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Abstract

Free-space optical (FSO) communication is an emerging technology which offers enormous bandwidth, license-free
spectrum and highly secure link. Avalanche photodiodes (APD) are normally used for the detection of high-speed FSO
signals, where the noise shows signal-dependent Gaussian noise (SDGN) distribution rather than the
signal-independent Gaussian noise (SIGN) distribution. We investigate the use of on-off keying (OOK) and low density
parity check (LDPC) code on the performance of a FSO communication system. We also provide a good comparison
of FSO communication noise models considering a moderate atmospheric turbulence condition. We show that large
gains are possible using an LDPC decoder (i.e. at a bit error rate of 10−3, there is a gain of about 6 dB considering the
SDGN model in case of no turbulence condition at λ = 10 dB), when the channel state information (CSI) is known at
the receiver. We develop an extrinsic information transfer (EXIT) chart to measure the decoder convergence with and
without the effect of turbulence noise. It is also shown that the SDGN model should be considered for the optimum
detection with significant gain of 2.5 dB at λ = 0 dB and about 1 dB at λ = 10 dB.

Keywords: Signal-dependent Gaussian noise (SDGN); Signal-independent Gaussian noise (SIGN); On-off keying
(OOK); Low density parity check code (LDPC); Extrinsic information transfer (EXIT) chart

1 Introduction
Free-space optical (FSO) communication systems are
capable of providing high data transmission rates and have
received considerable attention during the past few years
in many applications - satellite communications, fibre
backup, RF-wireless back haul and last mile connectivity
[1]. In practice, the FSO communication link availability
becomes limited during foggy weather and heavy snow
fall [2-5]. The FSO signal intensity undergoes random
fluctuation due to the atmospheric turbulence, known
as scintillation. Scintillation causes performance degrada-
tion and possible loss of connectivity. These drawbacks
pose the main challenge for the FSO communication sys-
tem deployment. The desire to mitigate these drawbacks
has generated studies of coding systems in a manner sim-
ilar to their radio frequency (RF) counterparts that can
improve the system performance [6,7].
Low density parity check (LDPC) code was first intro-

duced by Gallager [7] in 1962, and its performance is
nearly close to the Shannon limits. The performance of
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the LDPC code is better than Turbo codes [8] with iter-
ative decoding algorithms which are easy to implement
with lower decoding complexity. The LDPC code of any
rate and block length can also be created easily by just
changing the shape of the parity check matrix. The rate
adaptability in the LDPC code can be obtained easily com-
pared to other codes. The LDPC code has the feature of
parallelism for supporting different speeds, performances
and memory consumption. It is therefore better to con-
sider the LDPC code for FSO communications because of
its capacity approaching performance and comparatively
easy implementation [8].
The detection of weak signals in the FSO communica-

tion is dominated by the presence of dark current due
to the background noise. This problem can be overcome
by using the avalanche photodiode (APD) which ampli-
fies the electrical current due to the internal current gain
[1]. The APD gain allows the reduction or elimination
of noisy external amplifiers. APDs are easily available for
a wide range of wavelengths. These APDs can measure
even lower level light signals and are used in a wide vari-
ety of applications requiring high sensitivity [2]. APDs
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are incorporated in many high-performance FSO com-
munication applications because they enable high signal-
to-noise ratio (SNR). APDs are preferred over positive-
intrinsic-negative (PIN) diodes due to their high internal
gain characteristics and improved SNR capability [2].
In this paper, we study the signal-independent Gaus-

sian noise (SIGN) and signal-dependent Gaussian noise
(SDGN) models for the FSO communication and develop
a comparison between these noise models. We also
develop an error analysis along with the effects of the
background noise level in both models. We performed
the novel investigations of log-likelihood ratio (LLR) map-
pings for the SDGN and SIGN model taking into account
the effect of scintillation. We are not aware of such exist-
ing coded and uncoded error analysis comparison. A
decoding convergence behaviour (i.e. extrinsic informa-
tion transfer (EXIT) chart) for the SDGN and SIGN mod-
els is also provided. The proposed conceptual study using
the LDPC code and EXIT chart has not been introduced
for such noise models.
We incorporate the implementation of APDs (i.e. con-

sidering the InGaAs APD) for the FSO communication
system and present new results for the uncoded and coded
bit error rate (BER) considering SDGN and SIGN mod-
els. In this paper, the communication system of interest is
the same as that analysed by [9] (see references therein).
However, the combined photodetection (PD) shot noise
and the thermal noise of the APD has been considered
as the SDGN and compared with the SIGN model. We
assume both cases (i.e. with and without scintillation), and
the transmitter and receiver are perfectly aligned. In our
simulation, we assume that the channel state information
(CSI) is known at the receiver.
The remainder of this paper is organized as follows.

In Section 2, we present the system model, which pro-
vides the SDGN/SIGN model for the FSO communi-
cation system. Section 3 discusses the structure of the
LDPC code used for the performance improvement of
the FSO communication system under atmospheric tur-
bulence condition. It also provides the main results of LLR
mappings for the SDGN and SIGN models. The EXIT
chart analysis is given in Section 4. Simulation results for

the uncoded/coded BER and the EXIT chart are presented
in Section 5. Section 6 provides the final concluding
remarks.

2 Systemmodel
A system block diagram comprising the SIGN and SDGN
models is shown in Figure 1. It consists of a transmit-
ter (i.e. source, encoder and OOK mapper), channel and
receiver (i.e. APD aperture, channel decoder, demapper
and sink). The data bits x ∈ (0, 1) from the source encoder
are encoded by the channel encoder, and the coded bits
are then sent through the atmospheric turbulent channel
using the OOK transmission scheme. The information
bits are modulated such that the presence of light pulse
transmits bit ‘1’ and the absence transmits bit ‘0’. We
considered the atmospheric turbulence condition, back-
ground noise from the extraneous noise sources (i.e. stars
and sun), and the Gaussian noise (which is considered as
the SDGN and SIGN). At the receiver, the incoming opti-
cal beam is focused onto the photodetector that converts
it into an electrical signal. Channel decoder decodes the
received signal using the suggested coding technique and
then demapped to get the estimated transmitted data.

2.1 SDGN and SIGNmodels
Following the derivation done by [10,11], we model the
output of the APD photodetector as the Gaussian approx-
imation of the Webb model. The average number of pho-
tons absorbed by an APD illuminated with total optical
intensity P can be expressed as

n̄ =
(

η

hpν

)
P (1)

where hp is Planck’s constant, ν is the optical frequency,
and η is the quantum efficiency, which is defined as the
ratio of the absorbed to the incident photons. Accord-
ing to [12], in an optical communication system using
APD, the actual number of photons absorbed, n, is a Pois-
son distributed random variable with probability function
p(n) = (n̄n/n! ) exp(−n̄). The conditional probability den-
sity function (pdf) p(k|n̄) of generating an avalanche of

Figure 1 A typical SIGN and SDGN systemmodel.
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k output photoelectrons for the mean absorbed photons
n̄ is derived by the McIntyre-Conradi (MC) distribution
[10]. The pdf obtained by MC gives the exact mathemati-
cal analysis which can be approximated by the continuous
Webb density [11]. In [9], we propose the SDGN model
which is the approximation of the continuous Webb den-
sity whose pdf is given by

pSDGN(k) = 1√
2π n̄G2F

exp
(−(k − n̄G)2

2n̄G2F

)
(2)

where F = keffG + (2 − 1/G)(1 − keff) is the excess noise
factor, G is the average APD gain and keff is the ionization
ratio constant. As shown in Figure 1, the information bit
‘1’ is represented by n̄1 (i.e. assuming η = 1, n̄1 = λ + Ph,
which is considered to be the background level λ plus the
signal intensity P and h shows the effect of scintillation)
and bit ‘0’ by n̄0 (i.e. n̄0 = λ) [13]. For intensity fluc-
tuations, we adopt the log-normal (LN) distribution that
best describes themoderate turbulence conditions [14]. In
[14], irradiance fluctuations for the moderate scintillation
were shown to be well modelled by a LN distribution, and
the pdf of the LN distribution is given by

ph(h) = 1√
2πσ 2

lnhh
exp

[
− (log h − μlnh)

2

2σ 2
lnh

]
(3)

whereμlnh and σ 2
lnh are the mean and variance of the loga-

rithm of h. It is assumed that E[ h]= 1 so that the average
received optical power remains constant, and from the
moments of the LN distribution, it follows that μlnh =
− 1

2σ
2
lnh and σ 2

lnh = log(1 + σ 2
I ), where σ 2

I is the scintil-
lation index (SI) defined in [15]. In [9], we relate physical
parameters of the APD with statistical parameters of the
SDGN model by saying μx = n̄xG and σ 2

x = n̄xG2F . The
relationship shows the dependence of statistical parame-
ters (i.e. μx and σ 2

x ) on physical parameters (i.e. G and F)
of the APD.
In [9], we exploit the concept of the double Gaus-

sian noise model [13], with the name of SDGN model
and did the investigation for the optimum/sub-optimum
detectorsa. In this paper, we exploit the concept of the
SDGNmodel and compare its performance with the SIGN
model. We also implement the LDPC decoder to improve
the system performance under turbulent conditions. For
the SIGNmodel, the variance (σ 2) does not depend on the
signal intensity, and its pdf is derived as

pSIGN(k) = 1√
2πσ 2

exp
(−(k − n̄G)2

2σ 2

)
. (4)

For an APD detector, parameters used are the APD
internal current gain G, keff and quantum efficiency η.
We relate physical parameters of the APD with our signal
model for the Gaussian approximation: μ0 ≈ λG, μ1 ≈
(λ + Ph)G, σ 2

0 ≈ λG2F , σ 2
1 ≈ (λ + Ph)G2F [9]. In [9], we

simulate density functions for theWebb and SDGNmodel
considering the InGaAs APDwithG = 10, keff = 0.45 and
F = 5.5 [16]. Simulation results in [9] show the agreement
between the Webb and SDGNmodel near peaks of distri-
butions. These results illustrate the simulation results of
the effect of varying background level for the SDGN and
SIGN models which are referred to in Section 5.

2.2 Channel model
The received signal for the SDGN and SIGN models after
optical/electrical conversion can be given by (5) and (6),
respectively.

ySDGN =
{
N

(
μ1, σ 2

1
)

Signal presence
N

(
μ0, σ 2

0
)

Signal absence (5)

ySIGN =
{
N

(
μ1, σ 2) Signal presence

N
(
μ0, σ 2) Signal absence (6)

The FSO channel, LLR mappings for the SIGN and
SDGN can be calculated as

� = log
(
p(x = 0|y, h)
p(x = 1|y, h)

)
(7)

where p(x = 1|y, h) represents the probability of x =
1 given the received symbol y (i.e. either the SIGN
and SDGN) under a certain channel condition and
p(x = 0|y, h) represents the probability of x = 0 given the
received symbol y (i.e. either the SIGN and SDGN) under
a certain channel condition. By the application of Bayes
rule and assuming equi-likely input bits, (7) is replaced by

� = log
(
p(y|x = 0, h)
p(y|x = 1, h)

)
. (8)

For the not equi-likely input bits (i.e. p(x) �= 1/2), we
can rewrite (8) as

� = log
p(y|x = 0, h)
p(y|x = 1, h)

+ L(x) (9)

where L(x) = log
(
p(x=0)
p(x=1)

)
. The LLR mappings are anal-

ysed so that we can use the LLR mappings for the calcula-
tion of the uncoded and coded BER.

3 Low density parity check code
The simple operation of the low density parity check code
(LDPC) code is explained by [7]. In this paper, we adopt
the same approach described by [8] and develop an LDPC
code by designing parity checkmatrices that were sparsely
populated with non-zero elements using progressive edge
growth (PEG) software [17]. We develop the (3,6)-regular
half-rate code, whose graphical representation is shown
by the Tanner graph [18] in Figure 2. It consists of two
sets of nodes: variable nodes and check nodes. The num-
ber of edges that join variable nodes and check nodes is
equal to the number of 1s in the parity check matrix. The
decoding of the LDPC code is performed by a well-known
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Figure 2 Tanner graph of (3,6)-regular half-rate LDPC code.

class of algorithms collectively known as message-passing
algorithms (MPA) (i.e. sum-product decoding algorithms
(SPA)) [8]. The operation of SPA can be explained by
passing of messages (mutual information in our analysis
referred to in Section 4) along the edges of the Tanner
graph. The SPA is based on probabilities of received bits,
which represent a level of confidence about codeword bits.

3.1 Uncoded BER
Considering a typical FSO communication system, the
information signal from the laser is directed towards
the optical receiver along the line-of-sight path. At the
receiver, we perform soft demodulation of the received
signal, which is to be considered in the form of LLR
mappings. We consider the signal presence or absence
according to the detection threshold, which we derived in
[9] for the SDGNmodel. For the SIGNmodel, we consider
the decision threshold midway between the mean of the
two signal distributions.
To begin, we derive the LLR expression for the SDGN

and SIGN models using the OOK modulation scheme. In
order to calculate the uncoded BER of the FSO communi-
cation system shown in Figure 1, we need to make some
assumptions for the SDGN modelb. In [9], we assume a
simplistic Poisson approximation in the derivation of LLR
mappings for the optimum detector. On the basis of our
defined model, we define the maximum likelihood deci-
sion (MLD) rule which maximizes the probability of a
given sequence of observations corresponding to some
threshold value for OOK.

3.1.1 SDGN LLRmapping
For the SDGN model, channel conditional probabilities
for bit ‘0’ and ‘1’, i.e. p(ySDGN|x = 0) ∼ N

(
μ0, σ 2

0
)
and

p (ySDGN|x = 1) ∼ N
(
μ1, σ 2

1
)
, are given by

p(ySDGN|x = 0) = 1√
2πσ 2

0

exp
(

− (ySDGN − μ0)2

2σ 2
0

)

(10)

p(ySDGN|x = 1) = 1√
2πσ 2

1

exp
(

− (ySDGN − μ1)2

2σ 2
1

)
.

(11)

By using (10) and (11) in (8), we get OOK LLR map-
pings for the SDGN (�SDGN) assuming equi-likely input
bits and with no atmospheric turbulence effect,

�SDGN = 1
2
log

(
1 + P

λ

)
+ 1

2G2Fλ
(
1 + λ

P
)

× [
(Gλ − ySDGN)(Gλ + ySDGN) + G2λP

]
.
(12)

Similarly, we derived LLR mappings considering the
turbulence noise case as

�SDGN = 1
2
log

(
1 + Ph

λ

)
+ 1

2G2Fλ
(
1 + λ

Ph
)

× [
(Gλ − ySDGN)(Gλ + ySDGN) + G2λPh

]
.
(13)

3.1.2 SIGN LLRmapping
For the SIGN model, channel parameters are related as,
i.e. μ0 = λG, μ1 = (λ + Ph)G, σ 2 = (λ + 0.5Ph)G2F .
The variance here is considered to be the average value
for the background noise and signal level. For bit ‘1’, we
receive the signal and the background levels at the APD
detector, whereas for bit ‘0’, only the background level is
received. The channel conditional probabilities for bits ‘0’
and ‘1’ in the case of the SIGN model, i.e. p(ySIGN|x =
0) ∼ N

(
μ0, σ 2) and p (ySIGN|x = 1) ∼ N

(
μ1, σ 2), are

p(ySIGN|x = 0) = 1√
2πσ 2

exp
(

− (ySIGN − μ0)2

2σ 2

)
(14)

p(ySIGN|x = 1) = 1√
2πσ 2

exp
(

− (ySIGN − μ1)2

2σ 2

)
.

(15)
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By using (14) and (15) in (8), we get LLR mappings for
the SIGN (�SIGN) assuming equi-likely input bits and no
scintillation case,

�SIGN = GP
2σ 2

[
G (2λ + P) − 2ySIGN

]
. (16)

Similarly, considering the scintillation, we derive LLR
mappings as

�SIGN = GPh
2σ 2

[
G (2λ + Ph) − 2ySIGN

]
. (17)

3.2 Coded BER
Once we derived the soft values, i.e. LLR mappings for the
SDGN and SIGN model in subsections 3.1.1 and 3.1.2, we
pass those values to the decoder to decode the message
and evaluate the probability of bit error. For the decod-
ing purpose, we use the same SPA algorithm proposed
in [7,8].

4 SDGN/SIGN EXIT curves
The EXIT chart is used to predict the convergence
behaviour of the iterative decoder. It is based only on the
simulated behaviour of the individual component decoder
(i.e. variable and check nodes) to obtain the desired trans-
fer characteristics [19]. It tracks the mutual information
(MI) of extrinsic LLRs (i.e. Lv shown in Figure 3) rather
than their densities at each iteration and gives an excellent
visual representation of the decoder. ten Brink proposed
EXIT chart characteristics based on MI in [6], which
shows the flow of extrinsic information through the soft
in/soft out decoders. Hagenauer described the EXIT chart
in iterative processing in [19]. In this paper, we develop
EXIT curves in order to measure the performance com-
parison of the decoder for both the SIGN and SDGN
models. The EXIT chart curves consist of three main
curves: variable node curve, check node curve and the
trajectory of the decoder convergence.

In the FSO communication system, an information
sequence is encoded into a bit stream considering the FSO
channel symbol. Then, the received signals are demapped
as shown in Figure 3. Demapping is an important step
before soft decision decoding. The FSO demapper needs
to be designed to demap the received signals. The LLR
demapping algorithm proposed in [20] works well in tra-
ditional uniform modulations, but they result in channel
capacity loss. Therefore, the iterative demapping algo-
rithm derived by ten Brink in [21] with a priori knowledge
of other bits corresponding to the same bits was employed
in many systems [22].
It is suggested in [6] that the a priori input (i.e. LA shown

in Figure 3) to the constituent decoder can be modelled as
an independent Gaussian random variable zA with mean 0
and variance (σ 2

A) in conjunction with the unmapped data
bits s ∈ (0, 1).

LA = μA(1 − 2s) + zA (18)

Since LA is supposed to be an LLR mapping based on
the simple Gaussian distribution, in the case of satisfying
the symmetric and consistency condition for the a priori
channel, themean value (μA) for the a priori channel must
fulfil [19]

μA = σ 2
A/2. (19)

According to [6], to measure the MI of the a priori
knowledge, the IAV (A; S) between the equi-likely inputs
and the respective LLR can be simplified as

IAV (A; S) = 1
2

∑
s∈(0,1)

∫ −∞

−∞
pA(ξ |S = s) log2

×
(

2pA(ξ |S = s)
pN (ξ |S = 0) + pN (ξ |S = 1)

)
dξ

(20)

Figure 3 Block diagram of EXIT chart simulation setup.
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where pA(ξ |S = s) = 1√(
2πσ 2

A
) exp

((
ξ−(

σ 2
A/2

)
s
)2

2σ 2
A

)
. For the

equip-likely input bits, (20) can be further simplified to as

IAV (A; S) = 1 − E
{
log2(1 + exp(−(2s − 1)LA))

}
(21)

where E is the expectation operator. The MI is also used
to quantify the extrinsic output IEV (Lv; S) as

IEV (Lv; S) = 1 − E
{
log2(1 + exp(−(2s − 1)Lv))

}
(22)

where Lv denotes the channel LLR (i.e. either the �SDGN
and/or �SIGN). The main components of the EXIT chart
curves are the EXIT functions of the component decoder,
which relates the a priori MI (IAV , IAC) at the input and
the extrinsic MI (IEV , IEC) at the output of component
decoder as we described in [5]. We can measure the
extrinsic MI (IEC) of the check node decoder using (6) in
[5].

5 Simulation results
To analyse the BER performance of the SDGN and SIGN
models for the OOK, we conduct a number of Monte
Carlo simulations. For the SDGN and SIGN detection,
each trial involved generating a block of random OOK
symbols. We are computing the respective LLRs for the
OOK,making soft decisions and finally counting the num-
ber of bit errors. These results are performed with and

without considering the effect of scintillation. The signal-
to-noise ratio (SNR) is calculated on the basis of μ1−μ0

σ 2
0

=
P
λ
.
In Figure 4, we show simulation results for the OOK

without scintillation effect case for the SDGN and SIGN
models using (12) and (16), respectively. The uncoded
BER of the SDGN and SIGN detection for different
background irradiation levels is plotted. We derived the
detection threshold for the SDGN model in [9], and the
detection threshold for the SIGN model is considered the
midway of the two signal distributions. It is reported in [1]
that the InGaAs APD is a good detector for the GHz pho-
ton detection at 1,550 nm. We consider the InGaAs APD
with physical parameters G = 10, keff = 0.45 [16], and the
BER was determined as a function of the SNR for λ = 0
and 10 dB.
We present simulation results for the background level

of 0 and 10 dB because we want to compare the perfor-
mance of the APD detector for a very low to moderate
background level. We developed such sort of analysis for
various values of background level in [9] considering the
PIN photodiode. We measure the effect of background
level on the system performance and provide a good
insight for the evaluation of SDGN and SIGN models.
After looking into the simulation results for low and mod-
erate background levels, we can see that the SDGNmodel
can be approximated by SIGN at high background lev-
els (i.e. the difference in performance in terms of BER

Figure 4 Coded and uncoded BER of SDGN and SIGNmodels without the effect of scintillation.
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Table 1 Comparison of SDGN/SIGNmodels at a BER of 10−3 for the uncoded system

Values

Without atmospheric turbulence effect (SI = 0)

λ (dB) 0 2 4 6 8 10

SIGN model SNR (dB) 20.50 18.50 16.50 14.56 12.75 11.0

SDGN model SNR (dB) 18.0 16.25 14.50 13.0 11.45 10.0

Gain (dB) 2.5 2.25 2.0 1.56 1.35 1.0

With atmospheric turbulence effect (SI = 1)

λ (dB) 0 2 4 6 8 10

SIGN model SNR (dB) 30.0 28.25 26.15 24.50 22.15 20.0

SDGN model SNR (dB) 24.0 22.75 21.15 20.50 18.75 17.0

Gain (dB) 6.0 5.50 5.0 4.0 3.40 3.0

between the SIGN and SDGN models is decreasing by
increasing the background level, which is 1 dB at BER =
10−3 for λ = 10 dB). It is also noted that the SDGNmodel
performs better compared to the SIGN model in terms
of improving SNR under low background levels, which is
2.5 dB at BER = 10−3 for λ = 0 dB.
The simulation result shows that if the background level

λ increases (e.g. from λ = 0 to 10 dB), the difference
between the SDGN and SIGN BER curves decreases. This
agrees with [9] that for a large number of background lev-
els, the SDGN model can be approximated by a simple
SIGN model. We further analyse the BER results for vary-
ing the background level from 0 to 10 dB and provide the

results in Table 1. In Table 1, we perform simulation with
and without considering the effect of scintillation. It can
be seen that using the SDGN model, we can get a gain of
6 dB at λ = 0 dB and 3 dB at λ = 10 dB under the scin-
tillation effect, whereas we can get 2.5 dB to 1 dB without
scintillation effect at a BER of 10−3.
In Figure 5, we present simulation results considering

the effect of scintillation where we consider the LN dis-
tribution with SI = 1 using (13) and (17). We generate
(3,6)-regular half-rate code using the PEG algorithm [17]
with K = 1, 000 andN = 2, 000. We use the standard SPA
[8] to decode the received noisy symbol with 50 iterations
and 104 simulation runs. It is noted in Figures 4 and 5 that

Figure 5 Coded and uncoded BER of SDGN and SIGNmodels considering effect of scintillation with scintillation index = 1.



Khan EURASIP Journal onWireless Communications and Networking 2014, 2014:102 Page 8 of 10
http://jwcn.eurasipjournals.com/content/2014/1/102

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

IAV,IEC

I E
V
,I A

C

Variable Node Curve SDGN SNR = 11.5
Variable Node Curve SIGN SNR = 13.25
Check Node Curve
Trajectory SDGN
Trajectory SIGN
Variable Node Curve SDGN SNR = 9.5
Variable Node Curve SIGN SNR = 11.5
Trajectory SDGN
Trajectory SIGN

Figure 6 Extrinsic MI curves of the variable and check node with decoder trajectory for SDGN and SIGN at λ = 0 dB.Without scintillation
effect; SNR is in decibels (dB).

the performance of the system is improved by using the
LDPC code with less optical power considering the λ = 0
and 10 dB. It is seen from the simulation results that we
can achieve better performance gain for λ = 0 and 10 dB
for both values of SI (i.e. 0 and 1). It shows a good improve-
ment of up to 10 to 12 dB coding gain at a BER = 10−3 for
λ = 0 to 10 dB.

In Figure 6, we show the simulation results to mea-
sure the decoder convergence behaviour for λ = 0 dB.
The decoder convergence measures the decoding capabil-
ity of the decoder. In the simulation, we measure the MI
of the variable and check node curves and the decoder
trajectory after each iteration. We measure the variable
node extrinsic curve using (22) and check node curve
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Figure 7 Extrinsic MI curves of the variable and check node with decoder trajectory for SDGN and SIGN at λ = 10 dB.Without scintillation
effect.
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Figure 8 Extrinsic MI curves of the variable and check node with decoder trajectory for SDGN and SIGN at λ = 0 dB.With scintillation effect
at SI = 1.

using (6) in [5]. It is noted that the tunnel closes at
SNR = 9.5 dB for the SDGN and at SNR = 11.5 dB for
the SIGN, and the decoder does not converge. In this
case, the decoder fails to decode the received signal. How-
ever, at SNR = 11.5 dB for the SDGN and 13.25 dB for
the SIGN, the tunnel opens and the decoder converges
completely. It also confirms our BER simulation results

obtained in Figure 4. Similarly for λ = 10 dB, we show
the simulation results in Figure 7. It also shows the same
behaviour of convergence of the decoder for the SIGN and
SDGN models. It is noted that for low background lev-
els, the difference of SNR between the SDGN and SIGN
is greater than at high background levels. It seems that for
high background level, we can use the SIGN model, but
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Figure 9 Extrinsic MI curves of the variable and check node with decoder trajectory for SDGN and SIGN at λ = 10 dB.With scintillation
effect at SI = 1.
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for the low background level, the SDGN model should be
considered.
In Figure 8, we show the simulation results to measure

the decoder convergence behaviour for λ = 0 dB under
the effect of scintillation. We perform the simulation for
both SIGN and SDGN models. Again, we measure the
corresponding extrinsic MI and the decoder trajectory in
the same manner as we measure above. It is noted that
the tunnel closes at SNR = 11.25 dB for the SDGN and at
SNR = 13.25 dB for the SIGN. It means that the decoder
does not converge and the decoding is a failure. However,
at SNR = 14.25 dB for the SDGN and 16.25 dB for the
SIGN, the tunnel opens and the decoder converges com-
pletely, whichmeans that the decoding is successful. It also
confirms our BER simulation results obtained in Figure 5.
Similarly for λ = 10 dB, we show the simulation results in
Figure 9 and get the same behaviour as can be seen from
the previous results.We can conclude that the code design
for the SDGN models will be optimal for the SIGN mod-
els since the shape of the variable node curve is quite the
same. The waterfall region of the decoding results shown
in Figures 5 and 4 can be compared with the EXIT chart
simulation and found the best agreement of the decoder
convergence for all scenarios.

6 Conclusions
We analyse the uncoded and coded BER for the pro-
posed SDGN and SIGN models and investigate the per-
formance of the LDPC code considering the OOK modu-
lation scheme. New results for LLR mappings have been
derived for both the SDGN and SIGN models. It is seen
from the simulation results that we can get better per-
formance for the SDGN than the SIGN model under low
background levels. The performance of the SDGN model
can further be increased by coding gains using the LDPC
decoder. We can conclude that for a large number of back-
ground levels, the SDGN model can be approximated by
the SIGN model, but at low background levels, the SDGN
model should be used. The proposed research work can
be extended for the hybrid FSO/RF communication under
the consideration of different channel models.

Endnotes
aWe say the optimum detection when the noise

variance is dependent on the input bits, and sub-optimum
when the noise variance is independent of the input bits.

bVariance in the signal slot is greater than the variance
in the non-signal slot σ 2

1 > σ 2
0 .
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