . , x′T

Ns

]T ∈ RN×1, where x′
i =[

x′
i1, x

′
i2, . . . , x

′
iNt

]T ∈ RNt×1.

Based on the orthogonal principal, E
[
(x̂dt − xdt)x̂Hst

]
=

0, where x̂dt is an estimate of xdt , the MMSE space-time
interpolations can be expressed by

x̂dt = Rdx̂R−1
x̂x̂ x̂st , (18)

where

Rdx̂ � E(xdtx̂Hst ) =
√

En
1 + σ 2

w
RdxHHWx, (19a)

Rx̂x̂ � E(x̂st x̂Hst ) =WH
x

(
En

1 + σ 2
w
HRxxHH

+ Enσ 2
w

1 + σ 2
w
HHH + σ 2

z IN
)
Wx,

(19b)

with Rdx � E(xdtxHst ) = R′
s ⊗ R′

t being a TBT
matrix. The matrix R′

s is a Toeplitz matrix with the

first row being ρ
d
2
s [ 1, 1, ρd

s , . . . , ρ
(Ns−2)d|
s ]T ∈ RNs×1,

and the first column ρ
d
2
s [ 1, ρd

s , . . . , ρ
(Ns−1)d
s ]T ∈ RNs×1.

Similarly R′
t is a Toeplitz matrix with the first row

being ρ
Ts
2
t [ 1, 1, ρTs

t , . . . , ρ(Nt−2)Ts
t ]T ∈ RNt×1, and the first
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Figure 4 Three types of interpolations for the 1-D network. (a) Space-time interpolation. (b) Space interpolation. (c) Time interpolation.

column ρ
Ts
2
t [ 1, ρTs

t , . . . , ρ(Nt−1)Ts
t ]T ∈ RNt×1. Combining

(18) with (19), we have

x̂dt =
√

En
1 + σ 2

w
RdxHH

×
[

En
1 + σ 2

w
HRxxHH + Enσ 2

w
1 + σ 2

w
HHH + σ 2

z IN
]−1

y.

(20)

The corresponding error correlation matrix, R(d)
ee �

E
[
(x̂dt − xdt)(x̂dt − xdt)H

]
, can then be calculated by

R(d)
ee ==EH

{
Rxx−RdxHH

[
HRxxHH + σ 2

wHHH

+(1 + σ 2
w)

θδ

γ0
IN

]−1
HRxd

}
,

(21)

where Rdd = E(xdtxHdt) = Rxx is used in the above
equation, and Rxd = RH

dx.
The MSE for the space-time interpolation when oper-

ating in a fading channel can be evaluated numerically by
performing the trace operation over (21). To gain more
insights on the impacts of node density and sampling
rate, we next perform asymptotic analysis for systems
operating in AWGN channels.

Proposition 2. When Ns → ∞ and Nt → ∞ while
keeping both δ and θ finite, the MSE of the spatial-
temporal interpolation for a network operating in AWGN
channels is

ϑ2
st � lim

N→∞ ϑ2
st,N = 1 − ρ

1
θ
t

1 + ρ
1
θ
t

·
{
1 +

∫ 1
2

− 1
2

1 + cos(2π f )
v − cos(2π f )

·
[
q − cos(2π f )
p − cos(2π f )

] 1
2
df

}

(22)

where

v = 1 + ρ
2
θ
t

2ρ
1
θ
t

, p=v+ 1

2
(
σ 2
w + (1 + σ 2

w) θδ
γ0

) · 1 − ρ
2
θ
t

ρ
1
θ
t

· 1 + ρ
1
δ
s

1 − ρ
1
δ
s

,

q = v + 1

2
(
σ 2
w + (1 + σ 2

w) θδ
γ0

) · 1 − ρ
2
θ
t

ρ
1
θ
t

· 1 − ρ
1
δ
s

1 + ρ
1
δ
s

.

(23)

Proof. The proof is in Appendix 4.

The results in Proposition 2 illustrate the asymptotic
MSE performance for the MMSE interpolation in both
the space and time domains. Even though the MSE in
Proposition 2 is expressed as an explicit function of the
correlation coefficients and the space-time sample rates,
it is expressed in the form of an integral and eludes a
closed-form expression. It should be noted that the inte-
grand is composed for elementary functions, and the
integration limit is finite. Therefore the integral can be
easily evaluated numerically. To gain further insight on
the impact of the space-time correlation on the estima-
tion performance, we consider in the following section the
interpolation in just one domain.

3.3 Interpolation in the space or time domain
In this section, we consider theMSE performance of inter-
polation in the space domain as in Figure 4b or in the
time domain as in Figure 4c, but not both. Studying the
interpolation in one domain will help quantify the impact
of node density or sampling rate on the estimation MSE.
The analytical asymptotic study is performed for systems
operating in AWGN channels.
Due to the symmetry between the space and time

domains, it is sufficient to study the interpolation in the
space domain. From Figure 4b, the coordinates of the
data to be estimated during the spatial interpolation are[(
i + 1

2
)
d, jTs

]
, for i = 0, . . . ,Ns − 1 and j = 0, . . . ,Nt − 1.

The asymptotic MSE of the spatial interpolation is given
in the following proposition.
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Proposition 3. When Nt → ∞ and Ns → ∞, while
keeping δ and θ finite, the MSE of the estimated data dur-
ing the spatial interpolation for a network operating in
AWGN channels is

ϑ2
s = 2

π
·
[
σ 2
w + (1 + σ 2

w)
θδ

γ0

]
· 1 − ρ

1
δ
s

1 + ρ
1
δ
s

· 1√
(p − 1)(q + 1)

·
[
(p − q)K(α1) + (q − v)(p + 1)

v + 1
�(β1,α1)

]
(24)

where v, p, q are defined in (23),

α1 =
[

2(p − q)
(p − 1)(q + 1)

] 1
2
, β1 = 2(p − v)

(p − 1)(v + 1)
, (25)

and �(·) is the complete elliptic integral of the third kind
[19].

Proof. The proof is in Appendix 5.

If we assume the data samples are temporally uncorre-
lated (ρt = 0), and perform spatial interpolation based
on the spatially correlated but temporally uncorrelated
data samples, then the MSE given in Proposition 3 can be
simplified as follows.

Corollary 5. If ρt = 0, the asymptotic MSE of the
estimation for the spatial interpolation is

ϑ2
s =

⎡
⎣σ 2

w + (1 + σ 2
w)

δθ

γ0
+ 1 − ρ

1
δ
s

1 + ρ
1
δ
s

⎤
⎦

1
2

×
⎡
⎣σ 2

w + (1 + σ 2
w)

δθ

γ0
+ 1 + ρ

1
δ
s

1 − ρ
1
δ
s

⎤
⎦

− 1
2

(26)

Proof. When ρt = 0, we have �(ρ
Ts
t , f2) = 1. Substitut-

ing �(ρ
Ts
t , f2) = 1 into (52) directly leads to (26).

When σ 2
w = 0, the result in Corollary 5 simplifies to ([6],

Proposition 2), where only the spatial data correlation is
considered. It was proven in [6] that the MSE in (26) is a
decreasing function of the node density δ.
Figure 5 compares the asymptotic MSE performance

between the spatial interpolation and the space-time
interpolation. In the simulation, ρt = 0.1 and σ 2

w = 0 and
all other parameters are the same as those in Figure 2. As
expected, performing interpolation in the space domain
alone leads to a better performance compared to inter-
polation in both the space and time domains. The dif-
ference increases as the spatial correlation coefficient,
ρs, increases. Different from the results in Figure 2, it
is observed that the MSE of the spatial interpolation or
space-time interpolation is a decreasing function of the
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Figure 5 The asymptotic MSE of space-time interpolation and
space interpolation in the 1-D network (AWGN, γ0 = 10dB,
σw2 = 0, ρt = 0.1, θ = 10Hz).

spatial node density δ. This can be intuitively explained
by the fact that the spatial interpolation depends mainly
on the spatial correlation among the sensor nodes, and
a higher node density means a stronger spatial correla-
tion among the data samples, thus a better estimation
fidelity.

It can be seen from Figure 5 that, when δ → ∞, theMSE
approaches a lower bound, which is stated in the following
corollary.

Corollary 6. The following relationship holds for the
MSE of the estimation for the data samples σ 2

st and the
MSE of the spatial interpolation ϑ2

s

lim
δ→∞ ϑ2

s =
⎡
⎢⎣2

π

⎛
⎝1 − 2γ0

(1 + σ 2
w)θ log(ρs)

· 1 + ρ
1
θ
t

1 − ρ
1
θ
t

⎞
⎠

− 1
2

· K(�δ)

⎤
⎥⎦

≥ lim
δ→∞ σ 2

st ,

(27)
with �δ defined in Corollary 2.

Proof. The proof is in Appendix 6.

Due to the symmetry between the space and the time
domains, we can get the MSE of the time interpolation, as
shown in Figure 4c, by exchanging ρs with ρt , and δ with θ

in Proposition 3, and Corollaries 5 and 6.

3.4 Optimum spatial-temporal sampling
It can be seen from Figure 5 that, when δ is small, theMSE
decreases dramatically as δ increases. When δ reaches
a certain threshold, no apparent performance gain can
be achieved by increasing δ further, i.e., the slope of ϑ2

st
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approaches zero as δ increase. The above statement is also
true for the sampling rate θ .
In the space domain, we can find the optimum node

density, δ0, by solving the equation
∣∣∣ ∂ϑ2

st
∂δ

∣∣∣
δ0

= εs, with εs

being a small number. Figure 6 shows the optimum node
density in AWGN channels as a function of the spatial
correlation coefficient ρs, under various values of the sam-
pling rate θ . The parameters are ρt = 0.5, σ 2

w = 0, and
εs = 10−3. The results in this figure demonstrate that
the optimum node density decreases almost linearly as
ρs increases. Therefore, for the estimation of the spatial
interpolation, a smaller node density is required for a field
with a stronger spatial correlation. Moreover, the optimal
node density converges as the sampling rate θ increases,
i.e., the optimum node densities are almost identical for
θ = 10 and θ = 50Hz. This further corroborates that
increasing the sampling rate beyond a certain thresh-
old yields negligible performance gain. Similar results
are observed for the optimum sampling rate due to the
space-time symmetry.

4 Optimumnode density in 2-D networks
The impacts of spatial-temporal sampling on the estima-
tion fidelity in a 2-D network, as shown in Figure 1b,
are studied in this section. In the space domain, the Ns
sensor nodes are located on a square grid. In the time
domain, each sensor collects Nt data samples. The space-
time coordinate for the sample xikm is [ (i − 1)d, (k −
1)d, (m − 1)Ts], for i, k = 1, . . . ,Ms, m = 1, . . . ,Nt , with
Ms = √

Ns. It should be noted that the spatial node den-
sity in a 2-D sensor network is δ = 1

d2 , which is different
from the 1-D case.
Stacking all the spatial-temporally correlated

data samples into a column vector, we have ξ st =
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Figure 6 The asymptotically optimum spatial node density
versus spatial correlation coefficient ρs in the 1-D network
(AWGN, σw2 = 0, ρt = 0.5, εs = 10−3).

[ xT11, . . . , xT1Ms
, . . . , xTMs1

, . . . , xMsMs
T ] T ∈ RN×1, where

xm1m2 = [ xm1m21, . . . , xm1m2Nt]T ∈ RNt×1. The auto-
correlation matrix, 	xx = E

[
ξ stξ

H
st
] ∈ RN×N , can be

represented as

	xx = Rss ⊗ Rt (28)

where Rss ∈ RNs×Ns and Rt ∈ RNt×Nt are the correlation
matrices in the space domain and time domain, respec-
tively. The matrix, Rss, assumes the form of a TBT matrix
as defined in ([6], Equation (20)) for the 2-D spatially cor-
related network. The matrix Rt is a symmetric Toeplitz
matrix as in Equation (9). Therefore, the matrix, 	xx, is a
3-level Toeplitz matrix ([20], Definition 1), i.e., 	xx has an
outermost block Toeplitz structure, and each block is still
a block Toeplitz matrix, down to the innermost block with
the form of an ordinary Toeplitz matrix.
Mirroring the analysis in the 1-D case, we will study, in

the following two sections, the optimum spatial-temporal
sampling for the MMSE estimation of the discrete data
samples, and the MMSE interpolation, respectively.

4.1 MMSE estimation of the discrete samples
With the first-stepMMSE estimation in Lemma 1, we have
the MSE, ψ2

st,N = 1
NE

[
‖ξ̂ st − ξ st‖2

]
, as

ψ2
st,N = 1

N
EH

⎡
⎣trace

(
	−1

xx+ HHH

σ 2
wHHH + (1 + σ 2

w) θδ
γ0
IN

)−1
⎤
⎦ ,

(29)

where ξ̂ st is the MMSE estimate of ξ st . The above MSE in
a fading channel can be evaluated numerically.
Following the same procedure as in 1-D networks, we

derive the explicit form of the asymptotic MSE for the
system in AWGN channels.

Proposition 4. When Ns → ∞ and Nt → ∞, while
keeping δ and θ finite, the asymptotic MSE of the discrete
space-time samples in a 2-D network transmitted through
AWGN channels is

ψ2
st � lim

N→∞ ψ2
st,N =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[
1

�ss(f1, f2)�(ρ
Ts
t , f3)

+ 1
σ 2
w + (1 + σ 2

w) θδ
γ0

]−1

df1df2df3,

(30)

where �(a, f ) is defined in (40) in Appendix 1, and

�ss(f1, f2) =
+∞∑

i=−∞

+∞∑
k=−∞

ρ

√
(i2+k2)/δ

s e−j2π(if1+kf2). (31)

Proof. The proof is in Appendix 7.
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In Proposition 4, the impacts of the spatial-
temporal sampling rate are expressed through the
term, 1

σ 2
w+(1+σ 2

w) θδ
γ0
, and the 3-D DTFT, �′

xx(f1, f2, f3) =
�ss(f1, f2)�(ρ

Ts
t , f3). The expression of ψ2

st eludes a
closed-form. The non-closed-form expression in (30)
can be easily evaluated numerically given that the inte-
grals are of finite limits. Even though �′

xx(f1, f2, f3) is
expressed as the sum of an infinite series, the value of
ρs

√
(i2+k2)/δ decreases exponentially as i and k increase,

thus �′
xx(f1, f2, f3) can be accurately approximated with

moderate limits on i and k.
If we assume that the data are temporally uncorrelated

(ρt = 0), then the MSE of the data samples in proposition
4 can be simplified as follows.

Corollary 7. If ρt = 0, the asymptotic MSE of the data
samples in a 2-D network with AWGN channels is

ψ2
s =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[
1

�ss(f1, f2)
+ 1

σ 2
w + (1 + σ 2

w) θδ
γ0

]−1

df1df2,

(32)

where �ss(f1, f2) is defined in (31).

Proof. Setting ρt = 0 in (40) leads to �(ρ
Ts
t , f3) = 1.

Substituting �(ρ
Ts
t , f3) = 1 into (30) and solving the

integration with respect to f3, we can obtain (32).

The result in Corollary 7 simplifies to ([6], Proposition
3) with σ 2

w = 0, where only the spatial data correlation is
considered.
The asymptotic MSE of the data samples in a 2-D net-

work is plotted as a function of the temporal sampling rate
θ in Figure 7, under various values of temporal correlation
coefficient ρt and measurement SNR γw. The parameters
are ρs = 0.5 and γ0 = 10 dB. For comparison, the MSE
in an 1-D network is also shown in the figure. It is inter-
esting to note that when the measurement SNR is low
(γw = 5 dB) and the time correlation is high (ρt = 0.9),
the MSE is decreasing in θ ; for all other cases, the MSE
is an increasing function in θ . This is because if σ 2

w is
large enough, the majority of the energy is used for trans-
mitting measurement noise. In this case, when increasing
θ for data with high temporal correlation, the benefit of
data correlation outweighs the loss due to less energy per
sample. The performance difference between γw = 10 dB
and σ 2

w = 0 is very small. In addition, 2-D MSE is larger
(worse) than the 1-D MSE. This can be explained by the
fact that, under the same spatial node density and tempo-
ral sampling rate, each node in the 2-D network needs to
cover a larger area than the node in the 1-D network, thus
leads to a worse performance.
The asymptotic MSE for 2-D networks in AWGN chan-

nels is compared to that in fading channels in Figure 8.
Similar to the 1-D case, the MSE with fading channels is
worse than its AWGN counterpart. The networks with
fading channels and AWGN channels have similar per-
formance trend, and the performance difference between
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Figure 7 The MSE of the estimated discrete data samples in 2-D network (AWGN, γ0 = 10dB, ρs = 0.5).
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Figure 8 Impacts of fading on the MSE of the estimated discrete data samples in 2-D networks (γ0 = 10dB, θ = 10Hz, σ 2
w = 0).

the two gradually diminishes as ρs increases. When ρs =
0.9, the performance in fading and AWGN channels are
almost the same at high node density.

4.2 MMSE spatial-temporal interpolation
The performance of spatial-temporal interpolations in a
2-D network is studied in this section. Similar to the 1-
D case, we consider the worst case by estimating the
data located in the middle of the cube formed by eight
adjacent data samples, with the data points to be esti-
mated as x′

ikm = x[ (i − 1
2 )d, (k − 1

2 )d, (m − 1
2 )Ts],

for i, k = 1, . . . ,
√
Ns and m = 1, . . . ,Nt . Corre-

spondingly, the data vector can be expressed as ξdt =
[ x′T

11, . . . , x′1Ms , . . . , x′T
Ms1, . . . , x′T

MsMs ]
T ∈ RN×1, where

x′
m1m2 =[ x′

m1m21, . . . , x
′
m1m2Nt)

]T ∈ RNt×1.
Following the same procedure as in the 1-D case, the

error correlation matrix, 	
(d)
ee = E

[
(ξ̂dt−ξdt)(ξ̂dt−ξdt)

H
]
,

with ξ̂dt being the MMSE estimate of ξdt , can be calcu-
lated by

	(d)
ee =EH

{
	xx−	dxHH

[
H	xxHH + σ 2

wHHH

+(1 + σ 2
w)

θδ

γ0
IN

]−1
H	xd ,

}
,

(33)

where 	dd = E(ξdtξ
H
dt) = 	xx is used in the above

equation. 	dx = E
[
ξdtξ

H
st
]
, and 	xd = 	H

dx. The cross-
correlation matrix, 	dx, can be expressed as

	dx = R′
ds ⊗ R′

t (34)

where R′
ds ∈ RNs×Ns and R′

t ∈ RNt×Nt are the cross-
correlation matrices between the data samples and the
interpolations in the space domain and time domain,
respectively. The matrix, R′

ds, has the form of a non-
symmetric TBT matrix as defined in ([6], Equation (27))
for the 2-D spatially correlated network. The matrix R′

t is
a Toeplitz matrix defined in Section 3.2. The matrix, 	dx,
is a non-symmetric 3-level Toeplitz matrix.
For the AWGN case, the asymptotic MSE is given as

follows.

Proposition 5. When Ns → ∞ and Nt → ∞, while
keeping δ and θ finite, the asymptotic MSE of the space-
time interpolations in a 2-D network with AWGN chan-
nels is
ϕ2
st = lim

N→∞ ϕ2
st,N

=
∫ 1

2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

⎡
⎣�′

xx(f1, f2, f3)

− |�′
dx(f1, f2, f3)|2

�′
xx(f1, f2, f3) +

(
σ 2
w + (1 + σ 2

w) θδ
γ0

)
⎤
⎦ df1df2df3.

(35)

where �′
xx(f1, f2, f3) is defined in (55) in Appendix 7, and

�′
dx(f1, f2, f3) is

�′
dx(f1, f2, f3) = ρ

Ts
2
t (1 − ρ

Ts
t )(1 + ej2π f3 )

1 + ρ
2Ts
t − 2ρTs

t cos(2π f3)

·
+∞∑

i=−∞

+∞∑
k=−∞

ρ

√
[(i+ 1

2 )2+(k+ 1
2 )2]/δ

s e−j2π(if1+kf2).

(36)
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Proof. The proof is in Appendix 8.

Figure 9 compares the asymptotic MSE of the inter-
polation in a 2-D network with that in an 1-D network.
In the simulation, the parameters are the same as those
in Figure 7 except σ 2

w = 0. In both 1-D and 2-D net-
works, it is observed that the interpolationMSE decreases
monotonically with the temporal sampling rate. Again,
the 1-D asymptotic MSE is smaller (better) than its 2-
D counterpart for all temporal correlation coefficients ρt .
The performance difference between the 1-D and 2-D
networks increases as ρt increases.
If we just consider the spatial interpolation of the 2-D

network, for the special case of uncorrelated data in the
time domain, we can simplify the result as follows.

Corollary 8. If ρt = 0, the asymptotic MSE of the esti-
mated data during the spatial interpolations of the 2-D
network with AWGN channels is

ϕ2
s =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[
�ss(f1, f2)

− |�ds(f1, f2)|2
�ss(f1, f2) + σ 2

w + (1 + σ 2
w) θδ

γ0

]
df1df2,

(37)

where �ss(f1, f2) is given in (31), and �ds(f1, f2) is

�ds(f1, f2) =
+∞∑

i=−∞

+∞∑
k=−∞

ρ

√
[(i+ 1

2 )2+(k+ 1
2 )2]/δ

s e−j2π(if1+kf2)

(38)

Proof. The proof is in Appendix 9.

The result in Corollary 8 with σ 2
w = 0 simplifies to ([6],

Proposition 4), where only the spatial data correlation is
considered.

4.3 Optimum spatial-temporal sampling
The asymptotically optimum spatial and temporal sam-
pling rates in a 2-D network can be obtained by numeri-
cally solving | ∂ϕ2

st
∂δ

| = εs and | ∂ϕ2
st

∂θ
| = εt , with εs and εt being

very small numbers. Figure 10 shows the asymptotically
optimum temporal sampling rate as a function of the tem-
poral correlation coefficient in the 1-D and 2-D networks
with AWGN channels. In the figure, ρs = 0.5, σ 2

w = 0, and
ε = 10−3 are used for both 1-D and 2-D networks. It is
observed that the asymptotically optimum sampling rate
for the 1-D and 2-D networks are almost identical, with
the optimum sampling rate in the 1-D network slightly
larger.
It should be noted that the analysis methods presented

in this article can be extended to high dimensional net-
works by employing block multilevel Toeplitz matrix. In
this article, the 1-D and 2-D networks are used as exam-
ples to investigate the interactions among the various
network parameters and their impacts on the system per-
formance. The results of high dimensional networks can
be obtained in a similar manner.

4.4 Randomly distributed networks
So far all the studies are for networks with determin-
istic topologies. In this section, we will compare the
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Figure 9 The asymptotic MSE of space-time interpolations in the 1-D and 2-D networks (AWGN, ρs = 0.5, σ 2
w = 0, γ0 = 0dB).
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MSE performance between networks with deterministic
topology and random topology, respectively. The ran-
dom topology follows a Poisson point process, i.e., the
number of nodes in a given area follows a Poisson distribu-
tion, and the coordinates of each node follows a uniform
distribution in each dimension.
The MSE of the 1-D and 2-D networks with random

topology can be evaluated numerically through a hybrid

analytical-simulation method. The MSE conditioned on a
particular deployment of the nodes can be calculated by
using (12) for the 1-D network, or (29) for the 2-D net-
work. The elements in the autocorrelation matrix, Rxx or
	xx, depends on the actual locations of the nodes. The
unconditional MSE can then be calculated by averaging a
large number of random deployments.
Figure 4.3 compares the performance of networks with

random topology and deterministic topology, operating
in AWGN channels. The parameters are γ0 = 10 dB
and σ 2

w = 0. For both 1-D and 2-D networks, networks
with deterministic topology consistently outperform their
random topology counterparts. The difference between
the two types of networks becomes smaller as ρs and ρt
increase. The topology of practical networks is usually a
combination of the grid-based deterministic topology and
random topology. Therefore, the performance of practi-
cal networks will fall between the bounds delimited by the
two types of networks.

5 Conclusions
In this article, the optimum sampling in the 1-D and
2-D WSNs with spatial-temporally correlated data was
studied. The impacts of the spatial node density and the
temporal sampling rate on the network performance were
investigated through asymptotic analysis and numerical
studies. Under the constraint of fixed power per unit area,
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w = 0).
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the MSE performance of various networks were stud-
ied through a combination of analytical and simulation
methods. The results quantitatively identified the interac-
tions between the estimation fidelity and a large number
of system parameters, such as node density, sampling rate,
measurement noise, fading, and random topology, etc. It
was observed that the network with a deterministic grid-
based topology and operating in AWGN channels has the
best performance, yet that with a random topology and
operating in fading channels has the worst performance.
Therefore, whenever possible, a grid-based determinis-
tic topology is preferred over a random topology. The
MSE performance of these two types of networks can
serve as lower and upper bounds for practical networks,
and their difference gradually diminish as the correlation
coefficients increase.

Appendix 1
Proof of Proposition 1
Setting H = IN in (12) and performing the eigenvalue
decomposition of Rxx, we can rewrite the MSE as

σ 2
st,N = 1

N

Ns−1∑
m=1

Nt−1∑
k=1

(
1

λm,k
+ 1

σ 2
w + (1 + σ 2

w) θδ
γ0

)−1

,

(39)

where λm,k , form = 0, 1, . . . ,Ns−1, and k = 0, 1, . . . ,Nt−
1, are the eigenvalues of Rxx. When Ns → ∞ and Nt →
∞, the 2-D discrete-time Fourier transform (DTFT) of the
sequence,

{
ρ

|m|d
s ρ

|k|Ts
t

}
m,k

, which are elements of the TBT

matrix Rxx, can be calculated as �xx(f1, f2) = �(ρd
s , f1) ×

�(ρt
Ts , f2), where

�(a, f ) =
+∞∑

m=−∞
a|m|e−j2πmf = 1 − a2

1 + a2 − 2a cos(2π f1)
,

(40)

Based on the extension of the Szego’s theorem to TBT
matrices ([18], Theorem 1), when Ns → ∞ and Nt → ∞,
the asymptotic MSE is

σ 2
st = lim

N→∞ σ 2
st,N

=
∫ 1

2

− 1
2

∫ 1
2

− 1
2

[
1

�xx(f1, f2)
+ 1

σ 2
w + (1 + σ 2

w) θδ
γ0

]−1

df1df2,

(41)

Substituting the result of�xx(f1, f2) into (41), and apply-
ing ([19], Equation (2.553.3)), we can solve the inner
integral as

σ 2
st =

1−ρ
2Ts
t

2ρTs
t

∫ 1
2

− 1
2

[
cos2 (2π f2)−a2 cos(2π f2) + b2

]− 1
2 f2,

(42)

where

a2=
[
1+ρ

2Ts
t + 1

σ 2
w + (1 + σ 2

w) θδ
γ0

· 1+ρ2d
s

1−ρ2d
s

·(1 − ρ
2Ts
t )

]
·ρ−Ts

t ,

(43a)

b2 =
⎡
⎣ 2(1 + ρ

2Ts
t )2

σ 2
w + (1 + σ 2

w) θδ
γ0

· 1 + ρ2d
s

1 − ρ2d
s

· (1 − ρ
4Ts
t )

+
(

1 − ρ
2Ts
t

σ 2
w + (1 + σ 2

w) θδ
γ0

)2
⎤
⎦ · (4ρ−2Ts

t ). (43b)

Based on ([19], Equation (2.580.2)) and ([19], Equation
(3.152.2)), we can get the results in (13).

Appendix 2
Proof of Corollary 2
The MSE in (13) can be alternatively written as

σ 2
st =

√
2

π
·
∫ π

2

0

1√
β − α sin2 x

dx (44)

Since integration is a linear operator, we can directly
find the limit of the integrand, and the result is

lim
δ→∞

(
1√

β − α sin2 x

)

= √
2 log(ρs)

⎡
⎣log(ρs) − 2γ0

θ(1 + σ 2
w)

· 1 + ρ
1
θ
t

1 − ρ
1
θ
t

− 8γ0
θ(1 + σ 2

w)
· ρ

1
θ
t

1 − ρ
2
θ
t

sin2 x

⎤
⎦

− 1
2

.

(45)

Substituting (45) into (44) and simplifying lead to (16).

Appendix 3
Proof of Corollary 4
The limit in (17) can be rewritten as

2
π

(
1 + 4

�

)− 1
2 · K

(√
4

4 + �

)

= 2
π

∫ π
2

0

dw√
1 + 4

�
(1 − sin2 w)

.
(46)
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Since (1 − sin2 w) is a non-negative real number, the limit
is an increasing function of� , thus proportional to ρs and
ρt , but inverse proportional to the SNR γ0.

Appendix 4
Proof of Proposition 2
The Toeplitz matrix, R′

s, is uniquely determined by the

sequence
{
ρ

|m+ 1
2 |d

s

}(Ns−1)

m=−(Ns−1)
. Similarly, the Toeplitz

matrix, R′
t , is uniquely determined by the sequence,{

ρ
|m+ 1

2 |Ts
t

}(Nt−1)

m=−(Nt−1)
. Based on [21], when Ns → ∞

and Nt → ∞, the 2-D DTFT of the sequence,{
ρ

|m+ 1
2 |d

s ρ
|k+ 1

2 |Ts
t

}
m,k

, which are elements of the TBT

matrix Rdx, can be calculated as�dx(f1, f2) = �′(ρsd, f1)×
�′(ρtTs , f2), where

�′(a, f ) = a
1
2

(1 − a)(1 + ej2π f )
1 + a2 − 2a cos(2π f )

. (47)

Based on ([18], Lemma 1), Rdx is asymptotically equiv-
alent to a circulant-block-circulant (CBC) matrix, Cdx =
UH
NDdxUN , where UH

N is the unitary discrete Fourier
transform (DFT) matrix andDdx is a diagonal matrix with
its kth diagonal element being

(Ddx)k,k = �′
(

ρd
s ,

k − 1
Ns

)
· �′

(
ρ
Ts
t ,

k − 1
Nt

)
. (48)

Similarly, the TBT matrix, Rxx, is asymptotically equiv-
alent to a CBC matrix, Cxx = UH

NDxxUN , where Dxx
is a diagonal matrix with its kth diagonal element being
(Dxx)k,k = �

(
ρd
s ,

k−1
Ns

)
· �

(
ρ
Ts
t , k−1

Nt

)
, with �(ρd, f )

defined in (40).
In addition, the CBC matrices, Cxx and Cdx, share

the same orthonormal eigenvectors [22]. Based on
([23], Theorem 2.1), the error correlation matrix,
R(d)
ee , is asymptotically equivalent to a CBC matrix,

C(d)
ee = Cxx − Cdx

(
Cxx +

(
σ 2
w + θδ

γ0

)
I
)−1

CH
dx =

UH
ND

(d)
ee UN , where the diagonal matrix D(d)

ee = Dxx −
Ddx

(
Dxx+

(
σ 2
w + θδ

γ0

)
IN

)−1
DH

dx.
Based on the extension of the Szego’s theorem to TBT

matrices ([18], Theorem 1), we have

ϑ2
st =

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[
�xx(f1, f2)

− |�dx(f1, f2)|2
�xx(f1, f2) + σ 2

w + (1 + σ 2
w) θδ

γ0

]
df1df2.

(49)

With ([19], Equation (2.559.2)), we can solve the inner
integral, and the result is

ϑ2
st =

∫ 1
2

− 1
2

⎡
⎢⎣�(ρ

Ts
t , f ) − |�′(ρTs

t , f )|2
�(ρ

Ts
t , f )

+ |�′(ρTs
t , f )|2

�(ρ
Ts
t , f )

×
⎛
⎝σ 2

w + (1 + σ 2
w)

θδ

γ0
+ 1 − ρ

1
δ
s

1 + ρ
1
δ
s

�(ρ
Ts
t , f )

⎞
⎠

1
2

×
⎛
⎝σ 2

w + (1 + σ 2
w)

θδ

γ0
+ 1 + ρ

1
δ
s

1 − ρ
1
δ
s

�(ρ
Ts
t , f )

⎞
⎠

− 1
2
⎤
⎥⎦df

(50)

From ([19], Equation (2.558.2)), we get

∫ 1
2

− 1
2

[
�(ρ

Ts
t , f2) − |�′(ρTs

t , f2)|2
�(ρ

Ts
t , f2)

]
df2 = 1 − ρ

1
θ
t

1 + ρ
1
θ
t

. (51)

Substituting (51) into (50) and simplifying lead to (22).

Appendix 5
Proof of Proposition 3
The result in (24) can be proved by following a procedure
that is similar to the proof of Proposition 2. Since the inter-
polation is performed in the space domain alone, we can
replace �′(ρTs

t , f2) with �(ρ
Ts
t , f2) in (50), and the result is

ϑ2
s =

∫ 1
2

− 1
2

⎡
⎢⎣�(ρ

Ts
t , f2)

⎛
⎝σ 2

w+(1+σ 2
w)

θδ

γ0
+ 1−ρ

1
δ
s

1+ρ
1
δ
s

�(ρ
Ts
t , f2)

⎞
⎠

1
2

×
⎛
⎝σ 2

w + (1 + σ 2
w)

θδ

γ0
+ 1 + ρ

1
δ
s

1 − ρ
1
δ
s

· �(ρ
Ts
t , f2)

⎞
⎠− 1

2

⎤
⎦ df2

(52)

The above integral can be solved by using ([19],
Equation (3.147.2)), ([19], Equation (3.151.2)), and the
definition of �(ρ

Ts
t , f2) in (40), and the result is (24).

Appendix 6
Proof of Corollary 6
Setting δ → ∞ in (52) leads to

lim
δ→∞ ϑ2

s =
∫ 1

2

− 1
2

⎡
⎣�(ρ

Ts
t , f2) ·

(
1 − �(ρ

Ts
t , f2)

log(ρs)

)− 1
2
⎤
⎦ df2

(53)
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The above integral can be solved by using ([19],
Equation (3.147.2)).

Appendix 7
Proof of Proposition 4
Setting H = IN in (29) and performing the eigenvalue
decomposition of 	xx in (28), we have

ψ2
st,N = 1

N

Ms∑
i=1

Ms∑
k=1

Nt∑
m=1

(
1

λikm
+ 1

σ 2
w + (1 + σ 2

w) θδ
γ0

)−1

,

(54)

where λikm, for i, k = 1, . . . ,Ms, and m = 1, . . . ,Nt , are
eigenvalues of 	xx. When Ns → ∞ and Nt → ∞, the 3-

D DTFT of the sequence,
{
ρ

√
(i2+k2)/δ

s ρ
|m|Ts
t

}
ikm

, which

are elements of the 3-level Toeplitz matrix 	xx, can be
calculated as

�′
xx(f1, f2, f3) = �ss(f1, f2) × �(ρ

Ts
t , f3). (55)

The result in (30) follows immediately from (55) and
([20], Theorem 1), which is the extension of the Szego’s
theorem to multilevel Toeplitz matrices.

Appendix 8
Proof of Proposition 5
According to ([20], Lemma 2), the multilevel Toeplitz
matrices, 	xx and 	dx, are asymptotically equivalent to
multilevel circulant matrices, Bxx and Bdx, respectively,
where the eigenvalues of Bxx and Bdx are samples of
�′

xx(f1, f2, f3) in (55) and �′
dx(f1, f2, f3) in (36), respectively.

In addition, the multilevel circulant matrices,Bxx and Bdx,
share the same orthonormal eigenvectors [20]. Once the
asymptotic equivalence is established, the rest of the proof
follows the same procedure as described in Appendix 5 for
the 1-D case.

Appendix 9
Proof of Corollary 8
When Ns → ∞ and Nt → ∞, while keeping δ and θ

finite, the asymptotic MSE of spatial interpolations in a
2-D network is

∫ 1
2

− 1
2

∫ 1
2

− 1
2

∫ 1
2

− 1
2

[
�ss(f1, f2)�t(f3)

− |�ds(f1, f2)�t(f3)|2
�ss(f1, f2)�t(f3) + σ 2

w + (1 + σ 2
w) θδ

γ0

]
df1df2df3.

(56)

where �ss(f1, f2) is defined in (31) and �ds(f1, f2) is com-
puted as in (38). When ρt = 0, we have �t(f3) = 1.
Substituting �t(f3) = 1 into (56) directly leads to (37).
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