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Abstract

Coordinated multipoint (CoMP) transmission provides high theoretic gains in spectral efficiency with coherent joint
transmission (JT) to multiple users. However, this requires accurate channel state information at the transmitter (CSIT)
and also user groups with spatially compatible users. The aim of this paper is to use measured channels to investigate
if significant CoMP gains can still be obtained with channel estimation errors. This turns out to be the case, but
requires the combination of several techniques. We here focus on coherent downlink JT CoMP to multiple users
within a cluster of cooperating base stations. The use of Kalman predictors is investigated to estimate the complex
channel gains at the moment of transmission. It is shown that this can provide sufficient CSIT quality for JT CoMP even
for long (>20 ms) system delays at 2.66 GHz at pedestrian velocities or, for lower delays, at 500 MHz, at vehicular
velocities. A user grouping and resource allocation scheme that provides appropriate groups for CoMP is also
suggested. It provides performance close to that obtained by exhaustive search at very low complexity, low feedback
cost and very low backhaul cost. Finally, a robust linear precoder that takes channel uncertainties into account when
designing the precoding matrix is considered. We show that, in challenging scenarios, this provides large gains
compared with zero-forcing precoding. Evaluations of these design elements are based on measured channels with
realistic noise and intercluster interference assumptions. These show that high JT CoMP gains can be expected, on
average over large sets of user positions, when the above techniques are combined - especially in severely intracluster
interference limited scenarios.
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1 Introduction
Shadowed areas and interference at cell borders pose chal-
lenges for future wireless broadband systems. A poten-
tially powerful remedy would be coordinated multipoint
(CoMP) transmission, using remote radio heads or coor-
dination between cellular base station sites. It can over-
come interference limitations in cellular radio networks
and also provide coverage gains. The first steps towards
support for CoMP have recently been added to the 3GPP
LTE standard in Release 11 [1].
CoMP techniques for downlink transmission are often

categorized into two groups [2,3]. With joint transmission
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(JT), sometimes referred to as joint processing, user
data is transmitted via several access points. The second
group uses coordination for interference avoidance with-
out sharing user data, using, e.g. joint scheduling (JS)
and/or joint beamforming (JB) (see, e.g. [4]). The later
techniques are often considered to require less backhaul
capacity and to be more robust to inaccurate channel state
information at transmitters (CSIT). Joint transmission can
provide higher potential gains in spectral efficiency at full
load (see, e.g. [3,5]), by converting harmful interference
power into useful signal power. For example, coherent JT
CoMP was in [6] found to have the theoretical poten-
tial to multiply the spectral efficiency at 10% outage by
a factor of 5 for terminals and base stations with single
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antennas. These gains are especially important for users at
cell edges [7].
However, much less spectacular results are provided by

recent system level simulations. Evaluations of coherent
JT CoMP within 3GPP have resulted in gains in aver-
age spectral efficiency of below 27% for homogeneous
deployments using 4 × 2 MIMO transmission [8].
These large discrepancies raise questions that have

motivated our research: What reduces the large potential
gains of JT CoMP? Can large improvements be obtained
for most users, or only for a small subset of users, e.g.
those close to cell edges? What combinations of schedul-
ing strategies and beamforming algorithms are efficient
for realistic coordination topologies, propagation condi-
tions and CSIT quality?
Answering such questions requires a joint study of

multiple aspects of the problem and their interactions,
in particular the assumed propagation environment, the
cooperation architecture, the CSIT quality, physical layer
techniques, scheduling and the grouping of users who
participate in cooperation. We here investigate an impor-
tant subset of these issues for downlinks of orthog-
onal frequency-division multiplexing (OFDM) systems,
mainly considering frequency-division duplexing (FDD).
One focus is the effect of imperfect CSIT due to mobil-
ity. To obtain results for realistic propagation conditions,
we mainly use measured channels from channel sound-
ing signals in an urban environment for 20-MHz OFDM
downlinks. The measurements use simultaneous trans-
missions from three single antenna sites to a moving ter-
minal. Large numbers of combinations of user positions
are investigated and CSIT is obtained by Kalman chan-
nel predictors. These provide the best attainable quality of
imperfect channel estimates.
Preliminary results obtained under these conditions

were reported in [9]. A robust linear precoder performed
joint coherent transmission from the three single antenna
base stations to three single antenna terminals. These
moved along randomly selected segments along the mea-
sured route at pedestrian velocities. The performance
was here improved greatly for a minority of user sets by
using JT CoMP, as compared to using conventional cellu-
lar transmission. However, the average spectral efficiency
over all investigated sets of user positions was reduced.
Such rather pessimistic results (obtained with imperfect
CSIT) would be consistent with those recently reported
in [8] that assumed perfect CSIT.
New results presented here are significantly more posi-

tive for the potential of JT CoMP: Large gains are obtained
for a large majority of investigated user positions.

1.1 Contributions
We investigate and develop a transmit strategy for coher-
ent JT CoMP by a step-by-step evaluation of its various

components and interactions, leading to the following
main conclusions and results.
First, one issue with CoMP is that significant coor-

dination delays over backhaul links might eliminate the
potential for CoMP gains. We show that channel predic-
tion enables large average performance gains when using
linear coherent joint transmission at pedestrian veloci-
ties for total delays of over 20 ms at 2.66 GHz. For lower
delays, the same conclusion holds for higher-mobility
users. CoMP would, e.g. remain possible at 500 MHz car-
rier frequencies for velocities up to 120 km/h, if the total
delays are 5 ms.
Second, two parts of a JT CoMP design that are cru-

cial for the average performance gains are the means
for resource allocation over frequency-selective OFDM
downlinks and the user grouping, i.e. the formation of
groups of users who will share a particular time-frequency
resource block.
We here introduce and evaluate a user grouping scheme

with very low complexity, ‘User groups provided by cel-
lular scheduling’. This user grouping strategy is based on
local scheduling in the base stations, and it can (but does
not have to) utilize already existing scheduling algorithms.
In many papers with 2 to 3 base stations and single-
carrier transmission, the authors have intuitively used a
user grouping scheme similar to this, often with all users
placed at the same distance to their nearest base station
site. However, to the best of our knowledge, this has never
been compared with other schemes nor is it usually moti-
vated by the authors using it. At much lower complexity
than, e.g. greedy user selection, this strategy provides
spatially good (although not optimal) user groups that
improve the sum rate performance when using linear pre-
coding. It preserves multiuser diversity gains and also
requires less feedback and less backhaul capacity than
alternative strategies proposed previously. For systems
with many users, the backhaul demand for transmission
control can even be significantly lower than that for JS/JB
CoMP. Using this scheme, JT CoMP can improve the sum
capacity for essentially all investigated combinations of
user positions. On average over random sets of user posi-
tions, it is increased by up to 54% as compared to cellular
transmission, with imperfect CSIT at full system load.
Third, a main mechanism behind the sometimes dis-

appointing performance of JT CoMP is highlighted: The
different distances involved from sets of transmitters to
the different receivers will often generate hard-to-invert
joint channel matrices. This results in precoders with
large differences in the scaling of their elements. A joint
linear precoding design under a per-antenna power con-
straint is then forced to reduce the transmit powers of
the closest base station to a user far below the allowed
power to obtain a balanced solution. This effect reduces
the total transmit power for a cluster of transmitters that
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participate in joint transmission, often with the result that
out-of-cluster interference and noise reduce performance
below that of single-cell transmission. The proposed user
grouping strategy alleviates this problem.
Finally, since the CSIT is uncertain, robust techniques

for joint precoder design are of interest. The robust linear
precoder (RLP) design, introduced in [9], is here inves-
tigated further and is developed into a versatile tool for
design of linear joint precoders. Robust design is most
easily performed for mean square error (MSE) criteria.
The RLP is here designed to optimize more general cri-
teria by using a low-dimensional iteration over weighting
matrices in a closed-form robust precoder design.We here
provide sufficient conditions for the closed-form robust
design to minimize a weighted sum of intracluster inter-
ference and transmit powers under imperfect CSIT accu-
racy for known second-order moments of the statistical
uncertainties. We also show that imperfect CSIT due to
quantization is straightforwardly included into the design.
We investigate under what conditions a robust JT design
provides benefits by comparing to a simple zero-forcing
(ZF) design. Also, we observe that the interplay between
channel prediction errors, opportunistic scheduling and
precoder design increases the multiuser scheduling gain
when using CoMP, relative to single-cell transmission.
These results, taken together, in our opinion indicate

that large performance gains are indeed possible by using
linear JT CoMP techniques that can be designed with
reasonable computational complexity.

1.2 Assumptions, design choices and related work
The potential for coherent JT CoMP was shown in [10]
to be highest for low-mobility users, as compared to joint
scheduling and to the use of noncoherent JT CoMP. We
therefore here focus on coherent JT CoMP, also referred
to as network multiple-input multiple-output (MIMO) or
multi-cell MIMO (see, e.g. [5,6,11,12]), for low-mobility
users.
Although, the largest gains are achieved with nonlin-

ear precoding techniques such as dirty paper coding [6],
complexity currently makes nonlinear precoding unfeasi-
ble for most realistic systems. We here focus on a low-
complexity linear precoding solution. Zero-forcing linear
precoders [13] are here a frequently studied alternative.
Coordination over a very wide area would provide the

highest performance, but would be unrealistic due to
computational complexity, delay constraints and capac-
ity constraints in the fixed network. Therefore, we con-
sider the use of CoMP within limited coordinated sets
(clusters) of N transmitters distributed over NB cells. In
cellular transmission, the transmitters belonging to each
cell are coordinated, but they are uncoordinated to the
transmission in other cells. In CoMP that uses clustered
joint transmission, the aim is to suppress the intracluster

interference when jointly transmitting to Mg users. With
perfect CSIT, the intracluster interference can then be
eliminated by phase cancellation when N ≥ Mg .
The cluster size, i.e. the number of cooperating cells per

cluster, involves a trade-off. A larger size ideally provides
larger gains relative to cellular transmission, since a lower
fraction of users are then located at cluster edges, but
introduces a higher computational burden. Investigations
in [11,14] show that a cluster size above 7 to 9 cells will
not provide large additional gains for systems withMIMO
links. In [15], for few base station antennas, a cluster that
used transmitters at three separate sites was adequate to
attain most of the achievable CoMP gains (see also [16]).
Our evaluations in Sections 6 and 7 focus on a cluster size
of three sites, partially motivated by the results of [15] and
partially due to the limitations of our measurements.
An important aspect is to limit the remaining interclus-

ter interference. An interesting scheme proposed in [14]
and further evaluated in [17] uses cluster-specific antenna
tilting and power control for this purpose. We have in
our investigations adjusted the interference statistics to
approximate the one that would be generated by the
scheme of [14].
Near accurate CSIT is important for multi-user

MIMO [18] and for coherent JT CoMP [19]. We here
evaluate schemes under the imperfect CSIT that would
be due to the main unavoidable causes: noisy estimates
and outdated CSIT due to signaling delays. Users are
assumed to move at pedestrian velocities at 2.66 GHz.
This setting results in large channel estimation errors due
to outdating when channel prediction is not used. It has
previously not been clear if the use of channel prediction
helps CoMP performance in a significant way. Promising
results based on simulations were reported in [19], using
adaptive recursive least squares prediction. A preliminary
simulation study in [20] investigated a two-user, two-cell
scenario. The recent paper [21] investigated this question
theoretically, in the limit of large numbers of antennas per
base station, but did not use a per-base station transmit
power constraint, so it is hard to draw conclusions from
these results.
Channel predictors are here assumed to be located in

the user terminals. They report the predictions to their
strongest base station. The base stations then transmit the
reports over a backhaul link to a central control unit (CU)
for the cluster which jointly designs the beamformers.
Kalman prediction of MIMOOFDM channels, outlined

in Section 3 and Appendix 1 has been investigated in,
e.g. [22,23]. We here investigate its use in a CoMP setting,
focusing on two requirements that are peculiar to this set-
ting: (1) Transmit antennas located at different sites will
be at different distances while their channels, with differ-
ing signal-to-interference-and-noise ratio (SINR), have to
be estimated jointly. The weakest signals will in general



Apelfröjd and Sternad EURASIP Journal onWireless Communications and Networking 2014, 2014:100 Page 4 of 20
http://jwcn.eurasipjournals.com/content/2014/1/100

be estimated with the lowest accuracy. The effects of
this on the choice of pilots, the resulting precoder matri-
ces and capacity performance need to be understood. (2)
Channels may need to be predicted over long prediction
horizons, due to the coordination delays.
Since significant model errors will be present, the pre-

coder (the set of joint beamformers) should furthermore
be designed to be robust with respect to (w.r.t.) the
expected errors. Implementation without unrealistic com-
putational complexity is here in focus, so we will restrict
attention to linear precoders. We mainly use a versatile
scheme with reasonable design complexity, the iteratively
adjusted RLP introduced in [9] and further developed in
Section 5 and in Appendix 2. This averaged robust design
is used since it is less conservative than the minimax
schemes in, e.g. [24,25]. A useful property of the RLP is
that the channel uncertainty in the form of covariance
matrices that are provided by Kalman predictors can be
directly used in its adjustment.
In the optimization of a criterion such as the weighted

sum capacity for the involved terminals, the RLP design
utilizes the analytical solution to an MSE-optimal linear
robust precoder and iteratively optimizes over criterion
weights used by this design. This MSE-optimal analytical
solution constitutes a special case of robust feedforward
control filters for dynamic (frequency-selective) systems,
previously developed in [26-28]. Robust linear precoders
that minimize MSE by averaging over CSIT uncertainty
have more recently been highlighted for multiple-input
single-output (MISO) transmit schemes by [29,30] and
for multiuser and MIMO downlinks in [24,31]. Very few
solutions have been proposed for robust linear precoder
design for more general performance criteria.
Many proposals form user groups for CoMP, as,

e.g. [32,33], by first forming the user group and then allo-
cating it to a transmission resource. This can provide
groups with spatially compatible users, but may sacrifice
some of the potential multiuser scheduling gain, since the
frequency-domain variability of channels to users is not
taken into account. Another approach is to use a greedy
algorithm as in, e.g. [34-36] that assigns one user at a
time to a given resource, forming a near-optimal solution
both in terms of spatially compatible users and exploit-
ing multiuser diversity. This, however, requires repeated
pre-evaluation of beamformers, resulting in a high com-
plexity. Greedy user grouping will in Section 7 be com-
pared to the user grouping scheme we propose, but due to
high complexity, we use a block-fading model rather than
the whole measured channel statistics for this particular
comparison.

Notations
In the following, Ē [·] averages over the distribution of

channel model errors, E [·] averages over the statistics of

noise and message symbols, ‖·‖ denotes the 2-norm of
a vector, tr (·) is the trace of a matrix, Re (·), (·)T and
(·)∗ denote the real part, the transpose and the Hermi-
tian transpose of a matrix, respectively. The unit matrix
is denoted I. For simplicity, we shall enumerate the users
such that users

{
1, . . . ,Mg

}
are in the selected user group

for the subcarriers considered. The Kronecker delta func-
tion is denoted δij. Unless otherwise explicitly stated, (·)jn
denotes element

(
j, n
)
and (·)j denotes column j of a

matrix or the jth element of a vector. The indices i and
m are user indices, j and n are base station indices, t and
τ are time indices and k and q are subcarrier indices. We
shall denote the base station that, on average over all sub-
carriers and over the small-scale fading, has the strongest
channel gain to a user as that user’s master base station.

2 Channel model
We assume an OFDM downlink with K subcarriers, over
whichM single antenna users are served by a coordinated
cluster of N transmitters controlled by NB base stations,
where each base station may control several transmit
antennas. If Mg ≤ M users are selected to be served
jointly on the kth subcarrier at OFDM symbol τ , then their
received signals yk(τ ) ∈ C

Mg×1, after OFDM receiver
processing, are

yk(τ ) = Hk(τ )uk(τ ) + nk(τ ). (1)

Here, nk(τ ) ∈ C
Mg×1 is the sum of noise and out-

of-cluster interference (we will henceforth call it noise),
modeled as independent and identically distributed (i.i.d.)
white noise with zero mean and known variance, uk(τ ) ∈
C
N×1 is the vector of transmitted signals and Hk(τ ) ∈

C
Mg×N is the channel matrix where Hk

ij(τ ) is the complex
channel gain from transmitter j to user i. The assumption
that nk(τ ) can be modeled as i.i.d. white noise with known
variance is a simplification. It is relatively reasonable in
the here considered downlink, since the intercluster inter-
ference consists of contributions frommany base stations,
that each transmit to many users. The resulting averag-
ing of contributions would tend to stabilize the variance
of nk(τ ) and to make it predictable. (The assumption of
a knowable noise variance would be more problematic in
the uplinks, where intercluster interference could be dom-
inated by bursty transmission from a few user terminals).
There exist methods for noise floor estimation [37].
Time and frequency synchronization with respect to all

N transmitters is assumed to be adequate, in the sense
that any intersymbol and intercarrier interference can be
modeled as parts of the noise nk(τ ). It is also assumed
that any frequency errors, causing rotation of elements of
Hk(τ ) over time can be handled by the tracking ability of
the (Kalman) channel estimation.
The true channel is a sum of the reported predicted

channel matrix Ĥk(τ ) ∈ C
Mg×N , the prediction error
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�Hk(τ ) ∈ C
Mg×N and the quantization error �Hk

quant(τ )

of Ĥk(τ )

Hk(τ ) = Ĥk(τ ) + �Hk(τ ) + �Hk
quant(τ ). (2)

3 Channel predictions
For mobile users, the delays created by link adap-
tion and CoMP processing will cause the CSIT to be
outdated. This can partially be compensated by using
channel predictions. To investigate the effectiveness of
the channel prediction in a CoMP setting, we utilize
Kalman predictors, which provide minimummean square
error (MMSE)-optimal predictions if the channel fading
statistics are known. Therefore, Ē

[
�Hk(τ )

] = 0 and
Ē
[
Ĥk(τ )

(
�Hk(τ )

)∗] = 0 [38]. Kalman prediction can be
performed either in the time domain (for channel impulse
response components) or in the frequency domain for the
complex channel gains Hk

ij(τ ). These provide comparable
accuracy [22] and we have chosen the frequency domain
approach.
We consider FDD system downlinks, so predictions are

based on downlink measurements of known antenna spe-
cific reference symbols (RS), or pilots.We will assume that
the RS have regular time and frequency spacing, �τ and
�f . The predictors are here assumed to be localized in
the user terminals. For every RS-bearing subcarrier, the
ith terminal predicts its channels from several base sta-
tions within the cluster. Depending on the choice of user
grouping strategy, described in Section 4, allM users that
might potentially use a resource then report either the full
CSIT and/or some Channel Quality Indicator (CQI), such
as SINR, to their master base station.

3.1 Short-term fading models
The Kalman predictor requires statistical models of the
correlation properties of the channels over time and fre-
quency to adjust the channel estimate according to the
short-term fading. For this, we use autoregressive (AR)
models of order na. The AR models at w RS-bearing sub-
carriers of the channels from the N transmitters to the M
users can then be realized in state space form. The dynam-
ics of each complex channel gain is then modeled by using
na state variables. At user i,

x(t + 1) = Ax(t) + Be(t),
h(t) = Cx(t).

(3)

Here, the integer t represents time steps spaced by �τ ,
x(t) ∈ C(w·na·N)×1 is the vector of state variables, e(t) ∈
C(w·N)×1 is the zero mean process noise with covariance
matrix Q, and

h(t) =
[
Hqw
i1 (t), . . . ,H(q+1)w−1

i1 (t),Hqw
i2 (t), . . . ,H(q+1)w−1

iN (t)
]T

,

(4)

for Kalman predictor number q = 0, . . . ,
⌊
KCRS−1

w

⌋
where

KCRS is the number of RS-bearing subcarriers. Note that
the superscript index qw, qw + 1 . . . in (4) represents a
frequency spacing of �f , while k in (1) represents a fre-
quency spacing of �f /nCRS where nCRS is the RS spacing
in number of subcarriers. The prediction accuracy can be
improved by increasing the number w of subcarriers that
are predicted jointly, by averaging the noise. However, this
comes at a cost of higher computational complexity which
grows asO

(
w3) [22].

The matrices A, B, C and the covariance matrix Q can
be updated based on past channel estimates at an interval
that is related to the time constant of the shadow fading
(see [23] and chapter 4 of [22]).

3.2 Kalman predictor
Based on the AR fading models (3), each user is assumed
to have a set of Kalman filters that provide filter esti-
mates x̂(t|t) of the state vector in (3) and also covariance
matrices

P(t|t) = [(
x(t) − x̂(t|t)) (x(t) − x̂(t|t))∗] .

Please see Appendix 1 for further aspects on the filter
design.
MMSE-optimal predictions of the states x(t) and chan-

nel component vector (4) can then be calculated from the
filter estimates. The required prediction horizon is ϑ�t,
where ϑ ∈ N. It corresponds to the delay of the entire
transmission control loop, including channel predictions,
feedback, scheduling, joint precoding and any additional
delays. The vector of channel predictions for a time hori-
zon ϑ RS ahead, ĥ(t + ϑ), at the ith user is obtained
from the filter estimate x̂(t|t) by extrapolation in time.
Equation (3) is iterated ϑ steps and future noise terms
e(t + 1), . . . , e(t + ϑ − 1) are set to their average values of
zero. This gives

ĥ(t + ϑ) = Cx̂(t + ϑ |t) = C (A)ϑ x̂(t|t). (5)

The state prediction error covariance matrix is com-
puted recursively starting with the covariance matrix
P(t|t) of the filter estimate:

P(t + ϑ |t) = AP(t + ϑ − 1|t)A∗ + BQB∗. (6)

Covariances of the prediction error �h(t) of the chan-
nels to one user can be described by the matrix

Ē
[
�h(t)�h(t)∗

] = CP (t + ϑ |t)C∗. (7)

As mentioned above there is a trade-off in the choice of
the number w of subcarriers estimated by each Kalman
filter. We here keep this parameter low and, in a second
step, reduce prediction errors further by Wiener smooth-
ing over estimates for all subcarriers. The true prediction
error covariances then differ from those of (7) due to
two effects. First, the AR models (3) are imperfect which
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increases the errors. Second, Wiener smoothing over fre-
quency decreases the errors. In our studies, these two
effects leave the variance of the prediction error slightly
less than that given by (7). The use of the accurate covari-
ance instead of (7) would cause only minor noticeable
difference in precoder performance and only for systems
with very low noise power. We shall therefore use (7) in
the precoder design in Section 5.

4 UE allocation and scheduling
Appropriate user grouping is important if CoMP is to
improve the rates for all participating users. Out of M
users, Mg ≤ N users will be selected for JT within
a resource block. In [9] a preliminary investigation was
performed where groups of three users were formed by
random placement along a route for which measured
channels from three sites were available. Figure 1 illus-
trates the received powers from the three sites along the
measurement route. It then became evident that single-
cell (SC) transmission in many situations outperformed
coherent JT CoMP since JTmight help some users but not
all within the group simultaneously.
A subsequent analysis showed that for most of the

CoMP groups that led to SC transmission outperform-
ing CoMP, all three users had poor channels to the same
base station. This led to a poorly conditioned channel
matrix H, which forced the precoder design to reduce the
total transmit power to fulfill a per-base station power
constraint. This reduced the SNR as compared to SC
transmission.
To solve this problem, we here propose to perform

scheduling decisions locally at each base station and will
show that this automatically creates good (although not
optimal) CoMP groups. This scheme has the benefits
that it has very low complexity and would be easy to
implement in existing systems. It can furthermore uti-
lize already existing scheduling algorithms. It generates no
extra control signaling backhaul load since all decisions
can be made locally at every base station. The proposed
solution will in Section 7 be compared to the use of
random user groups, to a Greedy user grouping (GUG)
algorithm described below and to the optimal solution.
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Figure 1 Signal powers. Power of the received signals transmitted
from the base stations (full lines) and the three noise floors of −130
to −110 dBm used for simulations (dotted lines).

4.1 User groups provided by cellular scheduling (CUG)
This is our main proposed strategy to create diagonal-
dominant channel matrices that then become relatively
easy to invert in the CoMP precoder design. We first
present this scheme, denoted as cellular user grouping
(CUG), for single antenna base stations. All users with the
same master base station are then locally scheduled on
orthogonal subcarriers by a scheduler connected to their
master base station, as shown in the example in Figure 2.
This scheduling is based on a CQI metric. For the sched-
ulers explored in this paper, the CQI for user i at resource
block b, CQIb,i, is given by the average estimated channel
gains from all antennas at that user’s master base station.
On each resource block, the scheduled Mg ≤ N users

within the cooperation cluster (with equality if each base
station is the master base station of at least one user) will
then form a CoMP group. These users, which all belong
to different cells, are to be served jointly by all base sta-
tions in the cluster, including base stations that are not the
master base station of any of these users. The full CSIT
used in the precoder design then only needs to be fed back
and transmitted over backhaul by the users that have been
scheduled and only for a scheduled resource. Two-step
feedback approaches such as this have been investigated
in [39] for multiuser MIMO and in [40] for CoMP.
The score-based (SB) scheduler proposed in [41] will

be used in evaluations. It represents a fair scheduler in
the sense that all users belonging to the same master
base station are given approximately the same amount of
resources. For each user, a score is computed for each
resource block that indicates the ranking of its CQI rela-
tive to those of other resource blocks. Assuming schedul-
ing over b = 1, . . . ,B resource blocks, block l will for user
i have a score of

B∑
b=1

(
CQIl,i > CQIb,i

)
. (8)

Here > denotes a logical comparison resulting in 1 if
true and 0 otherwise. The user with the highest score will
be allocated to the resource block l. The use of score-based
scheduling to create the user grouping will be denoted SB-
CUG.
A second scheduler to be used is a close to optimal sum

rate scheduler that always chooses the user with the high-
est estimated rate for every frequency resource. It is here
based on the rate a user would have in a cellular system
in which no other users within the cluster is served on the
same resource

r̂i = log2

⎛
⎜⎝1 +

∣∣∣Ĥk
ijmast:i

(t)
∣∣∣2

σ 2
n

Pjmast:i,max

⎞
⎟⎠ ,
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Figure 2 Example of cellular user grouping. Example on how to form CoMP groups based on cellular scheduling. Here, the three single-antenna
base stations BS1-3 have scheduled their users on orthogonal frequency resources within each cell (table to the right). Users UE1, UE2 and UE3 will
then be served jointly on subcarrier 1, users UE2, UE4 and UE5 will be served jointly on subcarrier 2 and so on.

with Pjmast:i,max being the power constraint for the anten-
nas of the master base station of user i. It is denoted
best rate CUG (BR-CUG). The use of this metric to com-
pare attainable rates presupposes that a well-functioning
CoMP scheme will suppress intracluster interference.
For multiantenna base stations with NA antennas, cel-

lular scheduling proceeds similarly but may allocate up to
NA users per frequency resource and base station, using
cell-specific beamforming.

4.2 Greedy user grouping (GUG)
Here, for every frequency resource the CU uses, an algo-
rithm first searches for the user that, given a specific
criterion, has most to gain from entering the group. Then,
it searches amongst the remaining users for the user that
would provide the largest increase of the criterion value
and adds that user to the group. It continues until none
of the remaining users can increase the criterion value or
untilMg = N . We here use the specific criterion function

M∑
i=1

αi log2

(
1 + Ē

[
E
[
PS,i
]]

Ē
[
E
[
PI,i
]]+ Ē

[
E
[
PN ,i

]]
)
. (9)

Here, PS,i, PI,i and PN ,i are the powers of the signals, the
interference and the scalar noise powers at the receiver
antenna i = 1, ..,Mg , respectively. Calculations of the
expected values of the powers based on the prediction
error statistics is discussed in Appendix 3 . If αi = 1 for
all i the sum rate is maximized. We shall denote this GUG
with best rate (GUG-BR). If instead αi = 1/r̄i with r̄i being
the average throughput of user i over already scheduled
resources, we get a proportional fair scheduler [42], which
will be denoted GUG with proportional fair scheduling
(GUG-PF).
GUG should provide better system performance than

CUG which generates its user grouping without explicitly
taking the resulting performance into account. However,
this comes at several costs.

1. Higher feedback requirements. For CUG, local
scheduling can be carried out using only a local CQI

as, e.g the estimated channel gains to users from
antennas at their master base station. Scheduled
users then only need to complement with the full
CSIT for the resources they are allocated. With
GUG, full CSIT is needed for all M users considered
over all resources.

2. Higher backhaul demand. CUG only requires the
Mg · N complex channel gains to be transmitted over
the backhaul links for theMg users that are actually
scheduled on a resource. With GUG, the CU needs
knowledge of all M users; hence,M · N complex
channel gains per scheduled resource slot must be
transmitted over backhaul.

3. Higher computational complexity, since greedy user
grouping requires repeated design and evaluation of
a joint precoder. With simplified CQI and
performance metrics suggested above, this is not
necessary when using the CUG strategy.

5 Precoding
A CU for the cluster is assumed to have full information
of the reported predicted channels and of the covariances
of the prediction and quantization errors of the sched-
uled users. It designs precoding matrices R ∈ C

N×Mg for
all utilized time-frequency resource blocks. The blocks
consists of adjacent OFDM symbols and subcarriers, with
at least one resource slot dedicated to a reference sym-
bol. All transmitted symbols within such a resource block
will normally be exposed to close to identical channels as
at the RS position and can therefore use the same pre-
coder. In the following, time and subcarrier indices within
a block are excluded: Hij � Hk

ij(t), Ĥij � Ĥk
ij(t + ϑ),

n � nk(t), u � uk(t) and y � yk(t).
On each subcarrier and for each OFDM symbol within

the resource block, the transmitted signal vector, u ∈
C
N×1, is generated by a linear precoder

u = 1
c
Rs, (10)
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where c is a scalar scaling factor and s ∈ C
Mg×1 is the

message symbol vector, assumed to be white, have zero
mean, covariance matrix I and to be uncorrelated with
the noise n. We assume that per-antenna transmit power
constraints, Pj,max, apply to each subcarrier individually.
The scaling factor c in (10) is selected to assure that the
transmit powers at the N antennas satisfy

E
[|uj|2] ≤ Pj,max for j = 1, . . . ,N , (11)

where uj is the jth element of the transmit vector u. (A
reasonable modification would be to have a sum power
constraint over all subcarriers. With a sum rate crite-
rion, this would lead to a water filling power allocation
as described in [17], which slightly increases the sum rate
performance).

5.1 Target system
The system model used for precoder design is shown in
Figure 3. Here, u ∈ C

N×1 is the transmit signal vector,
and z = 1

c Ds ∈ C
Mg×1 is the desired received vector.

Its desired properties are modeled by a target matrix D
which is diagonal, representing the ideal of a complete
interference suppression. In a generalization to multi-
ple receiver antennas, D would be block-diagonal. The
distances between terminals and transmitters will differ
substantially in a CoMP setting. It would therefore be
unrealistic to demand equal received power at all users
by setting D = I. Instead, the targeted received signal
magnitudes (the diagonal elements of D) should be set to
realistically attainable levels. This can be done in different
ways. We here adjust the targeted received signal magni-
tudes to the amplitude of the strongest channel for each
user

Dii = max
j

|Ĥij|, i = 1, . . . ,Mg . (12)

This is a very simple way of choosing D. For channel
matrices with a dominant diagonal, which often appear,
e.g. if all users in a CoMP group have different master base
stations, (12) provides a sum rate close to the sum rate that
is obtained if D is optimized.

Figure 3 System. System model used for precoder design.

Alternatively, in [43] all users are given the same fraction
of the transmit power in combination with zero-forcing
precoding. This corresponds to an alternative strategy for
adjusting the diagonal elements of D. We have investi-
gated both that alternative and numerical optimization of
Dwith respect to the sum rate. We then found little differ-
ences in the end result as compared with the use of (12).
(However the use of D = I, which is commonly used
in zero-forcing precoders for single-cell multiuser MIMO
problems, would cause a large loss in system performance
in CoMP settings).

5.2 Robust linear precoder (RLP)
The RLP scheme uses the closed-form solution to a robust
linear quadratic (LQ) optimal feedforward control prob-
lem presented in [26,27] as its basic element. It minimizes
general robust performance criteria by iterating over ele-
ments in penalty matrices of the robust LQ design. The
robust LQ design generates a precoder matrix R that
minimizes a scalar criterion J. In our case, the crite-
rion includes a weighted difference between target and
noise-free received signals, ε = 1

c (HR − D) s (describing
the remaining intracluster interference) and a weighted
transmit power term. These terms are averaged over all
uncertainties and transmit symbol statistics

J = Ē
[
E ‖Vε‖2 + E ‖Su‖2] . (13)

Here, V is a diagonal positive definite matrix and S is
a positive semidefinite matrix, both real-valued. The use
of these weighting matrices in the design is discussed in
Sections 5.2.1 to 5.2.3 below.

Theorem 1. For a transmission system (1), model
(2) and linear precoder (10), assume that Ē [�H] =
Ē
[
�Hquant

] = 0, that Ē
[
�H∗V ∗V�Hquant

] = 0, that
S ∈ RN×N has full rank and that s in (10) is white. Then,
the precoding matrix R minimizing J by (13) exists and is
given uniquely by

RRLP =
(
Ĥ∗V ∗VĤ + S∗S + E

[
�H∗V ∗V�H

]
+ E[�H∗

quantV
∗V�Hquant]

)−1
Ĥ∗V ∗VD.

(14)

For a proof, see Appendix 4 .

After obtaining the precoder matrix RRLP by (14), the
scale factor c is adjusted to fulfill the transmit power con-
straint (11). This scales the criterion (13) but does not
affect the minimizing precoder matrix.
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The third and fourth terms in the inverse in (14) can be
evaluated from the channel error statistics,(

E
[
�H∗V ∗V�H

])
jn = E

[
�H∗

j V
∗V�Hn

]
= E

[
tr
(
�H∗

j V
∗V�Hn

)]
= tr

(
V ∗VĒ

[
�Hn�H∗

j

])
.

(15)

Here, �Hn refers to column n of either the predic-
tion error �H (for the third term) or the quantization
error �Hquant (for the fourth term). For prediction errors,
E[�Hn�H∗

j ] is obtained using the covariance matrices
CP (t + ϑ |t)C∗ for each of the Mg users provided by
their Kalman predictors. Since the terminals are assumed
to predict the channels independently, E[�Hij�H∗

mn]=
0 when i �= m. Therefore, the matrix E[�Hn�H∗

j ] is
diagonal, where element (i, i) is given by the ith users((

CP (t + ϑ |t)C∗)k)
nj
. (16)

Here (·)k denotes the submatrix of (CP (t + ϑ |t)C∗)
from (3), (6) and (7) for relevant subcarrier k.
The matrix element j, n of the fourth term, describing

the quantization error covariance of reported predictions,
is by (15) determined by Ē

[
�Hquant,n�H∗

quant,j

]
. This

matrix will be diagonal if all channel components are
quantized independently. The design works for any spec-
ified CSI quantization and feedback schemes, as long as
errors introduced by them can bemodeled and quantified.
For example, assuming individual linear quantization with
a properly set maximum power, the diagonal elements of
this matrix are given by δ2step/12 where δstep is the step
size of the quantizer, which may be adjusted individually
for each channel component. If the quantization granu-
larity (step size) is individually controlled by the standard
deviation of the prediction error, then the quantization
error term in (2) can be kept small relative to the predic-
tion error term in an efficient way. The quantization errors
would then have negligible impact on the performance
metric.
As a comparison to the RLP, we have also investigated

the zero-forcing (ZF) precoder with gain control. When
Mg ≤ N , the minimum norm pseudo-inverse generates
the ZF precoder matrix

RZF = ĤT
(
ĤĤT

)−1
D, (17)

to be used in (10). (When Mg < N , other generalized
inverses exist that provide better performance under per-
antenna power constraints than (17) (see [44])). The ZF
solution is commonly used and is simple to compute, but
model errors are not taken into account. Furthermore, ill-
conditionedmatrices Ĥ generate precoders RZF with large

elements. This results in the use of a large scaling factor
c in (10) to fulfill the power constraint (11). The resulting
reduction of transmit power decreases the SNR. This is
referred to as the power normalization loss problem.
Three ways of using the weighing matrices V and S

in (13) are outlined below.

5.2.1 Minimizing intracluster interference
Consider V = I and S = εI in (13), using a very small
real-valued regularization term S∗S = ε2I in (14), with
ε �= 0 to preserve full rank in the inverse. Then, the trans-
mit powers are almost not penalized and the errors at
all receivers are considered equally important. This setup
minimizes the sum of intracluster interference powers. It
is related to ZF, but takes the channel uncertainty into
account. Note that when Mg = N , Ĥ−1 exists, V = I,
ε → 0 and �H = �Hquant = 0, then (14) and (17) reduce
to the same solution, R = H−1D.

5.2.2 Optimization w.r.t. an arbitrary criterion
The robust MSE solution of Theorem 1 can be used as a
tool for adjusting the precoder matrix R w.r.t. a general
criterion

f
{
Ē
[
E
[
PS,i
]]
, Ē
[
E
[
PI,i
]]
, Ē
[
E
[
PN ,i

]]
, i = 1, . . . ,Mg

}
.

(18)

Here, PS,i, PI,i and PN ,i, are the powers of the signals,
the interference, and the scalar noise powers at receiver
antenna i = 1, ..,Mg . Calculations of the expected values
of the powers based on the prediction error statistics is
discussed in Appendix 3.
Diagonal penalty matrices V and S in (13) provide

significant flexibility, and optimization of their elements
w.r.t. (18) provides a flexible tool for adjusting the pre-
coder matrix by a low-dimensional numerical search.
Here, the elements of V mainly affect the weighting and
fairness between users, while the elements of S affect the
power balance between transmit antennas.
One particular case is when (18) is set to approximate

an unweighted sum rate criterion. Then, the use of a
fixed V = I is appropriate. The use of S = εI, with ε

being a very small scalar, would then approximately min-
imize the intracluster interference, but not the sum rate.
This is because the noise in (1) is not taken into account
in (13) and its impact might be enhanced by the scaling to
meet the power constraint through (10). The performance
w.r.t. (18) is then for most cases improved significantly by
iteratively adjusting a few real-valued diagonal elements
of the transmit power penalty matrix S, to re-balance the
received powers, interference and noise. This procedure is
outlined in Appendix 2.
The solution will be suboptimal but, in a comparative

study in [17], we showed that the precoder of (14) per-
formed close to a near optimal linear precoder [45] found
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through a high-dimensional search of all the complex
elements of R.
In the evaluations, the RLP will be designed iteratively

to maximize

Mg∑
i=1

log2

(
1 + Ē

[
E
[
PS,i
]]

Ē
[
E
[
PI,i
]]+ Ē

[
E
[
PN ,i

]]
)
, (19)

an approximation of the sum rate for a given precoder
R. This iterative scheme has been found to perform well
compared to investigated alternatives.

5.2.3 Addressing user fairness by utilizing the penalty
matrix V

User fairness can be incorporated in (18), e.g. by using a
weighted sum rate. In a low-complexity optimization that
iteratively uses (13), the weighting matrix V can then be
used to place a high weight on the interference at some
users. These users will then be allocated a larger fraction
of the transmit power and experience a higher SIR which
directly affects the per-user performance. However, user
fairness is also affected by the choice of scheduling cri-
terion as well as the scaling of the target matrix D. The
balancing of user fairness by these tools is an interesting
topic but has been left out of the scope of the present
work.

6 Evaluations based onmeasured channels
6.1 Channel measurements
All simulations in this section are based on chan-
nel sounding measurements carried out by Ericsson
Research. Three omnidirectional single-antenna base sta-
tions, located at different sites with 350- to 600-m dis-
tance, were used to transmit channel sounding orthogonal
RS to a measurement van in an outdoor urban envi-
ronment in central Kista, Stockholm. The measurement
parameters are presented in Table 1, and the received sig-
nal powers from the base stations are plotted in Figure 1.
The measurements are of high quality and can hence be
assumed to represent the true complex channel gains in
space. For a detailed description of the measurements and
channels, see [46,47].

Table 1 Measurement and simulation parameters

Parameter Value for Value for
measurements simulations

Carrier frequency 2.66 GHz 2.66 GHz

Number of base stations 3 3

RS spacing in time �t 5.3 ms 1.3 ms

RS spacing in frequency �f 45 kHz 45 kHz

Maximum velocity 30 km/h 5 km/h

6.2 Simulation method and assumptions
To simulate velocities of pedestrian users, and to make the
model more 3GPP-LTE like, the data has been upsampled
25 times in time resulting in the parameters presented in
the right-hand column of Table 1. The upsampling is done
using the fast Fourier transform to ensure that no extra
frequency components are added.
In the present investigation, we have focused only on the

prediction error part in the error model (2).

6.2.1 Prediction assumptions
The downlink channels from the NB = 3 single-antenna
base stations are predicted for the entire measurement
route in Figure 1. For this, the fading statistics in time
and frequency, represented by fourth-order AR models,
are estimated periodically every 1 s. The use of higher AR
order than 4 would not significantly improve the predic-
tion performance for this data set. The AR models are
based on noise-free channel data, i.e. on perfect CSIT,
from the past 1 s. From studying the measured data, we
have found that this time interval is appropriate with
respect to the long-term fading. It is short enough to
ensure that the statistics of the Doppler spectrum stays
fairly constant within the interval. It is also long enough
to provide appropriate prediction performance statistics
and CoMP performance statistics for each interval. For
high-mobility users, the interval might need to be shorter.
Signal measurements with an appropriate range of SNRs

are created by using (21) in Appendix 1 with a transmit
power of P = 1 and additive white Gaussian noise of
three different power levels, σ 2 (see Figure 1). On aver-
age over all three noise levels, the median SNR is 24 dB
at the investigated positions. The SNR CDF is similar
to that obtained when applying the intercluster interfer-
ence mitigation framework of [14,17,48]. That proposal
forms overlapping static clusters that use different time-
frequency allocations and further controls interference by
using different antenna downtilts and transmit powers to
the outside and to the inside of each cluster. The noise is
i.i.d. over subcarriers for all users.
The channel correlation over frequency determines the

covariance matrix Q = E [ee∗] for each user in (3). It
is estimated as the sample mean of hk

(
hk+κ

)∗ for k =
1, . . . ,KCRS − w, κ = 1, . . . ,w − 1 and i = 1, . . . ,M.
Computational complexity increases with w, so we use
a low value of w = 4. The channels are predicted for
144 RS-bearing subcarriers using prediction horizons of
ϑ = 0, 4, 8, 12 and18 RS. These correspond to dis-
tances dλ = 0, 0.06, 0.13, 0.19 and 0.28 wavelengths or
time horizons of 0, 5, 10, 15 and 23 ms for the system
defined in Table 1. The results for prediction distances dλ

are scalable and could be interpreted as predictions for
time horizons of dλ · λc/v at a carrier wavelength of λc
and a user moving at velocity v. For these simulations,
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the Kalman filters are updated in each RS-bearing symbol
with �t = 1, 3 ms. However, after approximately ten iter-
ations (i.e. after 13 ms), they converge to a constant value
for each ARmodel. This could be utilized in a commercial
system to keep complexity low.
Orthogonal RS are used in all results below. The noise

powers at the RS-bearing resources might in general differ
from those on the payload-bearing resources. In evalua-
tions, we will here use the same power for both cases.
The prediction performance will be evaluated using the

normalized mean squared error (NMSE) for the channel
from the jth transmitter to the ith user

NMSEij =
∑T

τ=1 |Hk
ij(τ ) − Ĥk

ij(τ )|2∑T
τ=1 |Hk

ij(τ )|2 , (20)

where T is an appropriate averaging interval. The NMSE
(20) is averaged in decibels over each 1 s interval for every
subcarrier separately.

6.2.2 Scheduling and precoding assumptions
It is assumed that the active users within a cluster have
data to receive. The scheduling and precoding methods
are evaluated at full system load for two cases. First with
M = N = 3 users and second with M = 9 users. The
single-antenna users are randomly scattered over themea-
surement route. At every time slot of length 1.3 ms, the
users are grouped and scheduled over the resource blocks,
represented by the 144 subcarriers, based on the predicted
CSIT. Precoding is then carried out at each time slot as the
users move along the route for 0.5 s. A one-dimensional
search in the penalty matrix S by (23) in Appendix 2 is
used by the RLP scheme to optimize the approximated
sum rate (19). The obtained sum rate

∑
log (1 + SINR)

is then averaged over the 0.5 s for each subcarrier. This
is repeated for 1,000 different sets of user starting posi-
tions along themeasurement route. The same noise power
levels as those for the predictions are used. The power
constraint is Pmax = 1 for each transmitter and for each
subcarrier.
User grouping results are compared to a random user

grouping with round robin scheduling denoted RUG-RR.
In that scheme, all M users are randomly subdivided into
user groups of size Mg ≤ N , with equality (Mg = N = 3)
in these simulations. Groups are scheduled in a round
robin (RR) fashion over frequency, so all M users are
served within a time slot.
Precoding results are compared to SC transmission with

frequency reuse one. Then, each of the three base stations
serves its own users on orthogonal resources, transmitting
at full power with no base station cooperation. When SC
transmission is compared to RUG-RR, users within a cell
are scheduled with RR and when it is compared to SB-
CUG, SB scheduling is used.

6.3 Prediction performance
The average NMSE of the predictions obtained by the
experiments outlined above are presented in Table 2. For
comparison, the NMSE achieved if the outdated estimate
is used as a predictor is presented in the last (fifth) col-
umn. As the prediction horizon increases so does the
benefit of using predicted CSIT as opposed to outdated.
Due to high transmission delays (>5 ms), current systems
would need ϑ > 4 for JT CoMP under the assumptions
of Table 1. Therefore, the use of predictions instead of
outdated estimates is very important.
For JT CoMP, assume that an interfering scalar

complex-valued channel is given by g = ĝ + �g,
with ĝ known, Ē

[
�g
] = 0, Ē

[
ĝ�g∗] = 0 and an

NMSE Ē
[∣∣�g

∣∣2] /Ē
[∣∣g∣∣2]. If this interference is to be

canceled by receiving another channel component h,
from another base station, then the resulting interfer-
ence power Ē

[∣∣g + h
∣∣2] is minimized by setting h = −ĝ

resulting in Ē
[∣∣g + h

∣∣2] = Ē
[∣∣�g

∣∣2]. Therefore, themax-
imum attainable relative dampening factor would become

Table 2 Prediction performance

ϑ σ 2
n Predicted channels Outdated CSIT

(dBm) NMSE all NMSE for weakest NMSE all BS (dB)
BS (dB) BS (dB)

0 −110 −17.8 −7.1 −17.8

−120 −23.9 −12.7 −23.9

−130 −30.9 −20.0 −30.9

4 −110 −12.8 −5.9 −10.5

−120 −15.3 −9.4 −12.5

−130 −17.6 −13.3 −14.0

8 −110 −11.0 −4.8 −6.9

−120 −12.9 −7.4 −7.9

−130 −14.8 −10.3 −8.6

12 −110 −9.6 −4.0 −4.4

−120 −11.2 −5.9 −5.0

−130 −12.8 −8.2 −5.3

18 −110 −7.9 −3.0 −1.8

−120 −9.2 −4.1 −2.1

−130 −10.3 −5.4 −2.2

The average over all measurement locations and all subcarriers of the NMSE for
prediction horizons of ϑ = 0 (filter estimate), 4, 8, 12 and 18 RS samples in time
or 0, 0.06, 0.13, 0.19 and 0.28 λ in space, for the three noise levels. Results are
averaged in decibels over all base stations (third column) and the weakest base
station only (fourth column). Fifth column: the NMSE when using outdated
estimates.
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Ē
[∣∣g∣∣2] /Ē

[∣∣�g
∣∣2]. Hence, a channel error with an NMSE

of −x dB indicates that we can reduce the interference
from that base station by at most x dB. For example, at a
prediction horizon of ϑ = 18, the interference from the
weakest base station at a given user can on average only
be suppressed by 3 to 5 dB. The prediction performance
of the weakest base station is far below that of the average
performance over all base stations. These poor predic-
tions might become ‘bad apples’ that infect the quality of
the total precoding solutions.
A closer study of the effect of using different noise floors

and RS SNRs is shown in Figures 4 and 5. As expected,
a low noise floor increases the prediction performance.
The impact of the RS SNR is largest at short prediction
horizons. This is because at long prediction horizons the
fading statistics, rather than the noise, is the main limit-
ing factor of the prediction performance, as also discussed
in [22].

6.4 Precoding performance
In Table 3 the per-cell sum rates are presented for the pre-
coding schemes when M = 3 and when the channels for
1,000 sets of user starting positions are predicted with a
prediction horizon of ϑ = 8. When using random user
grouping and round robin scheduling (RUG-RR), we see
that the two JT CoMP schemes, RLP and ZF, provide small
gains as compared to SC transmission. In fact, ZF trans-
mission performs much worse than SC transmission for
the most difficult user groups (the 5% percentiles). Com-
paring ZF with RLP for these user groups, which can be
regarded as the toughest CoMP groups, RLP outperforms
ZF by almost a factor of 3. There are two reasons for
this, the first being that RLP considers the CSIT inaccu-
racy in the design process and the second being that RLP
performs power adjustments through the iterative pro-
cess described in Section 5.2.2. As discussed in [9], both
are important, but the most significant factor is that the
RLP takes the CSIT inaccuracy into account. RLP will
avoid transmitting power over poorly predicted channels,
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Figure 4 Prediction performance sorted by noise floors. CDF of
NMSE sorted into groups of noise floor σ 2

n = −130 dBm (circles),
σ 2
n = −120 dBm (diamonds) and σ 2

n = −110 dBm (triangles).
Prediction horizons ϑ = 0 (black dotted lines), ϑ = 8 (purple solid
lines) and ϑ = 18 (blue dashed lines).
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Figure 5 Prediction performance sorted by pilot SNR. CDF of
NMSE sorted into groups of RS SNR in the intervals [20, 30] dB
(squares), [10, 20] dB (pluses) and [0, 10] dB (stars). Prediction horizons
ϑ = 0 (black dotted lines), ϑ = 8 (purple solid lines) and ϑ = 18
(blue dashed lines).

which usually coincide with the weak channels. Therefore,
RLP will require a lower scaling constant c than ZF, even
without using the iterative power adjustment.
With RUG-RR, SC transmission outperforms RLP for

34% of the groups. For 17% of the groups, the per-cell sum
rate is more than 1 bps/Hz/cell higher for SC transmis-
sion. With cellular user grouping combined with score-
based scheduling (SB-CUG), these numbers decrease to
7% and 0.6%, respectively. The improvement is due to bet-
ter conditioned 3 × 3 channel matrices H resulting in the
need for on average smaller power scaling factors c in (10).
These results indicate that even with few users to choose
from in the system, local scheduling will provide good
user groups for CoMP. This phenomenon will be further
validated in Section 7.
A clear benefit of using local scheduling algorithms such

as score-based scheduling is that we can get the benefits of
multiuser diversity at low complexity. This is evident when
we in Tables 3 and 4 compare the average sum rates when
M = 3 with those for M = 9. The results for RUG-RR
remain almost unchanged, as expected. However the SB-
CUG provides a multiuser diversity gain in the range of
30% for the CoMP schemes and 15% for SC transmission.
For SB-CUG withM = 9, the fraction of situations where

Table 3 Precoding performance forM= 3 and ϑ = 8

User grouping Precoder Sum rate (bps/Hz/cell)

Mean 5% percentile

RUG-RR SC 4.7 2.1

RLP 5.7 2.4

ZF 4.8 0.86

SB-CUG SC 4.8 2.7

RLP 6.3 3.0

ZF 6.4 2.9

Sum rate forM = 3 users evaluated at a prediction horizon of ϑ = 8 (10 ms at
2.66 GHz).
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Table 4 Precoding performance forM= 9 and ϑ = 8

User grouping Precoder Sum rate (bps/Hz/cell)

Mean 5% percentile

RUG-RR SC 4.9 2.3

RLP 5.5 2.4

ZF 4.7 0.79

SB-CUG SC 5.5 3.5

RLP 8.5 5.1

ZF 8.5 4.8

Sum rate forM = 9 users evaluated at a prediction horizon of ϑ = 8.

SC outperforms CoMP with RLP is only 1%. The advan-
tage of SC in sum rate is more than 1 bps/Hz in less than
0.01% of the situations. Interestingly, both of these obser-
vations indicate that the multiuser diversity gain is higher
for JT CoMP than for SC transmission when using SB-
CUG. This is because the score-based scheduler selects
users when they have their best channel quality, so their
prediction errors will also be the lowest. This increases the
accuracy of the CoMP precoder.
With SB-CUG for M = 9 users, CoMP improves the

average sum rate by 54% as compared to SC transmis-
sion. For the worst combinations of positions of scheduled
users (the 5% percentile), the sum rate improves by 47%.
It is seen from Figure 6 that the highest sum rate gains

from using CoMP are achieved when the noise floor is low.
The system is then intracluster interference limited. The

performance for ZF with perfect CSIT has been added
for comparison. As the noise floor decreases, the gap
between ZF with perfect CSIT and ZF with predicted
CSIT increases. For low noise floors, RLP does not out-
perform ZF since RLP can only compensate for inaccurate
CSIT by allocating transmit power over the more reliable
channels, but it cannot compensate for the actual phase
errors in the CSIT. As the noise floor decreases, and the
channels become more accurate as a result (see Table 2),
it therefore cannot perform better than ZF, even for the
tough user groups.
We now in Figure 6 compare ZF, RLP and ZF with per-

fect CSIT in the case with a noise floor of−110 dBm using
RUG-RR. ZF with perfect CSIT then performs worse than
RLP with predicted channels, which may seem surpris-
ing. However, as mentioned, the regularizing third term
in the inverse in (14) affects the power allocation such
that more power is transmitted over accurate channels
than over very inaccurate channels. Since generally the
most accurate channels are also the strongest channels,
the power allocation is automatically better than that of
the ZF solution, even when ZF uses perfect CSIT.
Table 5 shows the results as the prediction horizon

increases to ϑ = 18 (23 ms at 2.66 GHz). The decrease
in CSIT quality decreases the performance for CoMP,
as coherent transmission is sensitive to phase errors.
Interestingly, with SB-CUG, there is still a clear gain
with using CoMP as compared to using SC transmission.
This is not the case with RUG-RR. The CoMP schemes
in combination with SB-CUG is hence more robust to
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Figure 6 Precoding performance. CDFs of the sum rate for all user group provided by RUG-RR (black solid lines) and SB-CUG (purple dashed lines).
A comparison between ZF (circles), RLP (squares) and SC with RR (stars) transmit strategies. Noise floors of −110 dBm (top), −120 dBm (middle)
and −130 dBm (bottom). Perfect interference suppression by ZF with perfect CSIT (diamonds) is added for comparison. ϑ = 8,M = 9.
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Table 5 Precoding performance forM= 9 and ϑ = 18

User grouping Precoder Sum rate (bps/Hz/cell)

Mean 5% percentile

RUG-RR SC 4.9 2.3

RLP 5.0 2.2

ZF 4.0 0.67

SB-CUG SC 5.5 3.5

RLP 7.6 4.7

ZF 7.6 4.5

Sum rate forM = 9 users evaluated at a prediction horizon of ϑ = 18 (23 ms at
2.66 GHz).

channel prediction errors than in combination with RUG-
RR. Even for these fairly long delays of 23 ms, we still
obtain significant CoMP gains, 38% increase in average
sum rate for users at pedestrian velocities in the 2.66 GHz
band. Moreover, if the system could guarantee delays of
maximum 10 or 5 ms, we could equivalently obtain signif-
icant CoMP gains for users at vehicular velocities of about
60 and 120 km/h respectively at a carrier frequency of 500
MHz.
All investigated scenarios above suggest that using SB-

CUG instead of RUG-RR is especially important for ZF
precoding. User grouping based on cellular scheduling
increases the average sum rate performance of ZF pre-
coding so that it becomes equal to that of RLP. The 5%
percentile sum rate is increased by up to a factor 6.7. This
is because SB-CUG generates well-conditioned matrices.
The channel errors from the weak base stations will then
have less effect on the final solution. This is most evi-
dent in the lowest percentiles, since these include the user
groups with the largest channel errors.
It is noticeable, from Table 3 and Figure 6, that with

SB-CUG, ZF sometimes outperforms RLP. In our studies,
we have seen that this is due to the approximations made
when calculating Ē [�H∗V ∗V�H] in (14) by using (7),
(15) and (16). This overestimates the variance of the
prediction error as discussed in Section 3.2. RLP then
becomes overly cautious, yielding a slightly worse solu-
tion. However, these effects are small and only noticeable
at the lowest noise floor.
In all the above, we have assumed that the quantization

error is small compared to the prediction error and there-
fore negligible. As the prediction errors are mostly in the
regions of over −20 dB, a feedback cost of 8 to 10 bits per
complex-valued scalar channel would ensure this.With an
adaptive quantization scheme, the poor channels might
only need 4 to 6 bits per complex-valued scalar channel
for the quantization error to be negligible compared with
the prediction error, so the feedback cost can then be low-
ered. The overhead required to notify the base station on

how many bits each channel require is low, as this relates
to the shadow fading and only needs to be fed back on a
slow varying time scale, related to the shadow fading.
An idea of how a nonnegligible adaptive quantization

error would affect the results can be gained by study-
ing the performance differences between different noise
floors. The higher noise floors lead to less accurate predic-
tions, and quantization errors would amplify this effect.
However, with a fixed quantization granularity, the size
of the quantization error would be independent of the
channel prediction quality. Then, in the presence of non-
negligible quantization errors, other effects might occur,
which are not present in the results presented her. This
is a topic of importance, which will be left for future
studies.

7 Investigation of user grouping strategies
Due to the high computational complexity of some of the
user grouping schemes, all of them have not been evalu-
ated on the extensive channel data of Section 6, but rather
in a simulation environment. Three cells supported by
N = 3 omnidirectional single-antenna base stations at
a distance R = 500 m serve M = 3, 6, . . . , 27 single-
antenna users, with independently block-fading channels.
The simulations use 140 block-fading resource blocks.
The channel gains Hij for each set of user i and base sta-
tion j are modeled as zero-mean and circular symmetric
complex Gaussian variables. Their variance σ 2

hij is given
by the path loss model 128.1 + 37.6 log10(d) and log-
normal shadow fading with 8-dB standard deviation. The
channels are generated in two steps. First, channel pre-
diction error variances σ 2

�hij are calculated through (6)
assuming that w = 4 flat fading subcarriers are pre-
dicted jointly and that the fading statistics for all chan-
nels Hij is perfectly represented by a known fourth-order
AR model with poles in 0.96±0.09i and 0.91±0.04i yield-
ing a flat Doppler spectrum. Such a spectrum generally
causes channels that are harder to predict than those in
the measurements, where there is a mixture of different
Doppler spectra. Second, to ensure that the prediction
and the prediction error are uncorrelated, each Hij is cal-
culated through (2) with �Hquant = 0 and with �Hij
and Ĥij modeled as uncorrelated circular symmetric com-
plex Gaussian variables with variances σ 2

�hij and σ 2
hij −

σ 2
�hij , respectively. The parameters in the right-hand col-

umn of Table 1 and a prediction horizon of ϑ = 8 are
assumed.
Users are dropped randomly with equal probability

within a circle of 360-m radius from the cluster cen-
ter. This area corresponds well to the area in which a
user would be allocated for overlapping network cen-
tric cooperation clusters that are formed as described in
[14,17,48].
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Performance is evaluated in terms of sum rate and indi-
vidual user rate using ZF JT CoMP over 1,000 sets of
user positions. The results from an exhaustive search of
which user groups give the best sum rate on each resource
have been added. This is denoted as optimal best rate
(opt. BR).

7.1 Results
Comparisons between all the user grouping and schedul-
ing schemes described in Section 4, as well as RUG-RR
are presented in terms of sum rate (Figure 7) and aver-
age user rate (Figure 8) for M = 9 users. Note that the
CUG scheme performs close to the much more com-
plex GUG algorithm both for the near sum rate opti-
mal groups, comparing GUG-BR with BR-CUG and for
the ‘fair’ user groups, comparing GUG-PF with SB-CUG.
Both GUG-BR and BR-CUG also perform close to the
sum rate optimal user grouping obtained by exhaustive
search. In terms of the lowest percentiles of the aver-
age user rates for the fair algorithms, GUG-PF is more
fair than SB-CUG. This can be explained by the SB-CUG
being restricted to allocating resources fair amongst users
in the same cell. Therefore, when the users are unevenly
distributed, e.g. when 80% of the users belong to the same
master base station, then these users will be allocated to
less resources than the other 20% of the users. The low
percentiles of SB-CUG are still much better than those
obtained with RUG-RR and with the sum rate optimal
user grouping algorithms. In Figure 9, we see that the
multiuser scheduling gain for the BR-CUG algorithm is
on level with that of the sum rate optimal algorithm. For
the more fair SB-CUG, the gain in terms of sum rate is
less.
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Figure 7 User grouping performance by sum rate. CDF of the sum
rate with the different user grouping schemes. Note that the optimal
and GUG curves for the best rate almost overlap and are hard to
separate.M = 9.
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Figure 8 User grouping performance by user rate. CDF of the
average rate each user receives with the different user grouping
schemes. Note that the optimal and GUG curves for the best rate
almost overlap and are hard to separate.M = 9. Lines as in Figure 7.

8 Discussions and conclusions
The paper has investigated the sum rate performance
gains by coordinated joint linear transmission (JT CoMP)
from several sites, relative to conventional cellular trans-
mission with frequency reuse 1.
We have taken several types of constraints into account

to obtain a reasonably realistic setting. Measured chan-
nel sounding data were used to obtain fading channels
from multiple transmitter sites for a large set of termi-
nal positions. We focused on cooperation between three
single-antenna (macro) sites, tomodel a scenario with rea-
sonable demands on feedback and on backhaul in a small
cooperation cluster. All users furthermore had pedestrian
velocities and we predicted their channels by Kalman
algorithms. This setting produced significant CSIT errors
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Figure 9Multi-user diversity gains. Average sum rate as a function
of users in the system. Lines as in Figure 7.
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and allowed us to investigate the limits of performance
due to channel outdating. To obtain reasonable compu-
tational complexity, we furthermore restricted focus to
linear precoders that were designed jointly for the whole
cluster based on the inaccurate CSIT.
Our results take delays over the backhaul links into

account, via the required prediction horizon, but backhaul
capacity within clusters is not constrained. Such con-
straints would reduce performance markedly [43]. Fur-
thermore, quantization errors of the channel prediction
feedback over uplinks in FDD systems have been assumed
small, relative to the prediction errors. This assumption
would, e.g. be fulfilled by using 10-bit quantization of
complex channel components. (For the considered case of
three base station antennas per cooperating cluster, the
resulting feedback load over the uplink would then be 30
bits per scheduled user for each scheduled block. This
assumes feedback of predictions only by the scheduled
users and only for scheduled resource blocks, as proposed
in Section 4. Methods that further reduce the feedback
overhead are under current investigation).
The first main conclusion that stands out from these

results is the crucial importance of a good user grouping.
Joint transmission to a group of users with a badly condi-
tioned channel matrix would lead to scaling problems in a
linear precoder that is designed under per-antenna power
constraints. With random user positions, such problems
occur frequently, with the result that the advantages of
CoMP relative to cellular transmission are lost.
A second main conclusion is that with reasonably good

user grouping, JT CoMP combined with fair opportunis-
tic scheduling provides significant performance gains for
practically all of the sets of investigated user positions.
This holds also at quite large CSIT error levels, e.g. at
NMSE -9 dB on average over all positions at 0.28 wave-
lengths or 23 ms prediction horizons (Tables 2 and 5).
However, for still longer prediction distances in space,
the performance starts to deteriorate and the gains of
using coherent joint transmission vanish [10]. A special-
ized ‘predictor antenna’ system for vehicles has recently
been proposed to obtain accurate CSI also at very high
velocities [49].
A third highlight is that these gains can be obtained

by using a simple user grouping scheme that we have
proposed and evaluated here. Its essence is ‘Perform mul-
tiuser scheduling with respect to frequency locally for
each cell. Then, for each frequency resource block, design
joint transmission precoders for the terminals that have
thereby been allocated to use that resource block.’ The
first step can be executed locally in the base stations
as opposed to in the central control unit, providing less
strain on the backhaul links. Multiuser scheduling gains
over frequency-selective channels are then preserved and
even amplified (comparing Tables 3 and 4) by using JT

CoMP relative to single-cell transmission that uses the
same schedulers. By enabling the use of a two-stage
feedback approach, the proposed user grouping scheme
also reduces the CSI feedback overhead in FDD systems
drastically.
The simulations provided in Section 7 have shown that

this extremely simple algorithm performs very close to the
much more complex, feedback and backhaul demanding
greedy user grouping algorithm. It also performs close to
rate-optimal. Its effectiveness in avoiding bad user groups
is illustrated most strikingly by the resulting increase of
the 5% percentile sum rate performance, relative to ran-
dom user grouping, when using zero-forcing precoding
(Tables 3, 4 and 5). This user grouping scheme could
be improved further, by introducing a second scheduling
round that eliminates the few remaining cases with chan-
nel matrices with large singular value spread. That would
however increase both the delay and the computational
complexity.
A similar user grouping scheme can also be used with

multiantenna base stations, where we in a first step
design (multiuser) MIMO beamformers for each cell.
Joint CoMP precoders (beamformers for the whole clus-
ter) are then designed in a second step and are added
to the signal chains before the cellular beamformers
[17,50].
Robust precoding that takes the channel inaccuracy into

account is an important safeguard against remaining cases
with problematic channel matrices. We have studied the
use of the iterative RLP design of linear precoders for
this purpose. When provided a ‘tough’ user group, with a
badly conditioned channel matrix, then robust precoder
designed by using the RLP scheme outperforms standard
zero-forcing by a factor of 3 in terms of 5% percentile sum
rate (Tables 3, 4 and 5, for RUG-RR). However when user
groups are chosen that mostly ensure diagonal-dominant
channel matrices, then RLP does not have a great advan-
tage over ZF.
We have furthermore found interesting interactions

between channel estimation and the properties of RLP
precoders. A question posed in the introduction was on
the effects of large differences in estimation accuracy for
strong and weak channels. Would the larger inaccuracy
of estimates in weak channels spoil the precoder design?
When the RLP design is used, the opposite happens. Large
inaccuracies of weak channels lead to these transmitters
being less used by the precoder. This leads to less need
for rescaling of the solution to satisfy the transmit power
constraint.
With good precoder design and user grouping schemes,

the limits of performance for linear downlink JT CoMP
will mainly be due to the CSIT quality and the out-of-
cluster interference and noise level (see Figure 6, SB-
CUG). Cooperation cluster design is therefore crucial
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for improving the attainable performance. This includes
reducing intercluster interference for pilots and for pay-
load data by semi-static transmission resource plan-
ning, power control and antenna beamforming [48] and
schemes that increase the probability that users will
find all of their strongest transmitters within one of the
clusters [17].

Appendix 1
Kalman filter
Each Kalman filter at user i is assumed to use measure-
ments ϒ(t) =

[
yqwi (t), . . . , y(q+1)w−1

i (t)
]T

at groups of w
RS-bearing subcarriers. From (1) and (4), we get

ϒ(t) = 
h(t) + ℵ(t). (21)

Here, the measurement noise ℵ(t) =
[
nqwi (t), · · · ,

n(q+1)w−1
i (t)

]T
is assumed zero mean with known covari-

ance matrix Rℵ and the matrix 
 ∈ C
w×w·N contains

only known reference symbols and zeros. Reference sym-
bols may be transmitted at orthogonal time-frequency
resources by different transmitters. Alternatively, to
reduce the RS overhead or to increase the RS pattern
density in time and/or frequency, we may use quasi-
orthogonal RS. Such ‘overlapping’ or ‘code orthogonal’
pilots, have, e.g. been proposed in [23] and evaluated
in [9,17]. One benefit from using the later technique is that
the addition of transmit antennas would not necessary
cause an increase in overhead. However, whenever jointly
estimated subchannels are not perfectly flat fading, code
orthogonality is lost in the receiver. In [17], it was shown
that this leads to a large degradation of prediction qual-
ity for the weakest channels when these are much weaker
(e.g. by more than 10 dB) than the strongest channels.
The energy leaking from the RS transmitted over strong
channels will then be large in comparison to the energy
of the received RS transmitted over weak channels. This
leaked energy can be regarded as an extra noise term in
the measurement, thus causing a noticeably lower expe-
rienced SNR for the weak channels. Since channels from
antennas located at different base stations will generally
have large gain differences while those located at the same
base station will not, we here assume the use of orthogo-
nal RS for antennas located at different base stations while
quasi-orthogonal RS may be used for those located at the
same base station. As an example, with two transmitters
that use overlapping RS with BPSK symbols {1,−1}, two
users and four jointly estimated subcarriers, w = 4, the
matrices
 in (21) could be given by
 = [ I, I ] for user
i = 1 and 
 = [

diag {1,−1, 1,−1} , diag {1,−1, 1,−1} ]
for user i = 2, while for KCRS = K , h(t) =[
H0
i1,H1

i1,H2
i1,H3

i1,H0
i2,H1

i2,H2
i2,H3

i2
]T , i = 1, 2.

The Kalman filter for updating the estimated state vec-
tors for user i are given by

x̂(t|t − 1) = Ax̂(t − 1|t − 1),
P(t|t − 1) = AP(t − 1|t − 1)A∗ + BQB∗,

K(t) = P(t|t − 1) (
C)∗ (Rℵ + 
CP(t|t − 1) (
C)∗)−1,
x̂(t|t) = x̂(t|t − 1) + K(t)(ϒ(t) − 
Cx̂(t|t − 1)),
P(t|t) = (I − K(t)
C)P(t|t − 1),

(22)

where x̂(t1|t2) is an estimate of the state space vector
in (3) at time t1 based on measurements up to time
t2, P(t1|t2) = E

[(
x(t1) − x̂(t1|t2)

) (
x(t1) − x̂(t1|t2)

)∗] and
K(t) is the Kalman filter gain. These recursively com-
puted estimates are based on a set of past measurements
ϒ(t),ϒ(t−1), . . . that grows in time, without requiring an
increasing memory size to store the measurements.

Appendix 2
Iterative adjustment of the penalty matrix S
The criterion (18) can be optimized by adjusting the
transmit powers with a step-by-step Greedy algorithm to
reduce power normalization loss problems due to the scal-
ing of (1/c) in (10). We outline this procedure below for
single-antenna base stations.
First, calculate the optimal precoder from (14) with V =

I and S = εI. Here, ε 
 1 is a small real-valued number
ensuring that S is positive definite. The resulting precoder
minimizes the intracluster interference which might not
be optimal w.r.t. (18). This precoder is then used as the
initial value for a sequence of iterative, one-dimensional
searches where we sequentially adjust the penalties on the
transmit powers used by each base station.
Now, calculate u using (10) under the per-base station

power constraint (11) and set

Sρ,1 = εI + diag
{
ρ1 · 1jmax,

}
(23)

Here, 1jmax denotes a vector with a 1 if the corresponding
base station has the highest transmit power and zeros oth-
erwise. For example, assume a system with N = 3,M = 2
and

1
c
R =

[
1 2 0.5
0 3 1

]T
.

Then, the transmit powers at base station 1, 2 and 3 are
[ 1 13 1.25 ], so jmax = 2 and 1jmax = [ 0 1 0 ]. The
parameter ρ1 is iteratively optimized w.r.t. (18) over an
interval

]
0, ρ1,max

[
where ρ1,max is the smallest value that

will cause jmax to change. This procedure can be repeated
for the second strongest base station, denoted jmax 2, with

Sρ,2 = diag
{
ρ1 · 1jmax

}+ diag
{
ρ2 · 1jmax 2

}
. (24)

Similarly, as for ρ1, the parameter ρ2 is now optimized
over

]
ε, ρ2,max

[
, while ρ1 is held fixed, where ρ2,max is the
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smallest value that will cause the value of jmax or jmax 2 to
change. In the above example, jmax 2 = 3 and 1jmax 2 =
[ 0 0 1 ]. Again, the procedure can be repeated for all
remaining base station in the order of decreasing transmit
power until the final matrix is

Sρ = εI +
N∑
j=1

diag
{
ρj · 1j

}
. (25)

For clusters with few base stations, it is often suffi-
cient to adjust only one scalar parameter in S related to
the strongest base station as for (23). For clusters with
many base stations, further improvements are obtained by
adjusting additional diagonal elements in S starting with
that associated with the second strongest base station.
For multiantenna base stations, all the co-located trans-

mit antennas of one cell have average channel gains of
the same order of magnitude. They should therefore be
penalized using the same order of magnitude. Then, one
penalty parameter value ρj can be adjusted simultaneously
for all antennas at one base station j at a time as for the
single-antenna base station example above.

Appendix 3
Assuming no quantization errors, E

[
sis∗j
]

= δij,Ē [�H] =
0 and E [nn∗] = σ 2I in (1), (2) and (10), the expected
values of the power for the received message PS,i, the intr-
acluster interference PI,i and the noise PN ,i at the ith user
are given by

Ē
[
E
[
PS,i
]] = Ē

[
E
∣∣∣∣(1c HR)iisi

∣∣∣∣
2
]

= 1
c2
Ē
[|HR|2ii

]
,

Ē
[
E
[
PI,i
]] = Ē

⎡
⎢⎣E

∣∣∣∣∣∣
M∑
m �=i

1
c

(HR)im sm

∣∣∣∣∣∣
2
⎤
⎥⎦ = 1

c2
M∑
m �=i

Ē
[|HR|2im

]
,

Ē
[
E
[
PN ,i

]] = σ 2,
(26)

where

Ē
[|HR| 2im

] = Ē

⎡
⎢⎣
∣∣∣∣∣∣
N∑
j=1

ĤijRjm +
N∑
j=1

�HijRjm

∣∣∣∣∣∣
2
⎤
⎥⎦ .

Assuming that Ē
[
Ĥ�H∗

]
= 0,

Ē
[|HR| 2im

] =
∣∣∣(ĤR

)
im

∣∣∣ 2 +
N∑
j=1

N∑
n=1

Ē
[
�Hij�H∗

in
]
RjmR∗

nm,

where Ē
[
�Hij�H∗

in
]
is element

(
j, n
)
of the covariance

submatrix (CP (t + ϑ |t)C∗)k of user i.

Appendix 4
Proof of Theorem 1
We will here prove that (14) minimizes the cost func-
tion (13). If S has full rank, then the inverse in (14) exists,
so RRLP by (14) exists and is unique. Assume that RRLP
by (14) does not minimize (13). Since the signal vector s in
(10) is assumed white, any alternative potentially superior
linear precoder can then be expressed as a linear function
of s at time t only. Then there must exist a matrix

R = RRLP + εT , (27)

with a complex matrix T and a real number ε with which
we can decrease the value of J. We can then write the error
signal ε and the vector of transmitted signals u as

ε = εo + εεT = 1
c

(HRRLP − D) s + ε
1
c
HTs,

u = u0 + εuT = 1
c
RRLPs + ε

1
c
Ts.

(28)

Using these notations and that ‖v‖2 = tr (vv∗) for a
vector v, we can rewrite (13) as

J = J0 + 2εRe (J1) + ε2J2, (29)

where

J0 = Ē
[
E
[
tr
(
(Vε0) (Vε0)

∗)]+ E
[
tr
(
(Su0) (Su0)∗

)]]
,

J1 = Ē
[
E
[
tr
(
(Vε0) (VεT )∗

)]+ E
[
tr
(
(Su0) (SuT )∗

)]]
,

J2 = Ē
[
E
[
tr
(
(VεT ) (VεT )∗

)]+ E
[
tr
(
(SuT ) (SuT )∗

)]]
.

First, note that J0 is not affected by the choice of T. Sec-
ond, we note that J2 ≥ 0, so the only way to decrease J is
by choosing T such that J1 < 0. Using E [ss∗] = I we can
expand J1 into

J1 = 1
c2
Ē
[
tr
(
V (HRRLP − D)T∗H∗V ∗ + SRRLPT∗S∗)] .

(30)

Through the trace rotation rule, tr (AB) = tr (BA), we
get

J1 = 1
c2
tr
(((

Ē
[
H∗V ∗VH

]+ S∗S
)
RRLP − Ē

[
H∗V ∗VD

])
T∗) .
(31)

Assuming that Ē [�H] = Ē
[
�Hquant

] = 0 and Ē =[
�H∗V ∗V�Hquant

] = 0 and inserting (2) and (14)
into (31) we get J1 = 0 for allT. Hence, we cannot choose a
matrix T that will decrease the cost function, J = J0+ε2J2.
The minimum J = J0 is attained only by setting ε = 0, so
R = RRLP minimizes the cost function.
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