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Abstract

In this paper, differential modulation (DM) schemes, including single differential and double differential, are proposed
for amplify-and-forward two-way relaying (TWR) networks with unknown channel state information (CSI) and carrier
frequency offsets caused by wireless terminals in high-speed vehicles and trains. Most existing work in TWR assumes
perfect channel knowledge at all nodes and no carrier offsets. However, accurate CSI can be difficult to obtain for fast
varying channels, while increases computational complexity in channel estimation and commonly existing carrier
offsets can greatly degrade the system performance. Therefore, we propose the two schemes to remove the effect of
unknown frequency offsets for TWR networks, when neither the sources nor the relay has any knowledge of CSI.
Simulation results show that the proposed differential modulation schemes are both effective in overcoming the
impact of carrier offsets with linear computational complexity in the presence of high mobility.
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Introduction
Two-way relaying (TWR) has attracted much interest
recently [1-7], where two source terminals communi-
cate with each other through an intermediate relay.
Both amplify-and-forward (AF) and decode-and-forward
(DF) relaying schemes under one-way relaying have been
extended to TWR [3,4]. In the DF protocol, the relay first
decodes the information transmitted from both sources
in the multiple-access (MA) phase, performs binary net-
work coding to the decoded signal, then broadcasts the
network-coded signal back to the sources in the broadcast
(BC) phase. If the relay cannot decode the information
correctly, erroneous relaying will cause significant per-
formance degradation. For the AF-based TWR, the relay
amplifies the superimposed signal received from the two
sources and then broadcasts it back in the BC phase. AF-
based TWR is particularly useful in wireless networks,
since the wireless channel acts as a natural implementa-
tion of network coding by summing the wireless signals
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over the air. Therefore, we will focus on the AF-based
TWR in this paper.
There has been some work investigating TWR using

AF [4-6], referred to as analog network coding (ANC).
However, most of the existing work assumes that perfect
channel state information (CSI) is known at all transmis-
sion links. Although in some scenarios, the CSI is likely
to be acquired through the use of pilot signals, it may
be very difficult to obtain accurate CSI when the channel
coefficients vary fast. Moreover, conventional estimation
methods do not work for AF-based TWR, although they
are effective for DF-based TWR. For example, channel
estimation for TWR was studied in [8,9] for frequency-
flat and frequency-selective environments, respectively.
These studies showed that AF TWRN systems require
very different estimation techniques from conventional
point-to-point systems. Therefore, differential modula-
tion for TWRwithout the knowledge of CSI is worth being
exploited. Differential receivers for TWRwere designed in
[7,10,11]. However, perfect synchronization was assumed
in [7,10], while imperfect synchronization scenario caused
by different propagation delay from both sources to the
relay due to the distributed nature of all nodes was inves-
tigated in [11]. To the best of our knowledge, no work has
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been reported in TWR with unknown carrier frequency
offsets when CSI is not available at all nodes.
In wireless mobile communications, however, Doppler

shift is common and inevitable, especially in the high-
speed mobile environment. For example,it is anticipated
that the third-generation European cellular standards will
operate on trains moving as fast as 500 km/h. If the car-
rier frequency is 2 GHz, the induced Doppler shift may
be up to 880 Hz. One technique to mitigate frequency
offset is to estimate it at the receiver using a frequency
acquisition and tracing circuit and then compensate it
with single-differential modulation, resulting in increased
computational complexity in the relay and reduced data
rate [12,13]. Another approach is double-differential mod-
ulation [14-16], which can effectively handle frequency
offsets in the presence of channel fading. A multiple sym-
bol double-differential detection based on least squares
criteria was proposed in [16], where the system perfor-
mance was proved to be insensitive to different carrier off-
sets. However, all the above methods [12-16] are carried
out on point-to-point communication links and cannot
be directly applied to TWR with unknown carrier offsets,
since the signal received at the relay is a mixture of both
source signals, and CSI is not available at all nodes.
Therefore, we investigate both single-differential detec-

tion (SD) and double-differential detection (DD) for TWR
using AF with unknown carrier offsets in this paper. For
SD, a carrier offset estimation and compensation scheme
with reduced computational complexity is employed. To
further improve the performance of using DD, a fast algo-
rithm of multiple-symbol-based signal detection is pro-
posed. Simulation results show that the proposed SD and
DD schemes are both effective in removing the carrier
offsets, and the computational complexity remains linear.

Notation
Boldface lower-case letters denote vectors, (·)∗ stands for
complex conjugate, (·)T represents transpose, (·)H repre-
sents conjugate transpose, E {.} is used for expectation,
‖·‖ denotes the Euclidean vector norm, CN(0,N0) denotes
the set of Gaussian distributed complex numbers with the
standard variance of N0 (i.e., 0.5N0 per dimension), and
Re {·} denotes real part.

Single-differential modulation for bidirectional
relay networks under carrier offsets
We consider a network with three nodes including two
source nodes, denoted by S1 and S2, and one relay node
R. A half-duplex system is assumed and all nodes are
equipped with one antenna. Information is exchanged
between S1 and S2 with the help of R, which is completed
in two phases. In the first phase, the MA phase, both
source nodes send the differentially encoded signals to the
relay, and in the second phase, the BC phase, the relay

broadcasts the superimposed signals back to both source
nodes.
Let zi(k) ∈ �, i ∈ {1, 2} denote the symbol to be trans-

mitted by source node Si at discrete symbol time k, where
� represents a unity power M-PSK constellation set. As
single-differential modulation is used, the signal zi(k) sent
by source Si is given as

si(k) = si (k − 1) zi(k), zi(k) ∈ � (1)

In the MA phase, two terminals simultaneously trans-
mit the differentially encoded information to the relay.
For simplicity, we assume that the fading coefficients and
the carrier offsets keep constant over the frame of length
L and change independently from one frame to another
[7,10]. The received signal at the relay at time k is then

yr (k) = √
P1h1s1 (k) e jω1k+√

P2h2s2 (k) e jω2k+nr (k) ,
(2)

where hi, i ∈ {1, 2} denotes the complex channel gain
with zero mean and unit variance between Si and R; ωi =
2π f idT , T is the symbol interval and f id is the Doppler shift
introduced between Si and R. nr(k) stands for a zero mean
complex Gaussian random variable with variance σ 2

n , and
Pi denotes the transmit power at source Si.
In the BC phase, the relay R amplifies yr by a factor α and

then broadcasts its conjugate, denoted by y∗
r (k) back to

both S1 and S2 with transmit power Pr. The corresponding
signal received by S1 at time k, denoted by y1(k), can then
be written as

ỹ1 (k) = α
√
Prh1y∗

r (k) e jω1k + n1 (k)

= α
√
P1Pr |h1|2 s∗1 (k)+α

√
P2Prh1h∗

2s∗2(k) e j(ω1−ω2)k

+ α
√
Prh1n∗

r (k) e jω1k + n1 (k)
(3)

For the decoding simplicity at S1, we can obtain the
conjugate of (3) as

y1 (k) = ỹ∗
1 (k) = μs1 (k) + νs2 (k) e j(ω2−ω1)k + n̄1 (k) ,

(4)

where α=(
P1|h1|2 + P2|h2|2 + N0

)− 1
2 ,μ = α

√
P1Pr |h1|2,

ν = α
√
P2Prh∗

1h2 and the equivalent noise n̄1 (k) =
α
√
Prnr (k) h∗

1e−jω1k + n∗
1 (k).

Similarly, the received signal at S2 can be expressed as

ỹ2 (k) = α
√
Prh2y∗

r (k) e jω2k + n2 (k) (5)

Given that S1 and S2 are mathematically symmetrical,
as shown in (3) and (5), for simplicity, we only discuss the
signal detection at S1 in the following.
Since the relay has no knowledge of CSI, we can-

not obtain the amplification factor α directly. We may
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rewrite the received signals at the relay in a vector format
as

Yr = √
P1h1S1 + √

P2h2S2 + nr, (6)

where Yr=
[
yr (1) , · · · , yr (L)

]T ,nr = [nr(1), · · · , nr(L)]T ,
Si = [

si (1) e jωi , · · · , si (L) e jωiL
]T , i ∈ {1, 2}. We therefore

have

YH
r Yr= P1|h1|2SH1 S1 + P2|h2|2SH2 S2 + nHr nr

+Re
{√

P1
√
P2h∗

1h2SH1 S2+
√
P1h∗

1SH1 nr+
√
P1h∗

2SH2 nr
}
,

(7)

where E
{
SH1 S1

} = E
{
SH2 S2

} = L,E
{
nHr nr

} = LN0,
E

{
SH1 nr

} = E
{
SH2 nr

} = 0 and E
{
SH1 S2

} = E
{
s∗1 (1)

s2(1)e j(ω2−ω1) + · · · + s∗1 (L) s2 (L) e j(ω2−ω1)L
} = e j(ω2−ω1)

E
{
s∗1(1)s2(1)

}+· · ·+e j(ω2−ω1)LE
{
s∗1 (L) s2 (L)

} ≈ 0. α can
thus be approximated at high signal-to-noise-ratio (SNR)
as

α =
√
E

{
YH
r Yr

}
L

≈
√

||Yr||2
L

(8)

Similar to (6), the received signals at source S1 can also
be rewritten in the vector format as

Y1 = μS1 + νS2 + n̄1 (9)

where Y1=[
yr (1) , · · · , yr (L)

]T , S1= [s1 (1) , · · · , s1 (L)]T ,
S2 = [

s2 (1) e j(ω2−ω1), · · · , s2 (L) e j(ω2−ω1)L
]T and n̄1 =

[n̄1 (1) , · · · , n̄1 (L)]T .
It is shown in (3) that the signal received at source

S1 is a complex superimposed signal; therefore, the
application of conventional single- or double-differential
detection on point-to-point communication link to TWR
is not straightforward. It is difficult to decode the
expected information z2 (k) if we cannot subtract the self-
information s1 (k) from y1 (k) when μ is unknown, due
to the lack of CSI at S1. Therefore, we propose a three-
step approach in the single-differential detection for TWR
with carrier offsets: step 1, the self-information of μs1 (k)
is subtracted from y1 (k), the most important step in
the whole detection procedure. Step 2, the carrier fre-
quency offset is estimated and compensated. Step 3, sig-
nal z2 (k) differentially decoded using the single-symbol
single-differential detector.

Step 1: self-information subtraction
Since terminal S1 knows its own transmitted signal, μ

needs to be estimated before we can subtract the contri-
bution ofμs1 (k) from y1 (k). We thereby propose a simple
estimation method as follows

Y1SH1 = μS1SH1 + νS2SH1 + n̄1SH1 = Lμ + νS2SH1 + n̄1SH1
(10)

By taking the expectation of Y1SH1 , given that s1 (k) and
s2 (k) are independent and have the same distribution, we
can approximately obtain

E
{
Y1SH1

} ≈ Lμ (11)

μ ≈ E
{
Y1SH1

}
L

(12)

After obtaining the estimation of μ, we can easily sub-
tract the self-information of s1 (k) as

ȳ1 (k) �= y1 (k) − μs1 (k) = νs2 (k) e j(ω2−ω1)k + n̄1 (k)
(13)

Step 2: carrier offset estimation
A frequency offset estimation method was introduced in
[13], which is effective in removing the impact of carrier
frequency offsets, independent of data symbols and chan-
nel gains. However, training symbols are required to be
transmitted at the beginning of each frame to solve the
ambiguous estimation problem. In this case, two train-
ing symbols are enough to provide a good estimation of
the carrier offsets. Then, the signals received at S1 can be
rewritten as

Ȳ1 = [
ȳ1 (−P) ,· · ·, ȳ1 (−1) , ȳ1 (0) , ȳ1 (1) ,· · ·, ȳ1(N)

]T
(14)

S2 = [s2 (−P) ,· · ·, s2 (−1) , s2 (0) , s2 (1) ,· · ·, s2(N)]T ,
(15)

where P is the number of training symbols. Define the
training symbols as si (−P) = 1 and P = 2, we have

ȳ1 (−2) = νe jω(−2) + n̄1 (−2)

ȳ1 (−1) = νe jω(−1) + n̄1 (−1)

ȳ1 (0) = νe jω0 + n̄1 (0) (16)

Since ν is also a complex value, the following transfor-
mation is made

ŷ1 (−1) = ȳ1 (−1) ȳ∗
1 (−2) = |ν|2e jω + n̂1 (−1)

ŷ1 (0) = ȳ1 (0) ȳ∗
1 (−1) = |ν|2e jω + n̂1 (0) , (17)

where ω
�= ω2 − ω1. Then, the estimation of ω can be

obtained as ω̂ = arg
{

0∑
l=−1

y (l)

}
∈ (−π , π ].

Step 3: single-symbol single-differential detection
With the estimation of the carrier frequency offset ω̂, the
frequency offset effect is compensated, and the received
data after compensation can be expressed as

ŷ1 (k) = ȳ1 (k) e−jω̂k = νs2 (k) + n̄1 (k) e−jω̂k (18)
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Consider the generalized likelihood ratio test (GLRT)
detection of the multiple symbols {s2 (k − n)}Nn=0. Define

Ŷ1 = [
ŷ1 (0) , ŷ1 (1) , · · · , ŷ1 (N)

]T
S2 = [s2 (0) , s2 (1) , · · · , s2 (N)]T (19)

The GLRT algorithm for detection of {s2 (k − n)}Nn=0
can be obtained by minimizing the following metric:

min
{s2(t)}N−1

t=1 ,v

∥∥∥Ŷ1 − vS2
∥∥∥2 (20)

Performing the minimization of the metric over ν

results in the following decision algorithm:

max
{s2(k−n)}Nn=0

∣∣∣∣∣
N∑

n=0
ŷ1 (k − n) s∗2 (k − n)

∣∣∣∣∣
2

(21)

Let
{
ŝ2 (k − n)

}N
k=0 be the detection results during the

observation length of N for the signal transmitted by
S2. Then, by differential decoding, we can recover the
z2 (k − n) as

ẑ2 (k − n) = ŝ2 (k − n) ŝ∗2 (k − n − 1) , n = 0, 1, · · · ,N−1
(22)

Double-differential modulation bidirectional relay
networks under carrier offsets
In this section, we investigate the double-differential mod-
ulation for TWR. Similar to the single-differential modu-
lation, the signal si (k) sent by source Si is given as

si (k) = si (k − 1) pi (k) , pi (k) ∈ �

pi (k) = pi (k − 1) zi (k) , zi (k) ∈ � (23)

Same as single-differential modulation, the signals
received at terminal S1 can be transformed as

y1 (k) = ỹ∗
1 (k) = μs1 (k) + νs2 (k) e j(ω2−ω1)k + n̄1 (k)

(24)

The DD in TWR is divided into two steps. Step 1
is self-information elimination, similar to the first step
of the single-differential detection method described
in section ‘Single-differential modulation for bidirec-
tional relay networks under carrier offsets’. Step 2 is
the double-differential demodulation. The attractive fea-
ture of double-differential modulation is its insensitivity
to unknown frequency offset, so the frequency offset
is not necessarily acquired and tracked in step 2. For
the second step of DD detection, conventional double-
differential detector, including symbol-by-symbol and
multiple-symbol detection can be applied, once the self-
information μs1 (k) is subtracted from the received signal
y1 (k). Since the processing of step 1 has been introduced

in the above section in detail, we in the next focus on
step 2.

Symbol-by-symbol double-differential detection
From (13), the self-information of μs1 (k) can be sub-
tracted at S1 without the need of any CSI; therefore, (13)
is equivalent to the DD detection on a direct transmission
link [14]. A symbol-by-symbol double-differential detec-
tor is then developed to recover the desired information,
as in the following:

z̃2 (k)=argmax
z2(k)

{
ȳ1(k) ȳ∗

1 (k−1)
(
ȳ1 (k−1)ȳ∗

1(k−2)
)∗z∗2(k)

}
(25)

Multiple-symbol double-differential detection
Even though double-differential modulation can elimi-
nate the degradation due to frequency offset, it needs
higher SNR power ratio than that of coherent detection,
to achieve the same average bit error rate (BER) per-
formance. An attractive approach to mitigate this SNR
loss is called multiple-symbol double-differential detec-
tion [15,16].
In the absence of noise, we can obtain

ŷ1 (k) = ȳ1 (k) ȳ∗
1 (k − 1)

= |ν|2e j(ω2−ω1)p2 (k − 1) z2 (k)
= ĥp2 (k − 1) z2 (k) (26)

which is equivalent to single-differential detection, and
when iterated, it becomes

ŷ1 (k − n) = ĥp2 (k − N + 2)
N−n−3∏
m=0

z2 (k − n − m) ,

n = 0, 1, 2, · · · ,N − 2
(27)

Here, N denotes the symbol length in the observa-
tion. Next, the minimum least-square (LS) criterion [16]
is applied. By performing the minimization of the met-
ric over ĥp∗

2 (k − N + 2), the following decision can be
obtained:

max
z2(k), z2(k−1),··· , z2(k−N+3)

∣∣∣∣∣
N−2∑
n=0

y1(k−n). . .

N−n−3∏
m=0

z∗2(k−n−m)

∣∣∣∣∣
2

(28)

However, (28) has a computational complexity of
(MN−3M−N+2)MN−1

(M−1)2 , which is prohibitively high. Then,
a fast algorithm is introduced in the following with a
complexity on the order of N log2N independent of the
constellation size based on the principle in [17].
(26) can be rewritten as

ŷ1 (k) = ȳ1 (k) ȳ∗
1 (k − 1) = |ν|2e j(ω2−ω1)p2 (k) (29)
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With the theorem [17] that the vector Z2 maximizes
p

(
ŷ1|Z2

)
if and only if the vector P2 maximizes p

(
ŷ1|P2

)
,

P̂2 which maximizes the following is then selected:∣∣∣∣∣
N∑

k=1
ŷ1 (k) p̂2 (k)

∣∣∣∣∣
2

, (30)

where Z2 = [z2 (k + 1) , · · · , z2 (k + N)]T ,P2 = [
p2 (k+

1), · · · , p2 (k + N)
]T , k ≥ 0.

If P̂2 = P2, following the corollary [17], for any k, l, with
1 ≤ k, 1 ≤ N , we have∣∣arg (

ŷ1 (k) p̂2 (k)
) − arg

(
ŷ1 (l) p̂2 (l)

)∣∣ <
2π
M

(31)

For any k, k = 1, · · · ,N and any p̂2 (k), ŷ1 (k) p̂2 (k) is
termed as a re-modulation of ŷ1 (k). Therefore, it is suf-
ficient to consider only those sets of re-modulations of
ŷ1 (k) , k = 1, · · · ,N , which contain the re-modulations
within 2π

M . Let P̄2 be the unique P2, which satisfies
arg

(
ŷ1 (k) p̄2 (k)

) ∈ (
0, 2πM

]
. For simplicity, we define dk =

ŷ1 (k) p̄2 (k) and then list the arg {dk} ordering from the
largest to the smallest. Define the function k (i) where
the value of k (i) denotes the subscript k of dk(i) and i
represents the ith position in the list. To get all the pos-
sible re-modulations of ŷ1 (k) , k = 1, · · · ,N , let the list
going clockwise around the circle at the interval of 2π

M . Let
qi = dk(i), i = 1, · · · ,N for m = 1, · · · ,M − 1 and then
formN < i ≤ (m + 1)N , qi = e j

2π
M qi−mN .

To maximize (30), it is sufficient to obtain the starting
position as

î = argmax
i∈{1,··· ,MN}

∣∣∣∣∣∣
(n+N−1)modMN∑

i=n
qi

∣∣∣∣∣∣
2

(32)

Note that the magnitudes in (32) are periodic in N,
resulting inM-fold ambiguity in (30), which will not affect
differential decoding. Thus, only the following is required
to be obtained:

î = argmax
i∈{1,···,N}

∣∣∣∣∣∣
(n+N−1)modMN∑

i=n
qi

∣∣∣∣∣∣
2

, (33)

and hence, the algorithm has the complexity on the order
of N log2N . Then, vector P̂2 can be obtained, where

p̂2,k(i) = p̄2, k(i),î ≤ i ≤ N

p̂2, k(i−N) = p̄2, k(i−N) + 2π
M

,N ≤ i ≤ î + N − 1 (34)

By reordering the elements p̂2, k(i), i = 1, · · · ,N in the
order of the subscript value (i), we can get the vector
p̂2 (k) , k = 1, · · · ,N . For differential decoding, z2 (k) can
be recovered as

z2 (k) = p̂2 (k + 1) p̂∗
2 (k) (35)

Simulation results
In this section, we present some simulation results for
the proposed SD and DD schemes for TWR using AF
with different Doppler shifts corresponding to different
relative velocities between the relay R and the terminal
Si, i ∈ {1, 2}. We choose the carrier frequency 2 GHz and
the symbol interval T = 100us. Three different normal-
ized Doppler frequencies have been selected, fdT = 0.12,
fdT = 0.24 and fdT = 0.36, corresponding to a mobile
terminal moving at speeds of 100, 200, and 300 Km/h,
respectively. We also plot the performance of the ana-
log network coding scheme with differential modulation
(ANC-DM) [7] with no frequency offset for comparison.
For simplicity, it is assumed that P1 = P2 = Pr = 1,
both source nodes and the relay have the same noise vari-
ance N0, and the variance of complex channel coefficient
is set to 1 for all links. All simulations are performed
with BPSK modulation and the length of the frame is set
to 100.
The BER performance of estimating μ as described

in (11), and (12) is presented in Figure 1a,b with ran-
dom Doppler shift. For comparison, we also included the
Genie-aided result by assuming that μ is perfectly known
by the source such that traditional differential decoding
without carrier offsets can be performed both for SD and
DD. It is shown that there is almost no performance loss
using the estimation method with the existence of car-
rier offsets, which clearly justifies the robustness of the
proposed schemes.
In Figure 2, the BER of the proposed SD for TWR is

compared with that of the ANC-DM [7] with different
Doppler shifts. It can be observed that the proposed SD
scheme based on Doppler shift estimation and compen-
sation nearly has the same performance under different
Doppler shifts. It is about 3 dB inferior to ANC-DM [7]
without Doppler shift. However, ANC-DM [7] is shown to
experience high error floor under the Doppler shift.
In Figure 3, the BER of the proposed multiple-symbol

double-differential detection (MSDD) for TWR is com-
pared with that of the ANC-DM [7] with different Doppler
shifts. It can be observed that the proposed MSDD
scheme nearly has the same performance under different
Doppler shifts; it nearly has the same performance as the
ANC-DM [7] without Doppler shift at high SNR. How-
ever, ANC-DM [7] is shown to experience high error floor
under the doppler shift.
In Figure 4, the BER of the proposed DD scheme is com-

pared with that of ANC-DM [7] under random Doppler
shift. It can be observed that the performance improves
significantly with the increasing of the observation length
N, approaching a limit about 0.5 dB away from the per-
formance of ANC-DM [7] under no Doppler shift with
N = 64. However, ANC-DM [7] under random Doppler
shift can not work.
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a

b

Figure 1 Simulated BER performance of the proposed (a) SD and (b) DD detection. μ is under estimation and perfectly known under random
carrier offset.
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Figure 2 Simulated BER performance of the proposed single-differential detection with different Doppler shifts.



Zhuo et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:111 Page 7 of 8
http://jwcn.eurasipjournals.com/content/2014/1/111

Figure 3 Simulated BER performance of the proposedmultiple-symbol double-differential detection with different Doppler shifts.

Figure 4 Simulated BER performance of the proposed double-differential detection under random Doppler shift.
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Figure 5 Simulated BER performance comparison between single-differential and double-differential detection under random carrier
offset.
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Figure 5 compares the BER performance between the
proposed SD scheme and DD scheme. Liu et al. [13] shows
the performance of multiple-symbol single-differential
(MSSD) detection degrades with the increasing of the
observation length N because of the inaccurate Doppler
shift estimation caused by the short training symbols;
therefore, for single-differential modulation in TWR,
single-symbol detection is preferred. It is shown that the
BER performance of DD with N = 64 is about 2 dB
superior to that of SD with P = 2 with random carrier
frequency offsets.
Next, the computational complexity of the two pro-

posedmethods is compared. The computational complex-
ity of the proposed DD with multiple-symbol detection
using fast algorithm is O

(
N log2N

)
, which is indepen-

dent of the constellation size M, while that of the SD is
O (M), which are both linear. It is also demonstrated that
single-differential detector using the frequency offset esti-
mation needs extra training symbols, which decreases the
transmit rate, while double-differential detector has its
insensitivity to unknown frequency offsets, allowing the
hardware implementation to be easy, without the need of
complicated frequency offset acquisition and tracking cir-
cuitry. Its inherent SNR loss can be greatly minimized by
using the multiple-symbol detection.

Conclusion
In this paper, we have proposed two differential mod-
ulation schemes to effectively attenuate the degrading
effects on performance due to the Doppler shifts in TWR
using ANC, when neither the sources nor the relay has
any knowledge of CSI. The simulation results indicate
that the proposed algorithms can effectively remove the
impact of Doppler shift in the presence of channel fading
with low computational complexity in high-speed mobile
environment.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
This work was supported in part by the National Natural Science Foundation
of China under Grant No. 60972055, No. 61132003, and No. 61171086 by
Shanghai Natural Science Foundation under Grant No. 14ZR1415100 and by
the Shanghai Leading Academic Discipline Project under No. S30108. WT’s
work is supported by The Program for Professor of Special Appointment
(Eastern Scholar) at Shanghai Institutions of Higher Learning, Innovation
Program of Shanghai Municipal Education Commission (14ZZ096), Specialized
Research Fund for the Doctoral Program of Higher Education
(20133108120015) and Innovation Fund of Shanghai University.

Received: 31 December 2013 Accepted: 28 May 2014
Published: 9 July 2014

References
1. R Ahlswede, N Cai, S-YR Li, RW Yeung, Network information flow. IEEE

Trans. Inf. Theory 46(4), 1204–1216 (2000)
2. S Zhang, SC Liew, PP Lam, Hot topic: physical-layer network coding, in

Proceedings of the 12th Annual International Conference onMobile
Computing and Networking (Los Angeles, CA, USA, 2006), pp. 358–365

3. C Yuen, WH Chin, YL Guan, W Chen, T Tee, Bi-directional multi-antenna
relay communications with wireless network coding, in IEEE Vehicular
Technology Conference, 2008, pp. 1385–1388

4. P Popovski, H Yomo, Wireless network coding by amplify-and-forward for
bi-directional traffic flows. IEEE Commun. Lett. 11(1), 16–18 (2007)

5. H-M Wang, X-G Xia, Q Yin, A linear analog network coding for
asynchronous two-way relay networks. IEEE Trans. Wireless Commun.
9(12), 3630–3637 (2010)

6. Y Jing, A relay selection scheme for two-way amplify-and-forward relay
networks, in International Conference onWireless Communications & Signal
Processing, 2008, pp. 1–5

7. L Song, Y Li, A Huang, B Jiao, AV Vasilakos, Differential modulation for
bidirectional relaying with analog network coding. IEEE Trans. Signal
Process. 58(7), 3933–3938 (2010)

8. F Gao, R Zhang, Y-C Liang, Optimal channel estimation and training
design for two-way relay. IEEE Trans. Commun. 57(10), 3024–3033 (2009)

9. F Gao, R Zhang, Y-C Liang, Channel estimation for OFDMmodulated
two-way relay networks. IEEE Trans. Signal Process. 57(11), 4443–4455
(2009)

10. T Cui, F Gao, C Tellambura, Differential modulation for two-way wireless
communications: a perspective of differential network coding at the
physical layer. IEEE Trans. Commun. 57(10), 2977–2987 (2009)

11. Z Wu, L Liu, Y Jin, L Song, Signal detection for differential bidirectional
relaying with analog network coding under imperfect synchronisation.
IEEE Commun. Lett. 17(6), 1132–1135 (2013)

12. A Nallanathan, Y-C Liang, Joint channel and frequency offset estimation
in distributed MIMO flatfading channels. IEEE Trans. Wireless Commun.
7(2), 648–656 (2008)

13. J Liu, P Stoica, M Simon, J Li, Single differential modulation and detection
for MPSK in the presence of unknown frequency offset, in Fortieth Asilomar
Conference on Signals, Systems and Computers, 2006, pp. 1440–1444

14. DK van Alphen, WC Lindsey, Higher-order differential phase shift keyed
modulation. IEEE Trans. Commun. 42(234), 440–448 (1994)

15. D Divsalar, MK Simon, Multiple-symbol differential detection of MPSK.
IEEE Trans. Commun. 38(3), 300–308 (1990)

16. M Simon, J Liu, P Stoica, J Li, Multiple-symbol double-differential
detection based on least-squares and generalized-likelihood ratio criteria.
IEEE Trans. Commun. 52(1), 46–49 (2004)

17. KM MaCkenthun Jr, A fast algorithm for multiple-symbol differential
detection of MPSK. IEEE Trans. Commun. 42(234), 1471–1474 (1994)

doi:10.1186/1687-1499-2014-111
Cite this article as: Zhuo et al.: Two-way amplify-and-forward relaying
with carrier offsets in the absence of CSI: differential modulation-based
schemes. EURASIP Journal onWireless Communications and Networking
2014 2014:111.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	Introduction
	Notation

	Single-differential modulation for bidirectional relay networks under carrier offsets
	Step 1: self-information subtraction
	Step 2: carrier offset estimation
	Step 3: single-symbol single-differential detection

	Double-differential modulation bidirectional relay networks under carrier offsets
	Symbol-by-symbol double-differential detection
	Multiple-symbol double-differential detection

	Simulation results
	Conclusion
	Competing interests
	Acknowledgements
	References

